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A MEASURE OF THE CONFORMITY OF A PARAMETER SET

TO A TREND: THE PARTIALLY ORDERED CASE1

B Y TIM ROBERTSON and F. T. WRIGHT

University of Iowa and University ofMissouri-Rolla

Inferences concerning order restrictions on a collection of parameters, 0i, 0 2, ... , θk,
are considered with the order restrinctions of the form, θt ^ β> for i^<j where ^ . is a
partial order on 1,2, . . . , & . Clearly, some parameter sets conform more closely to these
order restrinctions than others. We are interested in measures of the degree of conformity.
Some of the measures available in the literature for the totally ordered case are generalized
to the partially ordered case and the theory developed is applied in several tests of order
restricted hypotheses.

1. Introduction. In various situations, one is interested in a collection of parameters

θj, θ2, ... , θ* which are believed to satisfy certain known order restrictions and inference

procedures which make use of this ordering information are preferred. We consider order

restrictions that are induced by partial orders on Ω = {1, 2, ... , k}. That is, suppose that

:<is a partial order on Ω and that the order restrictions are θ, ^ β/whencgy. Such a vector

θ = (θi, θ2, ... , ΘJO is said to be isotone (with respect tor^). In studying such inference

procedures it is helpful to have a measure of the degree of conformity to the order restric-

tions. For instance, a test of Ho: θ is constant versus Hi: θ is isotone, but not constant should

have power that increases with the degree of conformity. For a non-simple null hypothesis

such a concept could be useful in identifying a least favorable configuration. In a Bayesian

approach, priors which assign larger probabilities to parameters conforming more closely

to the order restrictions would be sought.

Barlow, Bartholomew, Bremner and Brunk (1972) contains a thorough discussion of

order restricted inference. Robertson and Wright (1982) develop several measures of con-

formity for the totally ordered case, ie. ΘΪ ̂  θ 2 ^ ... ^ θ*(l:<2:<...;<fc). In considering

unimodal structures, partial orders of the type lr<2r^...r<r>2r + 1 >....>:&arise and

when making one-sided comparisons of several treatments with a common control > the par-

tial order 1;</ for / = 2, 3, ... , k occurs. (See Bartholomew (1959) and Robertson and

Wright (1981).) Suppose that a dependent variable has mean θ(i,/) when the first indepen-

dent variable is fixed at level i, 1 =̂  i ^ r, and the second independent variable is fixed

at level./, 1 ̂ 7 ' ^ c. If the levels are increasing and if θ( , ) increases with each independent

variable as the other is held fixed, then the order restrictions are θ(ι j ) ^ Q(s,t) for i ^ s

andj ^ t. This is another example of a partial order that is not total. We extend the measures

of conformity in Robertson and Wright (1982) to the partially ordered case.

A set L CZ Ω is a lower layer provided 1 e L whenever i^£j and j e L. We denote the

collection of lower layers by £. To allow for different weights on the parameters, let w

be a positive weight function defined on Ω, ie. w = (wi9 w2, ... , wfc). For situations in

which the degree of conformity should be translation invariant, we consider the relationship
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> > , de f ined o n E u c l i d e a n s p a c e 3 * , b y x = ( x l 9 JC2, ... , JC*) » y = ( j i , J2» ••• » J Λ )
if and o n l y i f

Σi€LWjf(jCi-mίx)) ^ S/CLWIf(y-w(y)) for each L € £ ,

with m(x) = Σ J ^ H ^ /Σ^W.. Robertson and Wright (1982) argue that > > is appropriate
for normal means, but for Poisson means a more appropriate measure is the following: x
>>*yifandonlyif

^i<jWiXi ^ ?<i<jWiyi for each Le£ and Σ *= i w^ = Σf=, w^ .

Remark 1.1. The relationship » and >>* are transitive and symmetric, » * is

reflexive, and x « y and x » γ imply that x-y is a constant vector.

Proof. The first conclusion is obvious and because x > > y is equivalent to x-m(x) > > *
y-m(y), it suffices to show that > >* is reflexive.

Suppose x < < *y and x > > *y. Let Lo = φ and inductively define Lα to consist of
those j e Ω for which i^<j and i Φ j imply that i e Lα_,. Observe that La_x G L<x> £«-£<*-I
Φ φ, and because Ω is finite, there is an integer h for which φ = Lo C Lλ C ... C Lh

= Ω. For each j e Lu {/} e £ and so JC, = Vy. Next, for y e L2, L(/) = {/ e Ω : i^y} e £,
L(j)-Lλ = {/} and so JC, = yy. Continuing we see that x=y and the proof is completed. •

If one identifies vectors x and y which differ by a constant vector, then > > induces a
partial order on the equivalence classes which is essentially > > *.

Let C = {x e &: x is isotone with respect to ̂ < } and note that the apriori belief concern-
ing θ is that θ € C. Typically, estimates of θ are obtained by projecting initial estimates
onto C, and test statistics are related to the distance from the initial estimates to the projec-
tions. The above measures of conformity can be characterized in terms of the Fenchel dual
of C, which is defined by

C*w = {y e &: Σ /= i w ^ i ^ 0 for all x e C}.

(If w is constant we denote the dual cone by C*.) Barlow and Brunk (1972) and Dykstra
(1981) discuss some of the implications of duality theory in order restricted inference. The
following result is proved in the former reference (cf. Section 4).

Remark 1.2. With x,y e Jp, the following are equivalent:

(A) x»y(x»*y);

(B) y-m(y)-x+m(x)eC*w(y-xeC*w);fl^

(C) XL,wI (y-/n(y)-jci +m(x))z/ ^ 0(Σ?=,wfy-x^ ^ 0)

foreachzeC.
Real valued functions which are nondecreasing with respect to these orderings are of

interest. Iff: & -> J? and/(x) ^ fly) for all x,y € J? with x > > y (x > > * y), then/is
said to be ISO(ISO*). The next result is immediate.

Remark 1.3. A function f: J?-> R is ISO if and only if it is ISO* and fix + cek) =
f(x) for allxzJ? and ceR, where ek is a k-dimensional vector of ones.

Remark 1.4. Let x,y e 3*. x » y (x » * y) if and only if fix) ̂ fiy)for all f which
areISO(ISO*).

Proof The result is an easy consequence of the definitions of ISO and ISO* and the
following facts: fL(x) = — Xieiw&r-w(x)) is ISO for each L e £, gL(x) = — Σ/^w^ is ISO*
for each L e £ and ΣjLiWfX,- is ISO*. •

The partial ordering > > * is a cone ordering as discussed in Marshall, Walkup and Wets
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(1967) and the following result is contained in their work. However, its proof is so simple
it is included here.

THEOREM 1.5. Letf: J^^Rbe differentiable and let fox) = {d/dxtf{x)for f = 1,2, ... ,
k. Iffi(x)/Wi ^fj(x)/wjfor all i and) with i^j and all x e / then f is ISO*.

Proof. Suppose x > > * y. Using the mean value theorem there is a point z on the line
segment joining x and y for which

and the latter sum is non-positive since y - x e C* w and (fλ (z)/wu ... ,/*(z)/wΛ) e C by

hypothesis. D

2. Preservation Theorems. In this section, we establish results which say that if X

is a set of observations,/(X) is a statistic with/ISO(ISO*) and /ι(θ) = ErfQL), then h is

ISO(ISO*). The first result deals with a multinomial setting. Let w = e*, let An = {x e

3*: each JC, is a nonnegative integer and Σf=i*, = n}9 let β = { p e ^ : each p f ^ 0 and

£*= 1p. = i} a n d let X = (Xu X2, ... , Xk) be a multinomial vector with parameters n and

P = (Pi,/>2, •• ,Pk)'

THEOREM 2. L // f:An->Ris ISO, then Λ(p) = EfiX) is ISO on B.

Proof. As in Robertson and Wright (1982), *f.(p) - Λ/p) =

where δΓ is a ̂ -dimensional vector with 5th coordinate zero unless s = r and the rth coordi-

nate is one. Suppose i^j and let L e £. If i έ L then Σre/Xy+δ/),. = Σre/Xy+δj)r; if i e L

and./ έ L, ί/ien X ^ ί y + δ , )Γ ̂  Σ r e L(y+δ y)Γ; and if ij e L, then Σ r e L (y+δ l ) r = X r e L(y+δ y) r.

The proof is completed by applying Theorem 1.5. D

Chacko (1966) and Robertson (1978) considered testing Ho: p = k~λtk with the alterna-

tive restricted by the trend, Hλ: p is isotone with respect to;< Chacko considered the totally

ordered case and Robertson the partially ordered case. The likelihood ratio test statistic is

Γ01 = -2 In λ = 2XjL,Xf In (P(X|C)/) -2n\nn + 2n\nk where P(X|C) is the projection

of X onto C, which is characterized by

Σ*=, (Xr-P(X\C)i)P(X\C)i = 0 and X?=, (X-PίXlQ^z, ^ 0

for all z e C. (See Barlow, Bartholomew, Bremner, and Brunk (1972, p. 28). Computation

algorithms for P(X\C) are also discussed in their Chapter 2.) We first show that/(x) =

Σ^jC/lnίPίxlO/) is ISO on Λπ, then note that this implies that I[Toι&t]
 is> for f i x e d ^ I S O

on An and applying Theorem 2.1, we see that the power function of T0\, EI[TQ^^, is ISO

onβ.

Suppose x > > y with x,y e An, then y - x € C* (we omit the superscript w since it is
constant) and so

l
The second term on the r.h.s. is nonpositive since y -x e C* and P(y|C) € C. Furthermore,
P(x\C)/n maximizes Σ f β , ^ l n Λ with p e C and so Σ ^ J t ln^y lO,) ^ Σ^.JC.ln^xICX)!
Hence, Σ*=, V/ln^ylC),) ^ Σf= .^ ln^x lO,) , or/is ISO on Λn.

The next result is an adaptation of Theorem 1.1 of Proschan and Sethuraman (1977).
Let Φ(Θ,Λ:) be a nonnegative function defined on (0,oo) x [0,oo) satisfying the semigroup
property,

Θ2,x) = /oΦ(θ,,JC-v)φ(θ2,v)Jμ(y),
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with μ either Lebesgue measure on [0,o°) or counting measure on the nonnegative integers.

THEOREM 2.2. Let φ be as above, letf: jf-tRbe ISO* and let h be defined on (0,oo)*

by

Mθ) = /[o,oc)/[o,oc).../[0,oc)/(x)Πf=iφ(θl,x/Vμ(x1) ... dμ(xk),

where the integral is assumed finite. Then h is ISO*.

LEMMA. For i,j e Ω, set δij = fywv-δ/wy. C*w, the dual of the cone ofisotone vectors,

andK, the collection of vectors x = 2,{(ij)e&: i*t i<j}ciβij w i t n t n e cu ^ ° a r e equal.

Proof. A proof similar to that given for the Remark on p. 49 of Barlow, Bartholomew,

Bremner and Brunk (1972) shows that

C*w = {y: X/eLWtf, ̂  0 for every Le£ and Σ?=, w^ = 0}

ForLe£,α,βeίϊ with αrSb and α ^ β,

ifαeLbutβ^L

ifα,βeL.

So K C C* w and hence K*™ D (C* w )* w . As Dykstra (1981) observed, (C* w )* w = C if

C is a closed convex cone. This can also be shown using the following: the result holds

when w = e*, ie. (C*)* = C for C closed, (cf. Rockafeller (1970, p. 121)) and C*w =

{(yj/wi, ... , yk/wk): y e C*} (cf. Barlow and Brunk (1972)). Suppose that z e K*" - C,

that is z is not isotone and Σ^iWiZiXi ^ 0 for each x e K. Now if z is not isotone there

exist a,b e Ω with α r ί β , <* Φ β and zα > zβ and so Σ?=iwl zl (δotfβ)l = z^-Zβ > 0. This

contradiction implies that K*™ = C or C* w = (*Γ*W)*W = ^ . D

(Theorem 2.2) Let w = e* and consider θ" » * θ ; , then θ ; - θ" € C*.
Hence, 0' = 0" + Σ{/<, /^^ ί 7 δ / 7 with c(j > 0. So it suffices to show that for arbitrary 0,

Λ(θ + Cy δ/,-) ̂  Λ(θ), but this can be shown using the proof of Theorem 3.3 of Robertson

and Wright (1982). D

Suppose that k independent Poisson processes are each observed for T units of time and

that the intensity of the /th process is θ,. The likelihood ratio test of θj = Θ2= ... =θ* when

the alternative is restricted by the trend, θ is isotone, rejects for large values of

Γ01 = -2 In λ = 2{Σ?= ιXMP(X\C)i)-(ΣlιXi)ln(ΣUιXjk)}

where λ is the likelihood ratio and X = (Xj,X2, ... , Xk) with the X( independent Poisson

variables and £(X,) = Θ/Γ. The family of Poisson densities satisfies the semigroup property

with μ counting measure on {0, 1, . . .} ,- (Σk

i=ιXi)\n(Σk

i=ιχi/k) is ISO* and we have seen

earlier that Σf=iJC/ln(P(x|C)/) is ISO*. Hence, Theorem 2.2 shows that this test has power

function that is ISO*. This result could also have been obtained from Theorem 2.1 since

conditioning on the total number of occurrences, Xf=iX/, leads to a multinomial testing

situation. However, this approach is more direct.

THEOREM 2.3. Suppose {Pθ: θ e Θ} is a family of probability measures on the Borel

subsets of 3? with θ C ^ and suppose that ifX has distribution Pθ then X-Q has the

distribution Q which is independent of$.Iff.Rk->R is ISO and h: Θ-> R is defined by

*(6) = ffix)dPθ(x) (which is assumed finite for each θ € Θ), then h is ISO on θ .

The proof of Theorem 2.3 is just like that given for the totally ordered case (cf. Robertson
and Wright (1982)) and in fact, the result holds for any cone ordering (cf. Marshall, Walkup
and Wets (1967)).
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Suppose Xψ j= 1,2, ... , n and i = 1,2, ... , k, are independent normal variables with

mean θ, and common variance σ 2. The estimator σ 2 = X?=i27=i(Xy-X/)2/(*(rt-l)) for σ 2

is independent of θ, = X, = ΣjL {Xrfn. To test θ, = θ 2 = ... = θ* with the alternative re-

stricted by, θ is isotone, one could use T = X ^ ./^ίθ,—θ, )/σ, or more generally

?=1cf- = 0.
Of course, this test rejects for Tc ^ t where t is the lOO(l-α) percentile of the T distribution

with k(n-\) degrees of freedom. The power function is translation invariant, ie. the power

is the same at θ and θ + cek, and so it is ISO if it is ISO*. The distribution of σ is indepen-

dent of θ and the power at θ is given by

So it suffices to show that for each positive a, / ^ [ Σ ^ c Λ ^ at] is ISO*, but θ' » * θ
implies that θ - θ' e C* and so Σ*= ̂ ( M / ) ^ 0 if c e C. Hence if the vector c is isotone
with respect to:< then the power function is ISO.

In the case of T, Ci equals card. {^:^/}-card. {£ \€^i) which is easily seen to be isotone.
For the simple tree ordering, \z<i, i = 2, ... , k, this choice of c is (-k+1,1,1, ... ,1)
and for the loop ordering, ie. l_Ξc<fc for / = 2, ... , k-\, this choice of c is (-k+1,0, ... ,

0,fc-l). The test for the simple tree case is discussed in Barlow, Bartholomew, Bremner

and Brunk (1972, p. 188) and it is argued there that this choice of c provides the optimum

set of scores.

Robertson and Wright (1982) consider the likelihood ratio test for this testing problem

with a total order, unequal sample sizes and known variances which are not necessarily

equal. The arguments given there also show that the likelihood ratio test in the partially

ordered case has power that is ISO.

Robertson and Wegman (1978) developed the likelihood ratio test for //1: θ is isotone

with respect tor<versus H2: ~ #1 for exponential families. In the normal means case with

known variances and w, = «//σ2, the test statistic is T]2 = Σ*=iH>Xθ—Pw(θ|C)/)2 where

PW( |C) denotes the projection with respect to the distance function <i2(x,y) = X/=iW/(jt—

V/)2. It is easy to show that neither Tλ 2 nor its negative is ISO*. As in Robertson and Wright

(1982), we define another measure of conformity x ^> y provided x - y e C. In the totally

ordered case, x > y implies x > > y, but the converse is not true. However, in the partially

ordered case this implication is not valid in general (For an example, consider £=3, the

only order restriction is 2>:1, x = (0,0,0), y = (1,1,-2) and L = {3}.) A function/: 7?

+ R is ISO** provided fix) ^ fiy) for all x,y e jf with x ^> y. The analogue of Remark

1.4, x ^> v if and only iffix) ^ fiy) for all/which are ISO**, is easy to establish. (Note

that fix) = Xj-Xi is ISO** if /:</.) Furthermore, since ^> is a cone ordering, Theorem 2.3

remains valid if ISO is changed to ISO**. Theorem 2.1 of Robertson and Wegman (1978)

shows that the negative of ί,2(x) = S*=,wl (^l -/>

w(x|C)/)
2 is ISO**. So the modification

of Theorem 2.3 which applies to > shows that if θ > θ', then the power of T]2 at θ' is at

least as large as at θ. Furthermore, θeC and θ' imply that θ—θ e C or θ £ θ'. Hence, Ho:

θ is constant, is least favorable within Hλ and Robertson and Wegman (1978) have shown

that under//0, Tl2 has a chi-bar-squared distribution.

3. Comments. The problem of measuring the degree of conformity to an arbitrary

partial order is a very broad one and in particular situations better measures may exist. In

fact, we have noticed that none of the measures studied here are applicable to all the situa-

tions considered. In studying location parameters which are not related to the scale parame-
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ters, as in the normal case, > > is preferred, but for cases such as that of Poisson means,

where the location and scale parameters are related, > > * is more appropriate. We also

found that ^ was useful when the null hypothesis stipulates that a collection of normal

means satisfies a trend.

Because of the breadth of the problem it should not be surprising that in some special

cases one can find a pair of parameter sets for which one of the orderings doesn't agree

with our intuition. However, the measures studied here do seem to be useful in a variety

of testing situations.

There are a couple of basic results in the totally ordered case which relate projections

and the measures of conformity that are not true in the partially ordered case. Theorem

2.2 of Robertson and Wright (1982) states that

Λv(y|O = inf{z € C: z » * y}

and as a corollary x > > * y implies Pw(x|C) »*Pw(y\C) and x > > y implies that Pw(x|C)
> > Λv(y|θ The same example serves to show that these results are not valid in the general
partially ordered case.

Example. Suppose that k = 3, 1:<2>:3, w = e3, x = (0,4.5,4.5) andy = (1,3,5).

Observe that x > > * y (and of course, x > > y), Pw(x|C) = x, Pw(y|C) = (1,4,4) (one

could use the lower sets algorithm discussed in Barlow, Bartholomew, Bremner andBrunk

(1972)), butPYf{\\C)»Py/{y\C) is not true.

The Remark on p. 1236 of that paper is also not valid for arbitrary partially ordered

situations. It states that if φΦ A C . ^ and A has a lower bound with respect to » ( » * )

then A has a greatest lower bound with respect to > > ( > > * ) and in the case of > > * the

greatest lower bound is unique. It is not difficult to construct examples with A a set with

two elements which has a lower bound with respect to » * (and of course then with

respect to > > ) but not a greatest lower bound.
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