
Inequalities in Statistics and Probability

IMS Lecture Notes-Monograph Series Vol. 5 (1984), 26-34

INVARIANT ORDERING AND ORDER PRESERVATION1

BY D.R.JENSEN

Virginia Polytechnic Institute and State University
Suppose (J is a group of one-to-one transformations of a set Λ onto Λ, M is maximal

invariant taking values in an ordered set (M,^M), and^is an ordering on Jr induced from
^ M. Properties of (Λ , ^ ) are studied in Part I including lattice properties and order preser-
vation. Examples include an ordering on 7nXm having properties of Loewner's (1934) or-
dering for Hermitian varieties, a unitary ordering on 7nXm giving a lattice, and orderings
on T? invariant under various groups. Applications to a variety of problems in statistics
and applied probability are given in Part II..

PART I. THEORY

1. Introduction. Many problems exhibit symmetries as invariance under a group <J

acting on a set X Invariance principles require that solutions be invariant, and reduction

by invariance preserves essentials while discarding irrelevant details. Because order rela-

tions often assume a prominent role in the analysis of such problems, it is instructive to

consider orderings symmetric under 9".

Often Ji is finite-dimensional; examples are the Euclidean space 3*, the linear space

7nXm of (nXm) matrices over the complex field O, the Hermitian (nXn) matrices 7/n, and

the cone 7/'* of positive semidefinite Hermitian varieties. Typical groups of transforma-

tions are the classical groups. An ordering on 7/n in wide usage was studied by Loewner

(1934) in which A >:L B on 7/n if and only if A - B e 7ί\. This ordering is invariant under

the general linear group Gl(n) acting on 7ίn by congruence, for A ̂ L B on 7/n if and only

if CAC*>^ CBC* on 7/n for every C e G/(AZ), with C* the conjugate transpose of C. The

relation > ^ as an ordering on 7nxn was considered by Hartwig (1976).

Here we study symmetric orderings induced through maximal invariants, the preserva-

tion of such orderings, and the possible transitivity of lattice properties. Our principal moti-

vation stems from needed orderings on all of 7nXm and not just 7nXn or its Hermitian var-

ieties.

2. The Basic Results. A set X together with a binary relation >= is said to be linearly

ordered if the relation is reflexive, transitive, antisymmetric, and complete. The relation

is a partial ordering if it is reflexive, transitive, and antisymmetric, and a preorderin^ if

it is reflexive and transitive. A partially ordered set (Jr, > 0 is a lower semi-lattice if for

any two elements JC,y there is an element v = x Λ y e Λ that is a greatest lower bound

for Jt,y; an upper semi-lattice if there is a least upper bound u = x V y for x,y in X\ and

a lattice if it is both a lower and upper semi-lattice.

Let CJ be a group of one-to-one transformations from X onto Λ. A function/on A is said

to be invariant under <j if, for any (x,g) eΛX <jt f(gx) = /(JC), and to be maximal invariant

if it is invariant and if f{x) = fly) implies y = gx for some g e 9\ The υ-orbit of x0 e Λ
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is the set 0{x0) = {x e x\x = gx0, g e CJ\ in Jr. An invariant function is constant on each

orbit; a maximal invariant function takes distinct values on different orbits. The orbits are

equivalence classes under the relation y = x mod CΛ in one-to-one correspondence with

the values of a maximal invariant. If the image V of Jr under/has a partial ordering >±v,

the mapping/is said to be monotone if/is order-preserving, i.e. if x>iy on Λ implies

ft*) ϊlvfly) o n v- I n particular, a real function φ is monotone on (Jr, >i) if x >: y implies

φ(;t) ̂  φ(v); if φ is a norm it is a monotone norm.

Henceforth M(x) on jr is a maximal invariant function with range %r. If in addition (7IΓ,

>M) is ordered, then a binary relation on Jr may be induced as follows.

Definition I. Let M: X -> 7K be maximal invariant under <y. If (>T, >iM) is ordered, then

r,y are said to be related as x >?y on Jf if and only if M(x) >ϋM M(y) on >T.

The following theorem is basic. It asserts that the induced relation on Jr is an ordering,

that this ordering is invariant, that (Jr, > 0 may inherit lattice properties from (JK, >rM),

and that the functions monotone on (Jr, >i) may be characterized. That a property holds

up to equivalence means that the conventional definition applies when elements on the same

ί-orbit are identified.

THEOREM 1. Let c^bea binary relation on Jr induced as in Definition /. (i) The relation

is invariant in the sense that x ̂  y on X if an only if gx ^ g'y for any g,g' e CJ. (ii) If

{TIC, ^M) is partially ordered, then (Jr, >^) is preordered and is antisymmetric up to equiva-

lence, (iii) If (M, >IM) is completely ordered, then the ordering >? on Λ is complete up

to equivalence, (iv) If (M, >~M) is a lower or upper semi-lattice, then (Jr, >^) is a lower

or upper semi-lattice, respectively, up to equivalence, (v) A real function f is monotone on

(Λ >z) if and only iff is a composition of the type

(2.1) /W = ψ(M0c)) = [ψoMj(jt)

with ψ a function from the class Ψ of all functions monotone on (M, >zM)

Proof. For conclusions (i)-(iv) and sufficiency in (v) argue orbit by orbit. The neces-

sity of (v) follows from a result on page 216 of Lehmann (1959), i.e. f(x) = [ξ o M](x)

for some function ξ on ffl, together with the monotonicity of/. Q

Often there is wide latitude in the choice of an invariant ordering. If 7K is a vector space,

7r C ΛΓacone, and if M]^MM2 is equivalent toM, -A/2e 7c, then >^M is a preordering;

(M, >ZM) is partially ordered if and only if 7ι Π (- 7() = {0} (cf. Wong and Ng (1973)).

For cone orderings on ffl the functions Ψ monotone on (M, >iM) are characterized in Mar-

shall, Walkup, and Wets (1967). Elsewhere in this volume Eaton (1984) requires that

x>i/;y on Λ if and only if v lies in the convex hull of the v-orbit of x\ given an inner product

on Λ, he characterizes this ordering by quasi-linearization in terms of a maximal invariant

function. From the correspondence of orbits to points in 7K, it is clear that both Λ and M

may be ordered using >^,,, the latter depending only on V and leaving no latitude for choice.

Although that approach and the approach taken here differ, there is common ground as may

be seen on comparing our examples with those of Eaton (1984).

We now specialize Λ and Vto familiar finite-dimensional linear spaces and the classical

groups, respectively. On occasion properties of these spaces support results beyond those

of Theorem 1.

3. Orderings on 7T and 7nXnι. Let # +

Λ be the positive orthant of ?T\ write on =

{x e τr\X] ^ χ2 ̂  ... ^ χn) and ΰ+ = on Π 7?\\ and henceforth consider 7nXm with n

& m. Denote by Q/(n) the unitary (nXn) matrices and by ό(n,m) the Stiefel manifold in
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7,ίXm whose elements satisfy A*A = \m. The polar factorization of A e 7,ιXlfl is A = LS

with L e rS(njn) and S = (A*A)I/2 as the Hermitian square root. Its singular decomposition

is A = PDαQ* with P e Λ(w,/w), Q e r//(m), and Dα = Diag(oi|, ... , α,,,), a real diagonal

matrix of the ordered singular values of A, i.e. the non-negative square roots of the charac-

teristic values of A*A. Letσ: ?/|Xw-» o+

mm'άp A into its ordered singular values.

The following construction is essentially due to von Neumann (1937), For functions 7:

Tf-tT?1 consider the properties

PI. y(e\xiι9 ... ,€mxl J
zw) is any permutation of (1,2

P 2 . I f { |^ | ^ 1^1 ,\^
if|jcf | < \yi\ for some/.

P3. y(xl9 ... , J C J ^

P4. y(cxu ... , C O

P5. γ ( ^ + y l f ... ,

where {e,f= ±1;1 ^ i ^ m) and (/,, ι2, ...

, m);

then 7(x,,

,xm).

, xj ^ 7(y,, with strict inequality

Definition 2. Let Γ be the class of functions 7: ΊΓ1 -> yp1 having properties PI and

P2, and let Γo C Γ have the additional properties P3, P4 and P5.

Definition 3. Let Φ be the class of functions φ: 7 w X w - > ^ generated by compositions

as Φ = {φ|φ = 7 o σ , 7 e Γ}. Let Φ o be the subclass of functions in Φ such that φ 0 =

Functions in Γo are the symmetric gauge functions on 7?", and those in Φ o are the unitar-

ily invariant norms on 7nXm; von Neumann (1937) showed that these classes generate each

other (cf. also Schatten (1970)).

3.1 Orderings on CRn. If 9 is the group of 2n reflections about the coordinate planes

in 9?1, then the orbit of x e Rn has the vertices {(e^i, ... , €„*„); c, = ± 1, 1 ^ 1 ̂  π} of

a parallelotope, and a maximal invariant is M(x) = (|*J, (x^l, ... , |*J) with range ^ +

n . If

ordered by coordinates such that u > ^ v on J?+ if and only if {«. > vιf / = 1, ... , «},

the range (̂ P+n, >zM) is a lattice (cf. Vulikh (1967), for example). The order induced by

Definition 1 is that x >Ξ y on J?1 if and only if {|JC,| ^ \y\ i = 1, ... , n}. Theorem 1 now

assures that (3*1, >^) is partially ordered symmetrically up to equivalence, and that

(3*, >i) is a lattice up to equivalence under 9. For x,y e 3P, x Λ y is the orbit identified

with w e 9? having {w{ = min(|jc/|, |y, |); i = 1, ... , n}, and x V y is the orbit identified

with z e %" having {z, = max(|^j|, |y/|); i = 1, ... , n}. By conclusion (v) of Theorem 1

the monotone functions on (J?1, >^) are generated by the class Ψ of functions on J?+ in-

creasing (i.e. nondecreasing) in each argument.

Other orderings of interest on J?1 are symmetric under the permutation group 9. Then,

with {x(1) ^ x(2) ^ ... ^ JC(n)} as the order statistics, Λf(x) = (JC(]), JC(2), ... , x(n)) is a maximal

invariant on J?1 with range 2)Λ. A fundamental ordering on J?1 is obtained via Theorem 1

through majorization on 2>n such that u >-M v on 2)rt if and only if

(3.1) Σf« l ^X1*v/>* = l,2, ... .«-l

(3.2) Xf«/ = SΓvI .

The result is a partial ordering on J?1 up to equivalence. Ordering the elements of

x,y e 3? before applying (3.1) and (3.2) is justified formally by (i) of Theorem 1. The func-

tions monotone on {pp, >r), i.e. the ό-convex functions of Schur (1923), may be generated

from functions on Dn and conversely. Part (v) of Theorem 1 thus yields Proposition H.I



INVARIANT ORDERING 29

of Marshall and Olkin (1979, p. 92) as well as its converse.
Similar remarks apply to a weak majorization on 2)n in which k = 1, ... , n in (3.1) and

(3.2) is deleted. Examples of functions on 3?" montone under the induced ordering are the

symmetric gauge functions (cf. Fan (1951)). Functions monotone under majorization and

various weak majorizations are treated in Marshall and Olkin (1979).

3.2 Left-Unitary Ordering on 7nXm. Here 9*is the unitary group acting from the left,

i.e. A -+ UA on 7nXm with U e Q/(n). A maximal invariant is Λ/(A) = A*A with range

Jίn (cf. Vinograde (1950)). The ordering considered here is as follows.

Definition 4. Two matrices A,B e 7nXm are said to be ordered as A >r B if and only

if A* A > ^ B*B on Λ £ , i.e. A*A - B*B € J{+. The ordering A >• B is strict whenever
A*A - B*B is positive definite.

Basic properties of (7nXm, ^ ) , ordered as in Definition 4, are given next, where

L) is used in lieu of (ffl, >LΛ/)

THEOREM 2. Let>^_ be a relation on (7nXm induced from (Tfm, ^ L ) as in Definition

4. (i) The relation >: is invariant in the sense that A >: B on 7nXm if and only if PAC

>QBCfor any P,Q e Q/(n) and C e Gl(m). (ii) (7nXm, >i) is partially ordered up to equiva-

lence under 9\ (iii) If m = 1 the ordering >z is complete up to equivalence. (iv) If A ^

B on 7nXmf then AG >: BG on 7nXsfor any G e 7mXs. (v) For A,B e 7nXm a necessary

and sufficient condition that A + B > A w that B*B + A*B + B*A € Jf+. In particular,
if A*B = 0, then A

Proof. Conclusions (i)-(iii) follow from their antecedents in Theorem 1 together with
properties of (&„, >zL); conclusion (iv) is immediate; and (v) follows on expanding (A
+ B)*(A + B). •

Claims for lattice properties of (7nXm, >Ξ) are not available through Theorem 1. Halmos

(1958, p. 142) showed that (7/m,>:L) is not a lattice.

Well known properties of (7/n, >rL) are 1) if A >^L B >*L 0, then B"1 > ^ A"1 >• L 0 (cf.

Loewner (1934)) and 2) if A > ^ B, then their ordered characteristic values, CΛ(A) =

{α, 2* ... 2* α j and CΛ(B) = {β, ^ ... ^ β j , satisfy { t t /> β.-9 1 < / < n} (cf. Bellman

(1960), p. 115). The first was extended to singular matrices in ?/„ by Milliken and Akdeniz

(1977) using the pseudo-inverse of Moore (1920) and Penrose (1955). Thus these inverse

operators are order-reversing on the boundary and interior of 7/π

+ under>zL. Corresponding

properties are shown next for (7nXm, >i) in terms of 1') the Moore-Penrose inverse operator

A -> Af on 7n x m and 2') the singular-value mapping A -> σ(A).

THEOREM 3. Let σ(A) = {α, ̂  ... *» am} and σ(B) = {β, ̂  ... ̂  βm} be the ordered

singular values of A9B e7nXm, and let A* and B f be their respective Moore-Penrose inver-

ses, (i) If A >^ B, then aέ ̂  β,for i = 1, ... , m. (ii) If A >: B and if A and B haves rank

s ̂  m, then (B f)* ̂ i(A+)* on7n
nXm.

Proof. Conclusion (i) is a restatement of property 2) of ( H ^ , > ^ ) . Conclusion (ii) fol-

lows because A >: B implies A*A >:L B*B, which implies (cf. Milliken and Akdeniz

(1977)) that (B*B)f >?L (A*A) f, which in turn implies B^B1)* >rL A^A1)* and thus (ii).

The last step uses the singular decomposition F = PDQ* with P e cU(n), Q e <2/(m), and

D(nXm), and the fact that F f = QD f P*. D
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The functions monotone on (7, l X / w. >i) may be generated by composition as {f(X) =

ψ(X*X); ψ e Ψ ) , with Ψ the real functions monotone on (7/+

m, >^) as characterized by

Marshall, Walkup, and Wets (1967). Other results follow.

THEOREM 4. Let φ be the class of functions on ( 7nXm, >z) as in Definition 3.1fφe

Φ, then φ is monotone. In particular, any φ € Φ o is a monotone norm.

Proof That φ is order-preserving follows on combining conclusion (i) of Theorem

3 with property (ii) of Definition 2, for A > : B implies φ(A) = 7(σ,(A), ... , σm(A)) ^

γ(σ-,(B), ... , <τm(B)) = φ(B). In particular, any φe Φ o , a norm, is a monotone norm, Q

In conclusion, note that the ordering ^ of Definition 4 is an alternative to Loewner's

ordering >_L on Hn; clearly the two orderings coincide on 7/+

n. Examples of elements in

7/2 ordered by >ϋ but not >^ are the diagonal matrices A = Diag(2,-2) and B = Diag(l,

D

3.3 Unitary Orderings on 7nXm. Let CJ be the unitary group on 7nXm taking A into

UAV with U e (U(n) and V e (U(m). A maximal invariant is σ(A) with range 0+

m, each orbit

in 7nXm having matrices with the same ordered singular values.

Orderings on o+

m of interest here are those of Section 3.1: (i) ordering by coordinates,

(ii) majorization, and (iii) weak majorization. Properties of ( 7nXm, > )̂ under the induced

orderings follow from Theorem 1 as before. Functions monotone on ( 7nXm, >^) are equiva-

lent to compositions {/(A) = ψ(σ(A)); ψ € Ψ} where, for the three cases, (i) Ψ consists

of functions on o+

m increasing in each argument, (ii) Ψ consists of Λ'-convex functions,

and (iii) Ψ is the class Γo of Definition 2. The latter combines Theorem l(v) with a result

of Fan (1951). For this case the class of monotone functions is Φ o , the unitarily invariant

norms being monotone on ( 7 / ί X m, > )̂ when ordering is induced through weak majorization

of the singular values. For case (i) ( 7 / l X m, >:) is a lattice up to equivalence under CJ.

PART II. APPLICATIONS

1. Introduction. The foregoing concepts apply in a variety of settings, where different

orderings serve different purposes and a careful choice may yield results not otherwise at-

tainable. Unless stated otherwise, we take ( 7nXm, ^ ) to be ordered as in Definition 4.

Subsequently define 7nXm over v?1 and let u(n) be the group of real orthogonal (nXn)

matrices. Let S/ l f / w(θ,ΓxΞ) be the class of ellipsoidal matrix distributions on 7nXm with

typical density

let ί/n t W(θ,ΓxΞ) be the subclass of distributions unimodal in the sense of Anderson

(1955); let Gn m ( θ , Γ x Ξ ) be the subclass of these consisting of scale mixtures of matrix

Gaussian laws; and letL, m(θ,Λ) be the distribution on 7nxm with typical density

(1-2) /(Y) = Λ(Λ'(Y-Θ)'(Y-Θ)Λ).

Here θ e 7 / l X m consists of location parameters, while Ξ e 7/+

m, Γ e 7l\, and Λ e 7mXm

are scale parameters, all nonsingular. These distributions are considered in Jensen and

Good (1981). When m = 1 these specialize to the classes S#1(Θ,Γ), ί/#I(θ,Γ), and G,,(Θ,Γ)

on ΛΛ The distribution of W is denoted by L (W).

A useful ordering for probability measures is the following (compare Sherman (1955)),

where -X is a linear space having the zero element 0 e Λ.
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Definition5. Let (Λ, Z>V) be a measurable space. The probability measure μ is more

peaked about 0 e Λ than v if μ(Λ) ^ v(Λ) for every set in the class τ of compact convex

measurable sets A symmetric under reflection, Ί.e.xeA implies-xeΛ. Denote this ordering

2. Peakedness of Measures. For suitable measures μ and v on 7? symmetric about 0

and having the dispersion matrices Σ μ and Σv such that S p > i L Σ μ , μ is more peaked about

Othan v. This was shown for Gaussian measures on 7? by Anderson (1955) and for 5π(0,Γ)

by Fefferman, Jodeit, and Perlman (1972). We extend these results to linear transforma-

tions from 7?1 to 7?" with m^n, and we also supply a converse.

THEOREM 5. Let μA and μB be probability measures on 7?" induced by y -» A'y and

y -> B'y from £(y) e SΠ(O,IΠ) with A,B e 7nXm. Then μA>^p μB on 7T if and only ifB

Proof (i) Clearly A Ά = %A and B'B = XB are the scale parameters of μA and μB.

If B >i A, then XB >^ XA and the ordering μA >^p μB follows from that of Fefferman,

Jodeit, and Perlman (1972). (ii) Conversely, suppose that μA >^ μB but neither A->: B

nor B >2 A. As > ^ is preserved under nonsingular linear transformations, simultaneously

reduce ΣA to I , and Σ β to D = Diag(δ,, ... , δ j where, forsomeA:€(l,m), δx ^ ... <

δ̂ . < 1 =̂  δ* + I ^ ... ^ δm}. Then the marginal measures vA and vB on 7& are ordered as

vβ>Tp vA, and necessity follows by contradiction using the fact that probability measures

on 7?1 are tight. D

3. Linear Estimation. The problem is to estimate θ in the matrix model Y =

Xθ + E with Y e 7nXm observable, X € 7nXr known of rank r ̂  n, and E e 7n X m a matrix
of random errors. Minimizing g ( θ ) = ίr(Y-XΘ)'(Y-XΘ) as θ varies yields the least-

squares solution θ = (X'X)"'XΎ for θ and X θ for approximating Y. We show much

stronger minimizing properties.

THEOREM 6. Suppose Y = XΘ + Eand order (7nxm, >r) as in Definition 4.β) θ

= (X'X^XΎ is minimizing on (7nxm, >i) in the sense that (Y-Xθ) ^ (Y-Xθ) for

every θ € 7 rxm. (ii) ψ(Y-Xθ) < ψ(Y-Xθ) for every φ in the class Ψ of functions

monotone on (7nXm, >£). (iii) θ is the minimum-norm solution to min θ e 7 r x m ||Y—Xθ||φ

for every unitarily invariant norm \ \ \ | φ on 7n x m.

Proof. Because X'XΘ - XΎ = 0, the expansion

(Y-XΘ)'(Y-XΘ) = (Y-XΘ)'(Y-XΘ) + (Θ-Θ)'X'X(Θ-Θ)

yields conclusion (i) directly. Conclusion (ii) follows by monotonicity, and conclusion (iii)

from Theorem 4, where the unitarily invariant norms are shown to be monotone. •

Conclusion (iii) was obtained by Rao (1980) as a consequence of ordering the singular

values σ(Y-Xθ) and cr(Y-Xθ). Our conclusion (i) is stronger, as it implies. Rao's

ordering using Theorem 3.

4. Ordered Designs. Specialize the foregoing model with m= l t o y = X/3 + e and

consider the choice of design as it pertains to testing H: β = 0 against A: β Φ 0. If £{e)

€ £/n(0,σ2In), then the power function of the normal-theory test for H against A depends

on the parameters (β,o 2) and the design X only through λ = β'X'Xβ/σ2, and it increases

monotonically with λ; cf. Theorem 3.2 of Jensen (1979). Suppose one of the designs A,B

e 7nXr is to be chosen. A connection between the ordering ( 7 n X n >:) of Definition 4 and
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the power of this test is given in the following theorem for any unimodal spherical law of

errors.

THEOREM 7. Suppose £(y) e £/π(Xβ,σ2In) with X e 7nXr a design matrix of rank
r<n. Of two designs A,B e 7ΛXΓ, the F-test at level a for testing H: β = 0 against A:β Φ
0 is uniformly more powerful using Design A than using Design B if and only if A >-Bon

Proof. Sufficiency follows from the preceding paragraph because the power function

depends only on λ. A proof for necessity parallels that of Theorem 5 on identifying sub-

spaces where each is more powerful when A >/: B. •

5. The T2 Chart under Scale Ordering. Hotelling's (1947) T2 chart uses samples

from a vector-valued process to monitor the stationarity of means over time. Its run length

is the number of successive samples taken before signaling that the process is not in control.

Suppose successive observations are independent Gaussian vectors on Jf having parame-

ters (μ,Σ), with Σ characteristic of the process. In practice efforts are made to tighten the

process to reduce its variability. The effects of such reduction on run lengths are as follows.

THEOREM 8. Let N\ be the run length of Hotelling' s (1947) T2 chart for monitoring a

stationary Gaussian process with parameters (μ, Σ,), and let N2 be the run length ofT2

for a tightened process with parameters (μ, Σ2). Then N2 is stochastically smaller than

Nφr all μeJT if and only ifX, > ^ Σ2 on (7/+

m, >^ΰ •

Proof. The proof parallels that of Theorem 7. •

6. Canonical Analysis. Let z = (z',,z2)' be Gaussian on 7^ having zero means and

the dispersion matrix

(6.1) Ω= ( £ J* )9Re9rXs,r<s,

and consider the quadratic forms Ux = τ\τλ and U2 — z ^ Their joint distribution depends

only on <r(R), the canonical correlations of Hotelling (1936). If an ordering on (9>X5, >z)

is induced by coordinate-wise ordering of the singular values on 7J+

ry then a monotonicity

property of certain probabilities is given in the following.

THEOREM 9. Let μR( ) be the joint measure ofUχ = τ\τλ and U2 = z2z2 on 7?2 having

the cross correlation matrix R in (6.1) with r = s. Then for every measurable set ACZ

J?+ , the measure μ#(A XΛ) is order-preserving in the sense that Ξ ί!ϋ Γ on(7rXr, ^ ) im-

plies that μΞ(Λ xA) ^ μΓ(Λ X A).

Proof. An expansion in the Lancaster (1958) canonical form was given by Jensen

(1970) for the joint distribution, the coefficients Gk(p) depending on p = σ(R). The proof

consists of integrating the expansion over Ax A and showing that the resulting expression

is an increasing function of p. •

We next show that a bivariate Chebyshev bound is monotone when considered as a

function of R on (7 r x s , >^) for any r < s. This result is essentially distribution-free. Define

(6.2) B(δl9 δ2;R) = ((5-r)/δ2) + Σ^ I{(δ1+82) + [(δ1+82)
2-4p?B182]

1/2}/28A

in terms of the canonical correlations {p,, ... , pr} of y, and y2 for fixed δ, and δ 2 .
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THEOREM 10. Let y = (y\, yiY be a random vector of order r + s = n, with r ^ s,

having the mean μ = (μΊ ,μ2)'', the dispersion matrix Σ = [Σ//]> ̂  R = Σπ1 / 2Σi2Σ2-2

1 7 2.

ΓteΛ (i) P((yi-μi)'Σίϊ(yi-μi) ^ δ,, {y 2-^2)'^ϊi(y 2-^2) ^ δ2) ^ i-£(δ,,δ2;R); 00

#(δi ,δ2;R) is monotone decreasing on (7 r X s, >r).

Proof. Conclusion (i) is given in Jensen (1982). Conclusion (ii) follows from expres-

sion (6.2), from the mapping σ(R) = (pi, ... , p r), and from the fact that X π 1 7 2 ^ ^ 1 7 2

>rΩf,ι/2Ωi2Ω22 l/2 o n f-^x,, ^ ) , for example, if and only if their singular values are pair-

wise ordered on J)\. D

Observe that Theorems 9 and 10 remain valid when (7 rXs, ^ ) is ordered as in Definition

4. This follows from conclusion (i) of Theorem 3.

7. Signal Detection under Symmetry. Each channel of a ^-channel receiver accepts

an input vector y e 7?" that is either processed as a signal or suppressed as noise depending

on whether the input amplitude ||y|| = (y'y)172 does or does not exceed a threshold value

c. Thus for k channels Y = [y}, ... ,yk] represents the input, typically correlated between

channels, and a probabilistic assessment of the system performance focuses on expressions

of the type

(7.1) F(cl9 ... , c , ; θ ) = P θ ( | | y 1 | | < c 1 , ... , | |yj | < ck),

when signals of varying strengths actually enter the system. A useful ordering is the follow-

ing.

THEOREM 11. Suppose C(Y)eLnk(θ, A) anditspdfis unimodal. Then the probability

F ( c , ... ,cA;0) = P e ( | | y , | | ^ c , , ... , | | y * | | ^ * ) ,

when considered as a function ofθ with {c1? ... , ck} fixed, is monotone decreasing on

(?nχk> ^ ) under the ordering of Definition 4.

Proof Let A C 7n x * be the set

Let <j be the group (J(n) acting on Y from the left; and observe that (i) A is a convex ^-invar-

iant subset of 7nXk.and (ii) the pdf of (Y-θ) is a nonnegative real-valued, y-invariant and

unimodal function on 7nxk. Conditions (i) and (ii) satisfy the requirements of Theorem 5 of

Mudholkar (1966) which assures that

(7.2) Pθ(A)^Pθn(A)

for any θ in the convex hull of the V-orbit of θ 0 . This orbit is characterized by constant

values of the maximal invariant function θ' oθ o. On taking sections, we infer that θ is in

the convex hull of the v-orbit of θ 0 if for all a e^P*, α'θ'θα ^ α'θ'oθofl, i.e. if θ ' o θ o

>^ θ ' θ . But from Definition 4, this fact together with (7.2) are equivalent to the assertion

of the theorem. D

In practice this assures that the larger the shift in the sense of the ordering >^, the greater

the probability that signals are correctly identified and processed as signals in one or more

channels. In particular, in back-up systems designed with redundancies, the detection prob-

ability will increase with the magnitude of the signal.
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