REMARKS AND OPEN PROBLEMS IN THE AREA OF THE FKG INEQUALITY

By Kumar Joag-Dev, ${ }^{1}$ L. A. Shepp and Richard A. Vitale University of Illinois, Bell Laboratories and Claremont Graduate School

The FKG inequality is an effective device when the requisite assumptions can be verified. Sometimes these have to be approached circuitously. This is discussed with reference to past uses and suggestions for work on the range of applicability. New areas of potential application are also presented.

1. Sufficiency and Necessity of the Conditions for the FKG Inequality. The FKG inequality in its original form (Fortuin, Ginibre and Kasteleyn (1971)) states that if (a) Γ is a distributive lattice i.e. order isomorphic to an algebra of subsets of a set, (b) f and g are increasing on Γ, (c) μ is a positive function on Γ with

$$
\begin{equation*}
\mu(x) \mu(y) \leqslant \mu(x \wedge y) \mu(x \vee y) \quad \text { for all } x, y \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\Sigma f(x) \mu(x) \Sigma g(y) \mu(y) \leqslant \Sigma f(x) g(x) \mu(x) \Sigma \mu(y) . \tag{1.2}
\end{equation*}
$$

A simple example of how the FKG inequality can be used in a combinatorial setting is the following. Suppose A, A_{i} are fixed subsets of $N=\{1, \ldots, n\}$ and k, k_{i} are given integers, $i=1, \ldots, r$. Choose a subset of S of N at random by choosing each element to be in S independently with probability p, fixed. Let $\bar{A}_{i}=\left|A_{i} \cap S\right|$. Then

$$
P\left[\bar{A} \geqslant k \mid \bar{A}_{i} \geqslant k_{i}, i \leqslant r\right]=a_{r} \geqslant P[\tilde{A} \geqslant k]=a_{0} .
$$

To prove this let Γ be the set of all subsets S of N ordered by inclusion, and let $f(S)=$ $\chi\left(\hat{A}_{i} \geq k_{i}, i \leq r\right), g(S)=\chi(\hat{A} \geq k)$, and $\mu(S)=1$. It is easy to verify that (a)-(c), (1.1) hold and this gives the result. The result may not seem surprising until it is realized that a_{r} is not always increasing in r. Indeed with $n=2, A=\{1\}, A_{1}=\{1,2\}, A_{2}=\{2\}$ with $p=1 / 2$ gives a counterexample since $a_{0}=1 / 2<a_{1}=2 / 3>a_{2}=1 / 2$. This class of problems was posed by Frank Hwang and will be further developed elsewhere.

We will see that FKG is often hard to apply even when one feels it should apply. This may also be illustrated by Hwang's example: It can be shown by a direct argument that

$$
P\left[\bar{A}_{i} \geqslant k_{i}, i \leqslant r \mid \bar{A} \geqslant k\right] \geqslant P\left[\bar{A}_{i} \geqslant k_{i}, i \leqslant r \mid \bar{A}=k\right],
$$

But Shepp does not see just now how to give an FKG proof. The obvious choice $g(S)=$ $\chi(\bar{A} \leqslant k), \mu(S)=\chi(\bar{A} \geqslant k)$, and f as before yields the desired conclusion but (1.1) fails. Is there a reordering of Γ to make an FKG proof?

FKG themselves point out that (1.1) is not necessary and one could assume the alternate condition

$$
\begin{equation*}
2 \mu(I) \mu(O) \geqslant \Sigma^{\prime} \mu(x) \mu(y) \tag{1.1'}
\end{equation*}
$$

[^0]which may hold without (1.1), where I and O are the extreme elements of Γ and the sum is over all other elements.

Shepp (1982) shows by an example the slack in (a)-(c), (1.1), where by merely redefining $<$ in the lattice one gets to satisfy (a)-(c), (1.1) and hence obtain (1.2) where the "natural" ordering fails to satisfy (a)-(c), (1.1). Note (1.2) does not depend on " $<$ ". Ahlswede and Daykin (1978) and others (see survey on FKG by Graham (1983)) give more general versions, also not necessary.

The question then arises as to whether it is possible to find conditions which are necessary or at least closer to being necessary. In this regard, it may be interesting to note that for a distributive lattice of length $2,(1.1)$ and $\left(1.1^{\prime}\right)$ are equivalent and necessary. In this case, there are two possible structures:

Figure 1. Structures for a 2length lattice.

The first is easily seen. For the second, take two increasing functions f and g with $f(O)$ $=f(y)=g(O)=g(x)=O$ and $f(x)=f(I)=g(y)=g(I)=I$. Then f and g are positively correlated $\Leftrightarrow(1.1) \Leftrightarrow\left(1.1^{\prime}\right)$.

Neither (1.1) nor (1.1') is necessary for lattices of length greater than 2, but it is interesting to see heuristically why they are sufficient. The clue lies in the assumption of a distributive lattice. Among other things, this means that certain sublattice structures do not occur and, in fact, that locally the lattice looks like the pictured length 2 cases. Thus (1.1) and the distributivity assumption are paired to ensure that things work locally.

As mentioned, this approach is generally too strong. One point of departure for an alternate approach is to hold the distributivity assumption in abeyance. This allows previously forbidden sublattice structures, which we can view as lattices in their own right:

and

Figure 2. Structures for a (nondistributive) lattice.

Consider, for the first structure, increasing f and g with $f(O)=f(z)=g(O)=g(x)=g(y)$ $=O$ and $f(x)=f(y)=f(I)=g(z)=g(I)=1$. If lattice elements are equiprobable, then $\operatorname{Cov}(f, g)=-1 / s$! A similar example can be given for the second structure. This shows that, for nondistributive lattices, increasing functions are not always positively correlated-at least for equiprobable lattice elements. It would be interesting to see if any general result is possible for the nondistributive case. Subsequent to setting down these remarks, Kemperman's paper (1977, Theorem 7) wich treats the necessity of distributivity was noticed.

The FKG inequality is a powerful device, but it may not be straightforward to use. In fact, as we said, Shepp (1982) treats a problem in which a "natural'" ordering fails to satisfy
the requirements but another ordering does work. This raises the question of whether there is a systematic way to use the FKG inequality.

One way of formalizing this is as follows:
(Existence) Let a finite set $\Omega, f, g: \Omega \rightarrow R$, and a probability measure μ on Ω be given. It is desired to find a distributive lattice structure on Ω such that the FKG hypotheses ((a)(c), (1.1)) hold. When can this be done? Is $\operatorname{Cov}(f, g) \geqslant 0$ close to a condition?

A second question is how long would it take to find a compatible lattice structure.
(Multiplicity) Given the previous set-up (Ω, f, g, μ): what fraction of distributive lattice structures on Ω satisfy the FKG requirements ((a)-(c), (1.1))?

Of course in both of these questions, compatibility of the lattice structure with μ and with the pair (f, g) can be considered separately.
We next discuss two problems to which the FKG inequality seems likely to be able to contribute some insight.

2. A Possible Application to a Partition Problem.

Problem 1. Let $a_{i}, i=1, \ldots, m$ be a random sample drawn (without replacement) from $1,2, \ldots, m+n$ and suppose the remaining numbers are denoted by $b_{j}, j=1, \ldots$, n. The sum $S=\Sigma a_{i}$ has two interpretations.
(i) Let $X_{1}, \ldots, X_{m} ; Y_{1}, \ldots, Y_{n}$ be two independent random samples drawn from a single population with a continuous distribution function so that the probability of one or more ties among the observations is zero. Let R_{1}, \ldots, R_{m} be the ranks of the X observations among the $m+n$ observations. Then ΣR_{i} has the same distribution as S, in fact, R_{i} could be identified with a_{i}. In this case S is known as the Wilcoxon statistic (with the "null distribution'').
(ii) Suppose a_{i} 's are arranged so that $a_{1}<a_{2}<\ldots<a_{m}$. Then $a_{i}-i$ represents the number of b_{j} 's smaller than a_{i} and it is easy to verify that

$$
T=S-m(m+1) / 2=\sum_{1}^{m}\left(a_{i}-i\right)
$$

has a distribution symmetric about $m n / 2$ and assumes values, $0,1, \ldots, m n$.
Further, for an integer $k, 0 \leq k \leq m n$,

$$
(\underset{m}{m+n}) P[T=K]=(k ; m, n) .
$$

where ($k ; m, n$) is the number of partitions of k into m parts, with each part $\leqslant n$. In other words, $(k ; m, n)$ represents the total number of distinct sequences of non-negative integers $\leqslant n$ and of length m such that each sequence is nondecreasing and the sum of the integers in the sequence is k.

There has been a wealth of literature on the theory of partitions. For the most recent source, see Andrews (1976, Section 3.2).

The problem we are concerned with here is the unimodality of the distribution of T, that is

$$
(k ; m, n)-(k-1 ; m, n) \geqslant 0, \quad 0 \leqslant k \leqslant m n / 2,
$$

which is directly connected with exceedances of a_{i} over b_{j} 's. Dynkin (1950) proved the unimodality of T; however, the proof is based on the representation theory of Lie algebras. Recently, Hughes (1977) and Stanley $(1980,1981)$ discuss several problems regarding uni-
modality of sequences arising from Lie algebras. So far, no direct combinatorial or probabilistic proof is available. One possible approach is to compare the conditional probabilities of T, governed by the order structure of a_{i} and b_{j} 's while one or more R_{i} are fixed. Such probability comparisons are similar to those appearing in Shepp (1982). The lattice structure and possible partial orderings are the same as in that paper. Could the FKG inequality again succeed to give a simple proof?

3. A Restriction to Linear Functions.

Problem 2. Let $\left(X_{1}, X_{2}\right)$ be a pair of real random variables. The conclusion of the FKG inequality for the measure generated by $\left(X_{1}, X_{2}\right)$ is that

$$
\begin{equation*}
\operatorname{cov}\left[f\left(X_{1}, X_{2}\right), g\left(X_{1}, X_{2}\right)\right] \geq 0, \tag{3.1}
\end{equation*}
$$

for every pair of (co-ordinatewise) nondecreasing functions f, g. This property of positive dependence for (X_{1}, X_{2}) was termed as "association" by Esary, Proschan and Walkup (1967). A weaker notion of positive dependence called "positive quadrant dependence" (PQD) is defined by requiring

$$
\begin{equation*}
F_{X_{1}, X_{2}}(u, v) \geqslant F_{X_{1}}(u) F_{X_{2}}(v), \quad \text { for all }(u, v) \tag{3.2}
\end{equation*}
$$

where F with the appropriate subscripts denotes the distribution function. Lehmann (1966) studied PQD and showed that (3.2) is equivalent to

$$
\begin{equation*}
\operatorname{cov}\left(h_{1}\left(X_{1}\right), h_{2}\left(X_{2}\right)\right) \geq 0, \tag{3.3}
\end{equation*}
$$

for every pair of nondecreasing functions h_{1}, h_{2}. Although it is easy to show that (3.2) (or (3.3)) does not imply (3.1), if f, g are restricted to linear nondecreasing functions then the implication does hold. This was proved by Shaked (1982). We give a very simple proof. Note that, we want to prove the following:

$$
P\left[X_{1}>x_{1}, X_{2}>x_{2}\right] \geqslant P\left[X_{1}>x_{1}\right] P\left[X_{2}>x_{2}\right] \quad \text { for all }\left(x_{1}, x_{2}\right)
$$

implies

$$
P\left[\Sigma_{1}^{2} a_{i} X_{i}>c, \Sigma_{1}^{2} b_{i} X_{i}>d\right] \geq P\left[\Sigma_{1}^{2} a_{i} X_{i}>c\right] P\left[\Sigma_{1}^{2} b_{i} X_{i}>d\right] .
$$

for a_{i}, b_{i} nonnegative and arbitrary constants c, d.

Figure 3. Quadrants.

Proof. Let Q, α_{i}, β_{i} be the probabilities of the regions as shown, created by interesecting lines \digamma_{1}, ρ_{2} representing $\Sigma_{1}^{2} a_{i} x_{i}=c$ and $\Sigma_{1}^{2} b_{i} x_{i}=d$ respectively. We have to show that

$$
\begin{equation*}
Q+\alpha_{1}+\beta_{1} \geqslant\left(Q+\alpha_{1}+\beta_{1}+\beta_{2}\right)\left(Q+\alpha_{1}+\alpha_{1}+\alpha_{2}+\beta_{1}\right) . \tag{3.4}
\end{equation*}
$$

given that

$$
\begin{equation*}
Q \geqslant\left(Q+\sum_{1}^{3} \alpha_{i}\right)\left(Q+\sum_{i}^{3} \beta_{i}\right) . \tag{3.5}
\end{equation*}
$$

However, from (3.5) it is easy to check that

$$
Q+\alpha_{1}+\beta_{1} \geqslant\left(Q+\alpha_{1}+\sum_{i}^{3} \beta_{i}\right)\left(Q+\beta_{1}+\Sigma_{1}^{3} \alpha_{i}\right)
$$

which implies (3.4).

Remark. Notice that in the above proof the quadrant could very easily be replaced by a region defined by an intersection of half planes other than $X_{1}>x_{1}$ and $X_{2}>x_{2}$, the only requirement being that it is contained in the intersection of $\Sigma a_{i} X_{i}>c$ and $\Sigma b_{i} X_{i}>d$.

We will set up an analogy for the measures on lattices. Let Γ be a lattice. Suppose T_{1}, T_{2} are total ordering relations. Consider a partial ordering P induced by T_{1}, T_{2} as follows:

Definition. $x \geq_{p} y \quad$ if $x \geq_{T_{1}} y$ and $x \geq_{T_{2}} y$.
Given a measure μ on Γ one may define "marginal distribution functions" F_{1}, F_{2} by $F_{i}(x)=\mu\left\{y ; y \leqslant_{T_{i}} x\right\}$ and the PQD analog would be: for every $x \in \Gamma$,

$$
\begin{equation*}
\mu\left\{y: y \leqslant_{p} x\right\} \geqslant \mu\left\{y: y \leqslant_{T_{1}} x\right\} \cdot \mu\left\{y: y \leqslant_{T_{2}} x\right\} . \tag{3.6}
\end{equation*}
$$

In view of the remark above one may ask the following: Suppose (T_{1}^{*}, T_{2}^{*}) is another pair of linear ordering on Γ such that the induced partial order P^{*} is weaker than P above, that is

$$
y \leqslant_{P} x \Rightarrow y \leqslant_{P^{*}} x .
$$

Under what conditions would (3.6) be sufficient for the validity of an analogous inequality involving P^{*} and (T^{*}, T_{2}^{*})?

A related multivariate question is the following. Supose X_{1}, \ldots, X_{k} are such that for arbitrary nonnegative constants a_{i}, b_{i} and an arbitrary proper subset A of $\{1,2, \ldots k\}$, $\Sigma_{i \in A} a_{i} X_{i}$ and $\Sigma_{i \in A} b_{i} X_{i}$ are PQD, where \bar{A} is the complement of A. This property may be called "disjoint positive linear dependence"(DPLD).

Question. Does DPLD \Rightarrow PLD? Here PLD means $\sum_{1}^{k} a_{i} X_{i}, \Sigma_{1}^{k} b_{i} X_{i}$ are PQD. (This problem is related to some concepts discussed in Joag-Dev (1983)).

It is interesting to see that $k=3$ is the most crucial while $k=2$ has already been proved. To see that the case $k=3$ yields the general result, consider

$$
Y_{1}=X_{1}, Y_{2}=\Sigma_{i \in A} a_{i} X_{i}, Y_{3}=\Sigma_{i \in B} b_{i} X_{i},
$$

where A, B are disjoint and do not containt 1 . The triplet Y_{1}, Y_{2}, Y_{3} is DPLD. If PLD, it will show that the linear combinations containing one common variable would be PQD. Using the same technique successively, the cardinality of $A \cap B$ can be increased to k.

To see the relation between these covariance inequalities and FKG, suppose that L is a product lattice of two components L_{1} and L_{2} with partial ordering P_{1} and P_{2} respectively. Suppose μ defined on L satisfies FKG condition with respect to the partial ordering induced by (P_{1}, P_{2}). Then it follows that for every pair of nondecreasing functions (f, g) defined on L_{1} and L_{2} respectively,

$$
\begin{equation*}
\operatorname{Cov}[f, g] \geq 0 \tag{3.7}
\end{equation*}
$$

However, it is well known that the validity of (3.7) for every pair of nondecreasing functions does not imply FKG inequality. Suppose now we restrict the nondecreasing functions to those which are linear, then the above converse seems to be plausible. In fact, it reduces to having DPLD and PLD conditions equivalent.

REFERENCES

Ahlswede, R. and Daykin, D. E. (1978). An inequality for the weights of two families of sets, their unions and intersections. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43 183-185.
Andrews, G. (1976). Theory of Partitions. Encyclopedia of Mathematics and Its Applications. Addison-Wesley.
Dynkin, E. B. (1950). Some systems of weights of linear representations of semisimple lie groups. Dokl. Akad. Nauk. SSSR (N.S.) 71 221-224.
Esary, J., Proschan, F. and Walkup, W. (1967). Associated random variables with applications. Ann. Math. Statist. 38 1466-1474.
Fortuin, C. M., Ginibre, J, and Kasteleyn, P. N. (1971). Correlation inequalities on some partially ordered sets. Comm. Math Phys. 22 89-103.
Graham, R. L. (1983). Applications of the FKG inequality and its relatives. To appear in Mathematical Programming Bonn 1982 - The State of the Art, ed. by Bachem, Grötschel, and Korte. Springer-Verlag.
Hughes, J. W. B. (1977). Lie algebraic proofs of some theorems on partitions. Number Theory and Algebra. H. Zassenhaus, ed., Academic Press, New York.
Joag-Dev, K. (1983) Characterization of independence via uncorrelatedness. Ann. Probability // 1037-1041.
Kemperman, J. H. B. (1977). On the FKG inequality for measures on a partially ordered space. Indag. Math. 39 313-331.
Shaked, M. (1982). A general theory of some positive dependence notions. J. Multivariate Anal. 12 199-218.
Shepp, L. A. (1982). The XYZ conjecture and the FKG inequality. Ann Probability 10 824-827.
Stanley, R. (1980). Unimodal sequences arising from Lie algebras. Young Day Proceedings, 127-136. Marcel Dekkar, Inc., N.Y.
Stanley, R. (1981). Two combinatorial applications of the Aleksandrov-Fenchel inequalities. J. Comb. Theory 31 56-65.

[^0]: ${ }^{1}$ Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command under Grant No. 82-K-0007. The United States Government is authorized to reproduce and distribute reprints for government purposes not withstanding any copyright notation thereon.
 AMS 1980 subject classifications. Primary 60E15, Secondary 62H20, 06D99
 Key words and phrases: Association, distributive lattice, FKG inequality, positive quadrant dependence, total ordering.

