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SELECTING THE t BEST CELLS OF A

MULTINOMIAL USING INVERSE SAMPLING

BY PINYUEN CHEN and MILTON SOBEL1
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An inverse sampling procedure R is proposed for selecting the t "best" cells (i.e., cells
with the largest cell probabilities) from a multinomial distribution with k cells (1 ^ t <
k). Two different formulations of this selection problem are considered and the measure
of distance in both formulations is the ratio of the largest and second largest cell prob-
abilities. One formulation is of the usual type based on an empty indifference zone; in the
other (new) formulation any collection of t cells from the union of the preference zone (for
selection) and the indifference zone is called a correct selection. Type 2-Dirichlet integrals
are used (i) to express the probability of correct selection as an integral with parameters
only in the limits of integration, and (ii) to prove that the least favorable configuration for
each of the formulations under R is the so-called slippage configurations with k-t equal
cell probabilities and / cell probabilities slipped to the right by a common amount.

1. Introduction. One of the important applications of ranking and selection tech-

niques is to select (without respect to order) the t best cells of a multinomial distribution

with k cells. For the special case t = 1 the fixed sample size problem was first considered

by Bechhofer, Elmaghraby and Morse (1959) and the inverse sampling procedure was first

considered by Cacoullos and Sobel (1966). We are presently discussing fixed subset size

problems and not considering the random subset size problem which was considered by

Gupta and Nagel (1971) and more recently by Hu (1982). It is well known by people work-

ing in this area that the generalization of the fixed subset size problem to arbitrary t (1 <

t < k) presents some serious difficulties (cf. the work of Lee (1975) and Hwang, Hsuan

and Parned (1980) on this topic). In this paper we consider the corresponding problem for

general t ̂  1 with an inverse sampling procedure.

Actually we consider two different formulations of the ranking and selection problem.

The measure of distance in both formulations is the ratio of cell probabilities as in the previ-

ous references. Let

0.1) P[\]^P[2]^' ^P[k-t]^P[k-t+\}^ ^P[k]

denote the ordered cell probabilities which sum to one. Let δ* > 1 and />*((ί)"1 < P* <

1) denote specified constants. In the usual (or first) formulation we require a procedure R

such that

(1.2) P{CS\R} > P* whenever δ ̂  δ*,

where b = p[k_t+l]/P[k_l].

Actually we need only consider configurations (1.1) with p[k^_^ < P[k-t+ \ ] and in this case

the definition of correct selection (CS) is clear, namely that we select the / cells with largest

p- values.

We shall say thep-value is in the indifference zone (IZ) if it lies strictly between/?^_/+1]

/δ* and /?[*_,+1] The p-values ^ p{k_ί+λλ will be said to lie in the preference zone (PZ).
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Under the alternative (or second) formulation we consider any combination of the t cell

probabilities, each ^ /?[*_/+i]/δ*, as being a correct selection and we use the terminology

CSA for any such combination. Thus if we take any t cells from those in the union of the

PZ and IZ as our selected subset, we call this a correct selection (CSA) under the second

formulation.

Our goal is to show that the so-called least favorable configuration is the one with / cell

probabilities slipped to the right by a common amount. We show below that under inverse

sampling this is least favorable for both of the above formulations.

The main tool used in this paper is the fact that the P(CS) and also the P(CSA) can be

expressed exactly in terms of type 2-Dirichlet integrals. This turns out to be highly useful

because it is exact and because the/?-values show up only in the limits of integration.

For both formulations we use the same sampling and the same decision procedure

specified by a positive integer r to be determined (with the help of Dirichlet Tables).

Procedure R: Continue sampling one-at-a-time until t cells reach a frequency of at

least r. As soon as this occurs we stop and select these t cells as being those with the t

largest probabilities.

It is clear that under this procedure there can be no ties for the ί-th position and hence

the selected subset is well defined. Note that we are selecting the t best without respect

to order, so that frequency ties present no difficulty.

2. P(CS) and Least Favorable Configuration for the First Formulation. It has been

shown (Sobel, Uppuluri and Frankowski (1983)) that for a multinomial distribution the

probability, when a specified cell (called the counting cell) reaches frequency m, that cer-

tain (ί-1) specified cells all have frequency ^ r and the remaining (k-t) cells all have fre-

quency < r, is given exactly by the CD integral

(2.1) CΌtuk-'\r, m) = [Γ(/n+(*-l)r)/ Γ*"1 (r)Γ(m)]/%'... /g- J~ ...

A_, (1 + Σ*7l,X iy<m^k-W ΠkiL}xrιdXi

where a = (ax, ... at_λ ,at, ... , ak_x) and aj = p/p0 is the ratio of they-th cell probability

to that of the counting cell; here we have assumed that the first t-\ cells form the specified

set of size t-\ and that the counting cell is the last cell with probability p0.

Using this probability interpretation with m = r we can write the P(CS) for the first for-

mulation above as the sum of / terms; in they-th term we take the cell associated with pυ]

as the counting cell (j — k-t+ \9k-t+2, ... k). Hence we obtain

(2.2) P(CS|i?) = Σ,W, + 1CD<;-I;*-<V, r)

where

(2-3) aj=(p[k]/pU], ... ,Pu+i]/p[j],P\j-}]/pu]9 ••• , P [ i ] / P [ / j ) .

Thus the sum of the two superscripts is the number of components of a and from (2.1)

we see that the first t-\ components are upper limits in the CD integral, while the last k-t

components are lower limits.

The same probability interpretation gives us another expression for the P(CS), which

we need for our result, by taking any one of the second set of k-t specified cells as our

counting cell. Thus we can also write

(2.4) P(CS|/?) = Σ*ί, CD£ *-'-!)(r, r),

where a, is again given by (2.3) but./ runs over a different set.
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Under the first formulation the condition δ ^ δ* is equivalent to the inequality p[k_t] <

P[*-/+i]/δ* o r equivalently the open interval (P[*_/+i]/δ*, Pμ-t+i]) is empty. Using (2.2)

and keeping the pairwise ratio of each two of the t largest p-values fixed we now consider

p[k_t] as a variable. Since p[k_t] is in the numerator of the lower limit, the P(CS) is monotoni-

cally decreasing inp[k_t]. Hence we can decrease the f^CS) by increasing the value of Pμ-t]

until it reaches P[k-ι+ i]/δ*. The increase in the value of p\k-t\ is offset by a decrease in/?^,

as the sum of all the /?-values has to remain equal to one. Since all the lower limits of the

last k-t integrals are increased, the value of the P(CS) must decrease. Note that pυ^ ^

P[k-t+1] > P[k-t+ i]/δ*; hence p[k_t] must reach its boundary first. The same argument allows

us to increase in turn p[k-ί+]], Pμ-t+2], • •• , P[\] up to the same boundary value, namely

P[*-/+i]/δ*.

We now use (2.4) with pυ^ = p[yt_,+ i]/δ* for j = 1, 2, ... , k-t. Consider pμ-t+2]

as a variable with all the largest /^-values as fixed, except that P[k-t+\] and the boundary

P\k-t+1 ] /δ* can still vary. The F(CS) has now been decreased to the value Pλ (CS) where

(2.5) P\{CS\R) = (Jfc-0CD? *~'~υ(>\ r)

where

a = ( P [ * ] / P [ J n + π ) δ * , ... , ( P [ k - t + 2 \ f P [ k - 4 + \ ] ) δ * > δ * > l > ... , 1 )

and the last k-t-\ components are all exactly 1. Since p\k-t+τ\ appears as the numerator

of an upper limit of integration in (2.5), it follows that we can further decrease the P(CS)

by decreasingP[k-t+2\ top[k^+ιγ, actually P[k-t+\] was increasing so equality has to occur.

Similarly we decrease all the larger /^-values until they reach p[k-ί+1 ].

The above argument proves the following

THEOREM 1. The least favorable configuration for the first formulation is given by

(2.6) P[i]=P[2] = . . . =P[k-<] = l/(*-ί+fδ*),

/>[*-,+ ! ] = . . . = P [ * ] = δ * / ( * - ί + f δ * ) .

3. P(CSA) and the Least Favorable Configuration for the Second Formulation.

Consider the general configuration for the second formulation as follows:

(3.1) p { ι ] ^ ... ^P[k-t-r^P[k-t+\]/S*<P[k-l-r + \ ] ^ . . - ^P[k-l]^'- ^P[k]

where r is the number of cell probabilities in the IZ.

The probability of correct selection under the second formulation can be written in the

following Dirichlet integral form:

(3.2) P(CSA\R) = ^ Σ j ^ C D ^ - 1 ' * - ' ^ , r),

where X* is over all possible subsets {ph ,p,2, ... , ps) of size t that can be taken from the

set {p[k-t-r+1 ], ... -, P[k]} of size ί + r and

( 3 3 ) *j=(Ps)~ι(pSι, .. ,pSj_,,/V,, .. ,Ps,,P[i], ••• ,/W.

It should be noted that there are only k-t components in (3.3) after pslps and that the

numerators of these are taken from the set {pm, /?[2], ... , p[k]} — {pS], ... , ps) so that a7

in (3.3) has a total of k-\ components.

Using (3.2) and keeping the pairwise ratio of each of the t+r largest p-values fixed, we

now consider pμ-t-r] a s a variable. Since P[k-t-r] is a numerator among the lower limits in

(3.2), the P(CSA) is monotonically decreasing in P[k+rγ Hence we can decrease the

P(CSA) by increasing the values of p[k_t_r_\^ ... , p^ up to the common boundary value,

namely/?^,.,, j/δ*.
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Thus we can restrict ourselves to the following configuration:

( 3 4 ) P[ 1 ] = = P[k-t-r] = P[k-t+ 1 ]/δ* < P[k-t-r+ 1 ] ^ . . . ^ p[k]

for minimizing P(CSA\R) in (3.2).

It is clear from (3.4) that

P[\]Φ[k-t+i] = ... =P[k-t+r]fP[k-t+\] = (δ*)" 1 .

LQiPy]/P[k-t+1] = β/ fory = k-t-r+2, ... , fc be kept as constants and \etp[k_l+ι]/p[k_t_r+ι]

= x be the only variable in P{CSA|/?} in (3.4) with the obvious restrictions that Σ* = 1 pu]

= 1 and £*_,+, = p[k_ί+ ] ]//?[*_,+1 ] = 1 Then from (3.4) we can write

(3.5) P{CSA|/?} = 2 1 * 2 U i C D ^ - 1 ^ - ^ , r)

+ X2 [ΣβtrCDaf-<-'>(r, r) + Σ * = J r + 1 CDaf—V, r)]
Ύ * J , , . . . ,S,

where 2* is over the subsets (pSι, ... , /?5) of size ί which do not include p[k_t_r+}} and Σ*2

is over those that do include p[k_t_r+ι]. In the former case (i.e., under 2*0 the structure
of aα is

(3.6) a α = (psJpSa, .. >PsJpSa>PSθLJVsa> ••• ,Ps/Psau)

\/(b*asJ, l/(xasj, ak_t_r+2/aSa, ... , a k l a s )

where x appears in exactly one component and we are holding all the other ratios fixed.

In the latter case, (i.e., under Σ*2) we use the alternative form (2.4) to write the relevant

probabilities (i.e., the counting cells are taken from the set that is not selected) and we sepa-

rate this sum into two parts according to whether the counting cell is among p[ι]9 ... , P[k-t-r]

or is in the difference of the two sets {p[k-t-r+\]> » Pμύ ~ \Ps^ » Ps) 1° t n e first of

these two parts we write a β and its structure is

(3.7) *p = (pSι/pβ, ... ,δ*/*, ... ,ps/Pβ, l/(δ*αβ), ... ,Pp-\/pp,Pp+i/pp, ... ,ak/aβ)

where δ*/jt comes from the ratiop[k_t_r+ι]/pβ and the remaining ratios are all fixed. In the

second of these two parts we write aΎ and its structure is

(3.8) *y = (PsJPy> -" ΛI{xαΊ)f ... ,pjpy9\/(b*αy), ... ,αklαΊ),

where {xαΊ)~λ comes from the ratioP[k_t_r_λ̂ lpr and the remaining ratios are all fixed.

Note that the total number of terms in 2*i Σ U i is ('"T1) ' t = (ί+r-1)! /[(ί-1)! (r-1)!]

and the total number of terms in the second part of 2*2, namely in Σ ^ Xk

Ί=k_t_r+] is

Actually we can set up a 1-1 correspondance between the terms in Σ*i and those in the

second part of Σ*2 as follows. Each term in Σ*i corresponds to a selected subset of size

t and one of these t cells is used as a counting cell. Say we have pk, ... , pk-t+\ and pk

is the counting cell to specify a single term in Σ*i. Then we take the selected subset to be

P[k-t-r+\]9 P[k-t+\]> ••• » P[k-\] a n d use p[k] as a counting cell to obtain a specific term in

the second part of Σ5^, and this illustrates the correspondance of the terms. In Σ*i the varying

lower limit is (xα^)'1, which in our example is (xαk)~] and in the corresponding term in

the second part of Σ ^ has the varying upper limit (xαΊ)~λ, which in our example is {xα^Γx.

The other limits are all the same in corresponding terms. Hence the derivatives of corres-

ponding terms cancel. Since the only remaining terms are those from the first part of Σ5^

and these are all negative, it follows that ^(CSAl/?) is decreasing in x. Thus we decrease

P(CSA|/?) by lowering p[k_t_r+l] to /?[*_,+i]/δ*. Similarly we decrease in turn all the

V[k-t-r+2]» > P[k-t] until they reachP[k-t+1 ]/δ*. The above argument proves the following

THEOREM 2. The least favorable configuration for the second formulation is given by
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(3.8) P[ίl=pm= ... =p[k_t]= l/(*-r+ίδ*),

exactly the same slippage configuration as in (2.6).
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