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STOCHASTIC MAJORIZATION OF THE LOG-EIGENVALUES

OF A BIVARIATE WISHART MATRIX1
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Let / = (lχ,li) and λ = (λi,λ2), where λi > λ2 > 0 are the ordered eigenvalues of S
and Σ, respectively, and S ~ W2(n,Σ) is a bivariate Wishart matrix. Let m = (mi,m2) and
μ = (μi,μ2), where ny = log 4 and μ,- = log \ . It is shown that Pμ{m 4B }ιs Schur-
convex in μ whenever θ is a Schur-monotone set, i.e. [x e B, x majorizes x*]
=^x* € B. This result implies the unbiasedness and power-monotonicity of a class of
invariant tests for bivariate sphericity and other orthogonally invariant hypotheses.

1. Introduction. Let S ~ W2(n,Σ) be a bivariate Wishart matrix with n degrees of

freedom (n > 2) and expected value nΣ (Σ positive definite). We shall be concerned with

the power functions of orthogonally invariant tests for invariant testing problems such as

the following:

HQ\ : Σ = σ 2 l , σ 2 arbitrary vs. Kx: X arbitrary

H02: Σ = I vs. K2\ Σ arbitrary

//03; Σ = I vs. K3: Σ — I positive definite

Ho4'. Σ = I vs. K4: Σ — I negative definite.

Orthogonally invariant tests depend on S only through / = (lu /2), where h > /2(>0) are

the ordered eigenvalues of S. Because the power functions of such tests depend on Σ only

through λ = (λi,λ2), where λi > λ2 (> 0) are the ordered eigenvalues of Σ, we may

assume throughout this paper that Σ = Dλ =diag{λuλ2).

The notions of majorization and Schur-convexity play an important role in determining

such properties as*unbiasedness and power monotonicity of invariant tests. To illustrate,

consider the likelihood ratio test (LRT) for testing H0] (bivariate sphericity) vs. Kx. The

acceptance region can be expressed in the equivalent forms

(1.2) {s|frS/|S|1/2^} -4*-{l\ih + k)Khk)m ^c }.

Since

(1.3) trS/\S\V2 = (su + s22)/((sus22)
ι/2\R\]/2) =(e"+^)/(^ l + l 2 ) / 2 |Rt I / 2 )»

where S = (^) / 7 =, 2, R is the sample correlation matrix, and ί = log sij9 and since sn,s22,

and R are independent with s.. ~ λ ^ 2 when Σ = Dκ, conditioning on R reduces the

problem to the study of the power function of the LRT for equality of scale parameters (λx

= λ2) based on the independent χ2-variates sn and s22 with equal degrees of freedom. It is

easy to show that the joint density of t = (tut2) is Schur-concave (in fact, permutation-

invariant and log concave) with location parameter μ = {μuμ2) = (log λί9 log ̂ 2), and

that for fixed R the region
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(1.4) {t\(eί]+eί2)/(e(h+t2)/2) ^ c |R| 1 / 2}= {t| 2cosh((r,-ί2)/2) ̂  c |R|1/2}

is Schur-monotone in 7?2 (see Definition 2.1). By a well-known theorem of Marshall and

Olkin (1979, 1 l.E.5.a, p. 299) it follows that

(1.5) 1 -Pμ{2 cosh((/,-/2)/2) ^ c | R | 1 / 2 | R }

is a Schur-convex function of μ, which implies that the power of the LRT for bivariate

sphericity is Schur-convex in μ. This in turn implies that the LRT is unbiased and that its

power function increases monotonically as μ moves away from the null hypothesis line

Ho\- MΊ = μ2 at right angles.

The preceding conditional argument, due to Gleser (1966) for unbiasedness and to the

author (cf. Marshall and Olkin (1979), pp. 387-8) for Schur-convexity, applies equally

well to the LRT fory?-variate sphericity, /? > 3. Our goal is to extend these results to

invariant tests other than the LRT, and to orthogonally invariant testing problems other than

sphericity. In this note we show by means of a similar conditional argument that a quite

general extension (Theorem 2.4) is possible in the bivariate case. The p-variate case ap-

pears more difficult, however, since it is not possible to express the eigenvalues of S di-

rectly in terms of its diagonal elements su and correlation matrix R, and a general result

is not yet available for this case. Perlman (1982) gave a partial result in the/7-variate case

by a different argument.

2. Definitions and Main Result. We refer to Marshall and Olkin (1979) for the neces-

sary general definitions and properties of majorization and Schur-convex functions. The

following definitions and remarks concern related properties of regions in y?2. We set x

= C*i,*2).

Definition 2.1. A set B <Ξ v?2 is Schur-monotone in y?2 if [x € B, x majorizes x*] =»

x*eB.

A Schur-monotone set in y?2 is necessarily permutation-invariant ((x\,x2) € B=*(x2,X\)

e B), and a simple characterization is possible: B is Schur-monotone in y?2 iff B is of the

form

(2.1) B = {\\ | JC, -JC 2 | ^ . /UI+*2)}

for an arbitrary function/on (-oo5oo).

Definition 2.2. Let y?o = {x| xx ^ x2}. A set B ^ TTQ is Schur-monotone in Ί?\ if

[xeδ,xmajorizesx*, x*e yPo]=>x*eB.

A set B is Schur-monotone in y?o iff its symmetric extension is Schur-monotone in y?2. Equi-

valently, B is Schur-monotone in 7?Q iff B is of the form

(2.2) β = {x|θ^jc1-;c2^/(jc1+jc2)}

for an arbitrary function/on (-00,00).

The expressions (2.1) and (2.2) suggest the following characterizations of Schur-convex

functions on >?2 and y?o> respectively:

FACT 2.3. A real-valued function β on >?2 is Schur-convex on >?2 iff/3 is permutation-

invariant and β(y+a, y-a) is increasing in \a\ for each fixed y in (-00,00). A function β on

y?o is Schur-convex on 7?l iff β(y+a, y-a) is increasing in a > 0 for each fixed v.

Let nii = log /,, / = 1,2, where lx ^ l2 are the eigenvalues of S. Set m = {mum2) and

recall that μ = (μ, ,μ2) where μ, = log λf . The following is our main result.
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THEOREM 2.4. IfB is a Schur-monotone region in 7?%, then

β(μ)=Pμ{mέ B}

is a Schur-convexfunction ofμ on TPQ.

Proof. The proof extends the argument in the second paragraph of Section 1. We shall

show that the event {m e /?}, when expressed in terms of t\{= log Jπ) and t2(= log 5-22)

for fixed R, is a Schur-monotone region in yp2, so that the conditional probability

Pμ{m έ B I R} is a Schur-convex function of μ on Ίϊ\. This will immediately yield the

desired result. By (2.2), the event {m € B} is of the form

(2.3) {m I 0 ̂  mχ-m2 ^/(m, +m2)}

for some function/on (-00,00). Sincem, = log/,, (2.3) is equivalent to

(2.4) {/|l^(/i//2)^(/./2)}

for some nonnegative function g on [0,°°). In the bivariate case, however, the ordered char-

acteristic roots I] 22 l2 of S are given by

•/2{ίrS±[(ίrS)2-4|S|]1/2}.

so that

(2.5) lxll2 = {trS + [(/rS)2-4|S|]1/2}2/(4|S|)

= {cosh(ί,-ί2)/2) 4 [cosh2((ί1-ί2)/2)-|R|]1/2}2/|R|

By (2.4) and (2.5), therefore, the event {m e B} is equivalent to

(2.6) { (t,R)|cosh((/1-ί2)/2) + [cosh2((ίr-ί2)/2) - \R\Y'2 < [|R|^(etl+HR|)]1/2 }•

Since y + [y2 ~ |R|]1 / 2 is increasing in v for v > 1 (note that |R| < 1) and since cosh y is an
increasing function of |y|, it follows that for fixed R. (2.6) is of the form

(2.7) { t | | ί i - ί 2 | ^ * ( ί i + ί2)}

for some function h on (-00,00). By (2.1) it follows that (2.7) is a Schur-monotone region

in 7?2, which completes the proof. •

3. Applications to the Power Functions of Invariant Tests. We shall apply Theorem

2.4 with B and β representing the acceptance region and power function of an orthogonally

invariant test for each of the testing problems in (1.1).

The testing problem Ho} vs Kx in (1.1) can be re-expressed in terms of μ = (μ 1, μ2) as

#opμi = μ2vs.Kι:μ] φ μ2.

The acceptance region of the likelihood ratio test (LRT) can be expressed in the equivalent

forms

& BQX = {m|2 cosh(t(m1-m2)/2) < c)

(cf. (1.2)-(l .4)). This is of the form (2.2), so B0] is a Schur-monotone region in 3§. Thus
Theorem 2.4 applies, so the power function of the LRT,

in Schur-convex in μ, as already seen in Section 1.

The testing problem H02 vs. K2 can be re-expressed as

#02: μi = μ2 = 0 vs. K2\ (μ, ,μ2) Φ (0,0).
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The acceptance region of the LRT can be written in the equivalent forms

A02 = {/|Σ?=I[log((/π)-((//i) + 1] > c)

& B02 = {m|Σ?=I γ(m. - logn) ^ c}.

where γ(y) =y-& + 1. Since 7 is a concave function on (-0 0,0 0), the symmetric extension

of #02 to 7?2 is a convex, permutation-invariant region, hence B02 is a Schur-monotone re-

gion in Ί?\. By Theorem 2.4, therefore, the power function of the LRT is Schur-convex

in μ. Other invariant acceptance regions appropriate for testing H02 vs K02 include the

regions

j
with r > 0. For r ^ 1, the symmetric extension of B{r) to 7?2 is convex and permutation-in-

variant, so the corresponding power function is Schur-convex in μ. Other acceptance re-

gions possibly appropriate for this problem are the regions

{/|( | | }

= {m| (/π, -m2)
r + |m, 4- m2\ ^ c}

with r > 0. For each r > 0, B[r] is a Schur-monotone region in 7?l by (2.2), so the corres-

ponding power function is Schur-convex in μ. Note that for 0 < r < 1, B[r^ is not convex.

Next, we discuss a class of one-sided acceptance regions based on ΐr(Sr) appropriate for

testing

// 0 3:μi = μ2 = 0vs.K3:μ] ^ μ 2 ^ 0 .

For-00 ^ r ^ 00 define

Tr = [Vi t r ( S r ) ] ] / r = \}/ι{Γx + / $ ) ] ] / r = []/2(ermι + erm2)]1/r;

note that

by continuity. The equivalent acceptance regions

are appropriate for testing H03 vs. K3. For each r ^ 0 (r ^ 0) the symmetric extension of

flr(#£) to 7?2 is convex and permutation-invariant, so by Theorem 2.4 the corresponding

power function is Schur-convex (Schur-concave) in μ. [For r = 0, the distribution of T o

= |S | 1 / 2 depends on μ only through μ, + μ2 = log |Σ|, so the power function corresponding

toβ 0 is trivially both Schur-convex and Schur-concave in μ.]

Similarly, the equivalent regions Ac

r <=>B°r complementary to Ar<=>Br are appropriate

acceptance regions for testing

#θΦμi = μ2 = 0 vs. A Γ 4 : 0 ^ μ 1 ^ μ 2 .

It follows from the preceding paragraph that the power function associated with the accep-

tance region Bc

r is Schur-convex (Schur-concave) for r < 0 (r > 0).

We conclude this section by considering the LRT's for testing H03 vs. K3 and H04 vs.

K4. It can be shown (cf. Perlman (1967)) that the acceptance region of the LRT for H03

vs. K3 can be expressed in the equivalent forms
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Λ03 = { /| Σt fwΠog (hlrD-UIn + 1] ^ c}

& B03 = {m I Σi/μ^og^} [ K - log /i) - e(/w'-Iog w ) + 1 ] ^ c}

where
i f y > 0

0 i f y < 0 .

Since φ is a concave function on (-0 0,0 0), B03 is a Schur-monotone region in v?o a n d the

associated power function is Schur-convex in μ. Similarly, the acceptance region of the

LRT for HQ4 VS. K4 can be expressed as

^04 ~ { M S{#-|/.=s«}[l°g ((M)-((M) + Π ^ }̂

^ #04 = ί m I Σ?= i ψ(/w, - log n)^ c}.

where _ Γv—^ + 1 if v < 0

^ ~~ (̂  0 if j > 0.

Since ψ is concave on (- 0 0 , 0 0 ), if follows as above that the power function associated with

#04 is Schur-convex in μ.

Other power monotonicity properties of some of the tests discussed in this section may

be found in Anderson and Das Gupta (1964), Das Gupta (1969), and Das Gupta and Giri

(1971).

4. Concluding Remarks. The proof of Theorem 2.4 proceeded indirectly, expressing

the eigenvalues /,,/2 of S in terms of its diagonal elements S\l9s22 and working with the

relatively simple joint distribution of(su 9s22). This approach may not easily extend to the

p-variate case (p ^ 3), so it may be preferable to work directly with the joint distribution

of the eigenvalues /,, ... , lp (cf. Muirhead (1982), Theorem 9.4.1). We admit, however,

that we were unable to carry through the latter approach in the bivariate case.

Theorem 2.4 can be extended from probabilities of Schur-monotone regions to expecta-

tions of Schur-convex functions: if g is a Schur-convex function on J?2

Q such that the expec-

tations exist, then Eμ[g(m)] is a Schur-convex function of μ. This follows by a standard

approximation argument.
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