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DUAL CONVEX CONES OF ORDER RESTRCITIONS WITH APPLICATIONS1

BY RICHARD L. DYKSTRA

University of Iowa

The concept of closed convex cones in finite dimensional Euclidian space and their
duals has proven to be a useful construct. Here dual cones are exhibited for specific closed,
convex cones including those pertaining to starshaped orderings and concave (convex)
functions.

Applications include finding projections involving starshaped orderings, generaliza-
tions of Chebyshev's (KimbalΓs) inequality, an inequality for concave (convex) functions
and a characterization of certain kinds of positive dependence.

1. Introduction. Several authors have made extensive use of the concept of convex
cones and their duals in J?1. Among these are Rockafellar (1970), Robertson and Wright
(1981), and Barlow and Brunk (1972). Here we wish to specifically exhibit certain convex
cones and their duals and discuss the implications.

To be precise, we call K C Rn a convex cone if (a) x,y € K => x + Y € K, and (b) x
e K, a ^ 0 => a x € K. Of course if K is a convex cone, so is -K = {x: - x e K} which
we will call the "negative" of K.

Another important convex cone induced by K is the "dual" of K. For a fixed positive
vector w, the dual of K is given by

1C* = {y:(x,y) = Σ?= iJcĵ w,- ^ 0 for all x e K}.

(Some authors prefer the term "polar" to "dual." Some also define the dual as the negative
of our dual.) Of course if K is closed, then (A^*)w* = K. It is evident that if Kx C K2,
then K?*DK?\

New convex cones can be formed from existing cones in several ways. Two important
methods are through intersections and direct sums.

If the closed, convex cones Kl9 ... , Kn are sufficiently nice (say finitely generated), the
direct sum Σ"= i^i = {Σ?= iX, |x, €AΓ, , i = 1, ... , n} is also a closed, convex cone. However,
in general the closure property is not guaranteed (see Hestenes (1975), pp. 196-198).
Nevertheless, intersections and direct sums of closed, convex cones are closely related be-
cause it is always true that (Σ/= iAΓ/)W* = Π7= iAΓf

 w* and

(Li) (Π7=i^, Γ* = Σ7=i*ίw*

if the latter cone is closed. This is guaranteed if the relative interiors of the AT, have a point
in common (see Rockafellar (1970), p. 146) or, as we said, if the K?* are finitely generated.
(1.1) is equivalent to the well-known Farkas' Lemma if the Kt are generated by a single
vector.

An important cone, especially in the area of isotone regression, is the cone of vectors
which are nondecreasing, i.e.

(1.2) Kj = {x\x} ^ J C 2 ^ ... ^ xn}

The dual cone here, as discussed in Barlow and Brunk (1972), is
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(1.3) K?* = {y\ϊi

J=1yJwj^0,i= 1, ... ,«-1,2j.,y_,Wy = 0}.

We note in passing that the important concept of majorization as discussed extensively

in Marshall and Olkin (1979) is closely connected with the cone in (1.3). If the vectors

x and y are each ordered from largest to smallest to form x and y, x majorizes y iff, x -

y e #}*. (We let 1 denote a vector containing all Vs.) Further discussion of such cone order-

ings is given in Marshall, Walkup, and Wets (1967).

If the cone specified in (1.2) is modified to require that it contain only nonnegative vec-

tors, i.e., K = {x|0 ^ xλ ^ x2 ^ ... ^ JCJ, the dual is equivalent to that given in (1.3)

with a modification of the last equality. In this case,

Much of our interest in dual cones hinges on a duality result discussed in Barlow and

Brunk (1972). In particular if g* solves the problem

(1.4) Minimize Σ?= fa-xι)
2wi

xeK

where Kisa. closed convex cone, then g - g* solves

(1.5) Minimize 2"=fa-Xi)2Wi.
xefΓ"

Robertson and Wright (1980) make extensive use of this duality in dealing with stochastic

ordering restrictions for multinomial parameters. This duality is also important in deriving

distributional theory, i. e., see Robertson and Wegman (1978).

2. The Starshaped Ordering. An interesting order restriction is that a vector be star-

shaped. Shaked (1979) defines a vector x to be lower (upper) starshaped with respect to

the positive weights w if xΊ ^ x2 ^ . . ^ xn ^ 0 (0 ^ xλ ^ x2 ... ^ xn) where

(2.1) Xi = X)=ίXjWj/X)=ίWj.

Shaked is concerned with finding maximum likelihood estimates of Poisson and normal

means which must satisfy starshaped restrictions.

Dykstra and Robertson (1982) use the term "decreasing (increasing) on the average"

when the nonnegativity restrictions in (2.1) are omitted, and are concerned with such re-

strictions when testing for trend.

Surprisingly the dual cone of "increasing on the average" vectors is closely associated

with the cone of "decreasing on the average" vectors.

THEOREM 2.1. lfKIA = {X|JC, ^ x2 ^ ... ^ *„}, then K%* = {y\y} ^y2^ ... ^ Λ.

= 0}.

Proof. Note that we can write

where

(2.2)

Now we claim that

(2.3)

i whereWt = Xju^ .

If x e Ki and yeHh then
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(x,y) = Xΐxjyjwj =

by (2.2) and (2.3). SinceH?* is clearly Kh we have that//, = K?*.

Since from (1.1)

we need to show that ̂ z\KT* = {y\yλ ^ y2 ̂  ^ Sn = 0}.

First assume x, e K?*, i= 1, ... , n-\. Then we may write

X! = ( * ! , - * , H W A ... ,0) (JCJ^O)

x2 = (x2, JC2, -* 2 WW,0, ... , 0) (x2 ̂  0)

Xn-l = fe-l, Xn-ί » » ̂ /i-l» "^ft-1 ^ « - l ^ ή 1 ) (^n-1 ̂  0)

After adding coordinates we see that

and (ΣΓ^WΛ = 0. Thus ̂ z\KT C {y: Si ̂  J2 ̂  . ̂  0}.

Conversely, consider y = (yj, ... , yn) such that yι ^ y2 ̂  ... ̂  yn

 = 0. Recalling that

w, = X{ W/, we partition y as follows:

x1 = (-w2WΓ1z1,z,,0, ... ,0)

X2 = (-W3W2-
1z2,-w3W2

1z2,z1,0, ... ,0)

Xii-l = (-^n^-l^/i-l, , -WnWl-l Zn-\ ^n-l)

where

It can be verified that the i-th column of the above array sums to y, and that each row

is such that Σ ΐXijWj = 0.

Finally we note that

Therefore

0 = WfiV^yjWj + Σjfyv,] ^ W T 1 ! ^ , ^ +

sothat-wi+1Wi" lzi ^ 0» and hence X/e^Γ^*. Thus we have that

so that equality holds. •

The dual cones of lower and upper starshaped vectors discussed by Shaked (1979) can

also be found. First we handle the lower starshaped vector.

COROLLARY 2.2. IfKLS = {X|JCJ ^ x2 2* ... ̂  xn ̂  0}, then

(Note that this dual also has the property that JC^s = - KLS).

Proof. Note that

Since the dual of this last cone is

(2.4)
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the identity in (1.1) implies that ICis is the direct sum of AΓ*̂  and the cone in (2.4). This

can be shown to be the desired cone. π

The dual cone of the upper starshaped vectors is not quite as elegant.

COROLLARY 2.3. IfKus = {X|0^JC! ^ x2 ^ ... ^ *„}, then

Proof. The proof follows by writing

recognizing that

^0,y2 = y3 = ...=yn = 0}

and using (1.1) and Theorem 2.1. •

3. The Concave Ordering. A frequently occurring closed convex cone ΊnJ?n is the

class of concave (convex) functions KCC(KCV) defined on the set of real numbers {xu ... ,

xn}. Thus a point y = (yί9 ... , yn) e CRn is interpreted as the function whose image of jcf

is y, . If we let Δv, = y/+]-V/ and ΔJC, = xi+λ-xh we can write Kcc =C\i=γ2 Hi where Hέ

Δy ί+ i/Δxi+ί}. The dual cone of KCC(KCV) is surprisingly tractable.

THEOREM 3.1. The dual cone of the set of concave functions on {xλ, ... , JCΛ} is given

by

Our proof proceeds similarly to Theorem 2.1 and is not given. The theorem is closely re-

lated to a result of Brunk (1956).

4. Applications. Of course by their very definitions, a convex cone K and its dual

IC* give rise to natural inequalities. In particular, if x e K and y - z e IC*, then

(4.1)

This has some straightforward implications in terms of sample covariances by taking w
= 1.

COROLLARY 4.1. Suppose x, y and z are vectors in CRn. If

(4.2) r ' S ^ ^ ^ ί i + l ) - 1 ^ ! , ^ , ! ^ 1, ... , n - l ,

and

(4.3) Γ%=ί(yj-Zj)^(i+l)-]V+jLιyj-Zj,i=l9 ... , π - l ,

then the sample covariance o/(x,y) is at least as large as the sample covariance of(x,z).

Proof Condition (4.2) states that x € KDA. Condition (4.3) implies that z - y € KIA

which is equivalent to saying (z-y) - (z - y) e K1QA (where a = {a, ά, ... , a)). Thus

Of course if z = 0, this result is equivalent to saying that if x, y € KDA(KIA) then (x,
y) ^ nxy. Of course since KDA = -KIA, if x e KIA and v e KDA (or vice versa) (x, y) ^
nxy. These inequalities are as strong as possible in the sense if x έ KDA(KIA), one can find

a y e KDA(KIA) such that (x,y) < (>)nxy. Note that the above inequality generalizes the

well known result for nondecreasing (nonincreasing) vectors.

Another application concerns Shaked's paper (1979). In this paper Shaked wants to find
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a weighted least squares projection of say g onto the cone K^. However Shaked actually

finds the projection, say g*, onto the cone KDA and hopes that g* is in KLS (in which case

g* is also the projection onto KLS). However, if g* is not in K^, i.e., ΣfgjfWj < 0, one

can say that the true projection g has the property that Σfg/W, = 0 (see page 89, Barlow,

Bartholomew, Bremner and Brunk (1972)). In this case, we know that g must be the projec-

tion onto the dual of KIA.

In this event (see (1.5)), g = g - g where g is the projection of g onto KIA which is a

problem that Shaked also solves. From Shaked's solution we can verify that g - g = g*

- g. Thus the projection onto KLS is given by

y

A useful inequality attributed to Chebyshev (see Hardy, Little wood and Poly a (1959,

p. 43)) and discussed and generalized in various places such as Horn (1979), Kimball

(1951), and Dykstra, Hewett and Thompson (1973) concerns the expected value of a prod-

uct of monotone functions of a random variable. Thus, for example, if/,g are nondecreas-

ing (nonincreasing) functions,
(4.4) EfiX) g(X) ^ EfiX) Eg(X)

assuming the expectations are defined. We can develop similar types of inequalities based

upon closed convex cones and their duals.

COROLLARY 4.2. Iff g are real valued functions in the class

Ax = ififlX) is integrate, E\J{X)I[x^x]VP(X ^ x)

is nondecreasing over \x\ P(X ^ JC) > 0} },

then

Ef(X)g(X)^EJ{X) Eg(X).

Proof Suppose first that X is finitely discrete on the set {xlf ... , xn}. If we let w =

(wu ... , wn) where wf = P(X = JC,-) , then the condition that/e Ax is equivalent to saying

If g e Ax, Eg(X) - g must belong to 1C*A and the result follows.

In the general case, we let xn Jf 7 = 0, ... , k(n) be a series of nested partitions covering

the support of X which generate the Borel sets in the support of X. We define

/„(*) = Xi«?EWQIAJX)) IAJx)/wn,i

gn(X) = V^E(g(

π>/ = P(XeAnJ).

Viewing fn(X) and gn(X) as conditional expectations, we can use Theorem 5.21 of

Brciinan(1968)tDaiguethat/n(X)-Λ f{X)mdgn(X)-^ g(X).

We have from the first part of the proof that

EjQO EgQO = Efn(X) Egn(X) ^ Efn{X)gn{X) for all n.

Therefore if/is bounded above, by Fatou's lemma,

(4.5) EAX)Eg(X) ^ lim supEfn(X) gn(X)

^ E lim supfn(X)gn(X) = Ej{X)g(X).

Finally, noting that if h e Ax, so does min{Λ, c} for any positive constant c, we have

the desired result for min{ft c} and min{g,c}. Note that (4.5) guarantees that E\flX)g(X)~]

< oo. If E\fiX)g(X)+] = oo, the desired result clearly holds, so we may assume t\i3.tflX)g(X)
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is integrable. Finally, letting c -> oo and using the Dominated Convergence Theorem on

each side concludes the proof. •

We can obtain similar type inequalities by working with other cones and their duals. For

example, we can establish the following corollary which is closely related to the basic

lemma of Marshall and Proschan (1970).

COROLLARY 4.3. Iff is a real-valued nondecreasing function withflX) integrable and

g is a real-valued function in the class

Bx = {g: g(X) is integrable, E[g(X)I{X^x)] ^ Eg(X) for all x},

then

EflX)g(X)^EflX)g{X).

The proof follows the lines of Corollary 4.2 and is not given.

Note that if we define the class of real-valued functions

Cx = {g: g(X) is integrable and g is nondecreasing},

then CXC.AXC.BX. Thus both Corollary 4.2 and Corollary 4.3 generalize the Chebyshev

inequality (4.4). The results of this section enable us to obtain some insight into certain

types of positive dependence as discussed in Lehmann (1966) and elsewhere.

Let us say that the random variables (X,Y) satisfy the following kinds of positive depen-

dence: (1) Type I if P[X ^ JC, Y ^ v] ^ P[X ^ x]P[Y ̂  y] for all JC, y, (2) Type II

if P[Y ^ v|X *ΞΞ x] is nondecreasing in x for all y, and (3) Type III if P[Y ̂  y\X = x] is

nondecreasing in x for all y. Assuming that all quantities are defined, each of the above

types of dependence can be characterized by the inequality

(4.6) EflX) g{X) ̂  EflX) Eg(X)

as shown in the following Theorem.

THEOREM4.1. Assume geCy. Then (X,Y) exhibits Type I, II, or III dependence iff (4.6)

holds for allfe Cx, Ax, or Bx respectively.

Proof. The result for Type I dependence is handled in Lehmann (1966). For Type II,

let h{t) = P[Y ̂  y\X = t]. Then h e Ax iff

E[P{Y ^ y\X}IiX^x)]/P[X ^x] = P[Y ̂  y\X ^ x]

is nondecreasing in JC. Thus if/also belongs to Ax, we have by Corollary 4.2

(4.7) E\j{X)h(X)] = EflX) / ( y > y )

^EflX) P(Y^y), for ally.

Thus

EflX)XaiI(Y^y) ^ EflX)XaiP(Y ^ yd

for all nonnegative at. A passage to the limit will imply the desired result for a nonnegative,

nondecreasing g in Cγ from which the result follows. If P[Y ^ y\X ^ x] is not nondecreasing

in JC, then h έ Ax which implies there is an/eΛx such that (4.7) does not hold.

The case of Type III dependence is handled similarly. D

We note that while Type I dependence is symmetric in X and Y, Types II and III are

not as is evident from our characterizations. In some sense, the size of the sets Cx, Ax,

andBx is a measure of the relative strengths of the dependence relations.

We can use the dual cones derived in section 3 to obtain inequalities for concave (convex)

functions somewhat similar to those given in Corollary 4.2. To set some notation, we note
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that if the random variables X and/(X) are square integrable, then the linear function of

X which is closest to fiX) in the sense of minimizing E(flX)-(aX+b))2 is given by f/X) =

cifX+bf where

(4.8) af= E(XfiX))-E(X)Ef(X)lσ2

x, bf= Ej{X)-afi(X).

It is well known that EfiX) = E ίβ) and EXfiX) = EX ίfiC). Interestingly, if/and g are

both concave (convex) functions such thatflX) and g(X) are integrable, then replacing/(X)

and/or g(X) by their linear approximations can only decrease the expected value of the prod-

uct. We begin with a more general result for discrete random variables.

COROLLARY 4.4. If the random variable X is finitely discrete (on the values xλ <x2<

< **)>/"" concave on the range ofX and g is such that (1) Eg(X) = 0, (2) EXg(X) = 0,

(3)E(x-X)g(X)I(X<x) ^ 0 for allx in the support of X, then EflX)g(X) ̂  0.

Proof The proof follows directly from Theorem 3.1 by letting Wj = P(X = jcf). •

An important class of functions which satisfies the above conditions is given in the fol-

lowing theorem.

THEOREM 4.2. Ifg(x) is convex then g(x) - (agX + bg) (as defined in 4.8) satisfies cond-

tions 1),2) and 3) of Corollary 4.4.

Proof The proof is trivial if g is linear so assume that it is not. It is easily shown that

conditions 1) and 2) hold so we consider condition 3). Now by the convexity assumption,

g(x) - (agX + bg) must be positive, negative and positive again. Thus X}= ιg(xj) - (agXj+bg)

must first be nonnegative and then nonpositive as i increases from 1 to n. Thus g(jt) - (agX

+ bg) is in the cone Kΐ* (see 1.3) for the weights w, = P(X = x(). Since for each i,h(xj)

= supjjc-jc^O} is in -Kj (see (1.2)), condition 3) must hold by the definition of dual convex

cones. •

This leads to the following corollary which also holds for the continuous case. Note that

b) is similar to the Chebyshev inequality (4.4) with monotonicity replaced by concavity

(convexity).

COROLLARY 4.5. If f and g are both concave (convex) functions such that X,fiX) and

g(X) are all square integrable, then (a)

EJ{X)g(X) 2* EJ{X)(agX+bg) = E(ajX+bf){agX+bg).

Moreover, if EXfiX) - EXEf(X) and EXg(X) - EXEg(X) have the same sign, then (b)

Proof The first inequality follows by considering finer and finer partitions of the sup-

port of X, noting that/and g are concave on the partition points, and employing Theorem

4.2 and Corollary 4.4 together with limiting arguments. The equality in (a) follows from

a^ + bg being both concave and convex. Inequality (b) then follows from Chebyshev's

inequality on the last part of a). •
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