
4. Functional Central Limit Theorems,

In the last section we have already mentioned Donsker's functional central

limit theorem for the uniform empirical process α = (α (t)).pf
π
 .,-i

 5
 where

1/2

α (t) = n (U (t) - t), U(t) being the empirical df based on independent

random variables η. having uniform distribution on the sample space X = [θ,l]

with its Borel σ-algebra B = [θ,ll n β ,

In the setting of an empirical C-process β Ξ (£ (C))
 r
 the uniform em-

n n utu
pirical process α is a very special case taking C = {[θ,t]: t G [θ,l]} and

1/2
identifying α (t) with β (C) = n (μ (C) - μ(C)) for C = [θ,t], μ being the

empirical measure based on η ,. . • ,n and μ being the uniform distribution on

[0,1]; note that μ (C) = U (t) and μ(C) = t for C = [θ,tl.

The present section is concerned with some extensions of Donsker's func-

tional central limit theorem in its form (
1
+4)(ii) to more general situations.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR EMPIRICAL C-PROCESSES:

Let X = (X98) be an arbitrary measurable space considered as a sample

space for a given sequence ξ ,ξ
 9
... of i.i.d, random elements in (X,B)

9
 the

ξ.'s being defined on some common p-space (Ω,F,]P) with law μ on B. If not sta-

ted otherwise we will consider the canonical model

(Ω,F,]P)=(X
1N

9
B_

l5
x μ)

with the ξ.'s being the coordinate projections of X onto X.

1
 n

Let μ (B) = — Σ l
D
(ξ.), B 6 8, be the empirical measure based on ξ ,...,ξ .

n n . _ . . b i ±n

105
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Now, given some subclass C of B, consider the empirical C-process

3
n
 Ξ ( β

n
( C ) )

C 6 C
 d e f i n e d b v

M O := n
1 / 2

 (μ
n
(C) - μ ( O ) , C G C,

as a stochastic process (on (Ω,F^P)) indexed by C.

As mentioned in Section 1, its covariance structure is given by

cov(3
n
(C

1
),β

n
(C

2
)) = \i(C

1
 Π C

2
) - μ(C

1
)μ(C

2
), C

l 9
C

2
 G C.

So, the analogue of (44 )(ii) would be the statement that (in the sense of (34-))

L
h

(46) 3 => C , G = (G (C))
pcr
, being a mean-zero Gaussian process

n μ μ μ LfcL

with cov(G (C
1
),G (C

2
)) = μ(C

1
 Π C

?
) - μζC^μίC^), C^C^ G C.

But this amounts at first to make a proper choice for a metric space S = (S,d)

together with a suitable separable subspace S serving as sample spaces for

β and its limiting process (B , respectively.

Following Dudley (1978) we propose to choose S = U (C,d ) ;=

{φ: C -> H: φ bounded and uniformly d -continuous}, where d is the pseudo^

metric defined on C by

d
μ

( C
l '

C
2

) : = μ ( C
l
 Δ C

2
) 9 C

1'
C
2
 e C

'

(C. Δ C denoting the symmetric difference between C. and C ).

Note that, concerning the μ(C)-part of 3 (C), C -*• μ(C) is a function belonging

to S
Q
 (since (μζ^) - μ(C

2
>| ^ d

μ
(C

l 9
C

2
)).

1/2
In order to cope also with the μ (C)-part of 3 (C) (and the factor n ), let

k
S Ξ D ( C , μ ) := {φ = φ + φ : φ G S and φ = Σ a . ε f o r some

O l / i _ L θ ^ . ^ 1 X .

1=1 i

a G ] R , x E X , l ^ i ^ k , k e l ί } .

Note that S is a linear space containing S as a linear subspace

also 3 (
f

9
ω) 6 S for all ω G Ω.

Finally, let S (and its subspace S ) be metrized by the metric d := p, where

p is the supremum-metric, i.e.,
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p(φ
!

5
φ") := sup |cp

τ
(C) - φ"(C)| for φ

1
 ,φ" € S.

CEC

Note that the closure D(C
9
μ) of D (C

9
μ) in the Banach space £°°(C) = U°°(C)

9
p)

of all bounded real-valued functions on C can be considered as an extension of

D=D[O,1] in the classical case, where X = [θ,ll, C = {[0
t
tl: t 6 [θ

9
l]}

9
 and μ

is the uniform distribution on [0,1] or any other distribution on [θ,l] with a

strictly increasing distribution function; also, in the latter case, u (C,d )

equals C[θ,ll after identifying φ([θ,tl) with x(t).

Having made this choice for S , S and d, in view of (46) the following

problems still remain:

PROBLEM (a) (MEASURABILITY): Find conditions under which the 3
 !
s can be viewed

^m*. pj

as random elements in (S,A) for some σ-algebra A in S such that one meets the

situation of Section 3, i,e.

(47) B
b
(S,p) C A C B(S,p)

(with B (S,p) being the σ-algebra generated by the open p-balls in S
9
 and

B(S,ρ) being the Borel σ-algebra in (S,p))

Taking A ;= σ({π : C 6 C})
5
 with π : S -> E. being defined by

π
c
(φ) := φ(C), C 6 C,

i s F,A-measurable

(since F,σ({π : C E C})-measurability of β is equivalent with F
9
β-measurabili-

ty of π (& ) = 3 (C) for each fixed C 6 C, the latter being satisfied since

3 (C) is a random variable (on (Ω
9
F,]P)) for each fixed C )

9

but the first inclusion in (47) fails to hold, in general:

in fact, looking back to (10) in Section 1, it follows that in the example

considered there 3 is not even F,B(S,p)-measurable,
n D

So, we will restrict our consideration to cases where the following

measurability condition

(M): B b (S,p) C A := σ ( { π c : C E C})
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is fulfilled, which turns out to be satisfied in important cases of interest;

note that (M) implies (47), since the other inclusion there holds trivially due

to the p-continuity of the π 's for each fixed C E C,

LEMMA 20. Suppose that C fulfills the following condition

(SE): There exists a countable subclass V of C such that for any C E C

there exists a sequence (D ) ̂  in V with 1 (x) > lp(x) for all

n

x E X;

then (M) holds true.

Proof. (SE) implies that for any C E C there exists a sequence (D ) _„ in V

such that lim d (D ,C) = 0 from which it follows that φ,(C) = lim φ,(D ) for
U n 1 l n

every φ E S on the other hand, since 1 (x) -** 1 (x) for all x is equivalent

n

with lim ε (D ) = ε (C) for all x, we obtain φ(C) = lim φ(D ) for every φ E S.
x n x n

But from this it follows that for any φ E S and any r > 0

{φ E S: ρ(φ,φ ) ̂  r} = Π {φ E S: |φ(D) - φ (D)| ύ r} E A,

° DEP °

since V is countable, implying (M). D

(48) EXAMPLES, (a) Let (X,B) = 0R
k
,β ), k £ 1, and let C be the class 1 of all

lower left orthants or the class B, of all closed Euclidean balls in Έ. , res-

pectively; then (SE) and therefore (M) holds true for C = J and C = B ,

respectively,

(b) If we consider instead e . g M t h e c lass C ; = { C + z; z E R }, C being a

fixed closed Euclidean b a l l in E. , then (SE) f a i l s to hold:

in f a c t , no V - {C + q: q E R} with countable R C ]R can serve as a countable

subclass of C with the desired property s t a t e d in (SE), s ince for any fixed

k k
z E ]R \ R and any D E V t h e r e e x i s t s a y EH such t h a t

1 — 1 (v ) ^ 1 (v ) ~ 0
C Ί*z π D o

o Q

( c f . FIGURE 4 ) .
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FIGURE 4

We shall see below how to cope also with examples where (SE) fails to hold.

For this another measurability assumption (M ) weaker than (M) will be needed.

It should be noticed (cf, the proof of Lemma 20) that in case of (SE) we have

SEPARABILITY of the process 3 Ξ (3 (C))
 r
 in the sense that each sample path

n n UfcL'

of 3 is uniquely determined by its values on P.

Let us make some further remarks at this place:

first, note that (M) implies

(49) B (T,p) = σ({π
c
(T): C 6 C}) = B(T,p) for any_ separable subspace

T of S, with TΓpίT): T ->• ΊR being defined by π
c
(T)(φ) := φ(C).

In fact
9
 the same reasoning which gave us (39) in Section 3 yields

(50) B (T,p) = T Π 8 (S,p) for any separable subspace T of S,

whence (cf. Lemma 11 (iv))

B, (T,p) = T Π B, (S,p) C T Π A = σ({π
p
(T): C E C } ) C 8(T,p) = B, (T,p)

5b b
 ( M )

 C b

which proves (49).

Next, concerning S = u (C,d ), it follows even without imposing (M) that

(49*) B, (S ,p) = σ({π_(S ): C E C}) = 6(S ,ρ)
5
 provided that C is

DO LO O ^̂  ^

totally bounded for d j_

In fact, if C is totally bounded for d , there exists a countable d -dense

subset V of C implying, due to the d -continuity of functions belonging to S ,

that for any φ G S and any r > 0
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{φ E S : p(φ,φ ) ̂  r} = Π {φ € S : |φ(D) - φ (D)| ύ r}
o
 D e p

 o o

G σ({π
n
(S ): C E C})

9
 whence B. (S ,p) C σ({π (S ); C 6 C}) C β(S ,p)

Co D O Co o

on the other hand, using the Stone-WeierstraB theorem, it can be shown that

(51) S = LΓ(C9d ) i s separable and p-closed ( i . e . S° = S ) ,
o μ o o

provided that C is totally bounded for d j_

This proves (49 ).

For later use it is important to note that (49 ) together with (50) and

(51) imply

LEMMA 21. Let C be totally bounded for d and suppose that (B = (G (C))pw,

has all its sample paths in S = lΓ(C,d ); then <B can be viewed as a random

element in (S,&(S,p)) with L{<E }(S ) = 1. Furthermore, L{<9 } as well as any

other law v E ML (S) with v(S ) = 1 is uniquely determined by its fidis (which

1,

are the image measures that π (S ): S -> ΊR induce on /B, from v when v

1**'
#
' k ° °

is viewed as defined on S Π B (S,ρ) = BL (S ,ρ) = σ({π
c
(S ): C G C})

9
 where

π
p
 (S )(φ) := (φ(C ), . . . ,φ(C, ) ) .)

^ 2
5
 * > jζ ° J. K

This leads us to the next

PROBLEM (b) : (EXISTENCE OF A VERSION OF g Ξ (g ( O )
c c C

 in S =_ (^(C^d )):

Let Φ = (G (C))
 r
 be a mean-zero Gaussian process with covariance structure

(cf. Section 1, (4))

cov(G
y
(C

1
), 6 (C

2
)) = μ ( C

1
Π C

2
) - μ(C

1
)μ(C

2
)

>
 C ^ G C.

Noticing that the fidis of 3 (viewed as a random element in (S,A) with

A := σ({π: C G C})) are well defined, we have according to (4) of Section 1

(52) 3 -Ξ-J C , G being viewed as the coordinate process on

(where L{Φ } is uniquely determined by the fidis of <G

(Kolmogorov's theorem)).
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Now, the problem is to find suitable conditions under which there exists a

version <G of <B having all its sample paths in S , where here VERSION is to be

understood in the sense that € and (ί have the same fidis (denoted by

L
(E

 f
=

d
 € ) in this connection (5 is allowed to be defined on a p-space

( Ω ^ F
1
^ ' ) different from (Ω,F,P).

It turns out that in order to get a positive result, C is not allowed to

be too "large"; cf, R.M. Dudley (1979 a) and also R.M. Dudley (1982).

A proper condition on a class C being not too large to allow for a solution of

problem (b) is in terms of the so-called metric entropy:

for this, let for any ε>0 N(ε,C,μ) be the smallest n G Έ such that

n

C = U C. for some classes C. with d -diam(C) := supίd (C
!

9
C

M
): C',C"eC.}^2ε

for each j

log N(ε,C,μ) is called a METRIC ENTROPY (of C w.r.t. μ).

Obviously, N(ε,C,μ) < °° for each ε>0 iff C is totally bounded for d (in which

case S = u (C,d ) is separable and p-closed, by (51)).

Now, as shown by R.M. Dudley (1967) and (1973), cf. p. 71,

(53) $ has a version $ = (G ( O )
 p

 having all its sample paths in
μ μ μ Ltc

S Ξ ϋ (C,d ) provided that

1 9 1/9
( E

Q
) : J (log N(x\C,μ)) '' dx < ~.

But it turns out that (E ) is not sufficient to ensure (46);

o

in fact, disregarding for the moment measurability questions, the following

example shows that (46), i.e. 3 — ^ <B , fails to hold although (E ) is

satisfied:

Let C be the collection of all finite subsets of X = [θ,l] and let μ be the

uniform distribution (Lebesgue measure) on β = [θ,l] Π β ; then d ^ ^ ' ^ 9 ^ ~ ^
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2
for all C ,C E C, whence N(x

 5
C,μ) Ξ 1 and therefore (E ) obviously holds

true; also μ(C) = 0 on C implies that (E = 0, but still (46) fails to hold:

(46) would imply sup |β (C)| » sup JG (C)| = 0 which cannot be true since

CEC
 n

 CEC
 μ

1/2
for the present C sup β (C) = n •* °° as n -> «\

cec
 n

A proper strengthening of (E ) which will yield (46) and hence also a

solution to problem Q) is in terms of the so-called metric entropy with in-

clusion.

For this, let for any ε>0 N (ε,C,μ) be the smallest n E 3N such that for some

A.,.,.,A E B (not necessarily in C), for every C E C there exist i,j with

A . C C C A . and μ(A.\A.) < ε; log N (ε,C,μ) is called a METRIC ENTROPY WITH

INCLUSION (of C w.r.t. μ).

Compared with N(ε,C,μ) we have for any C C β and any μ

(54) N(ε,C,μ) ̂  Njίε.C.μ) for each ε>0,

For, suppose w.l.o.g. that n = N (ε,C,μ) < °°; then there exist A-,...,A E 8

such that for any C E C there exist i,j with A. C c C A. and μ(A. \A.) < ε.

But then, for i=l,...,n, C
±
 := {C E C: A. C C and d (A.,C) < ε} * 0,

n

d -diam (C.) ̂  2ε, and C = U C. (since for each C E C there exist i,j such

that A. C c C A. and μ(A.\A.) < ε which implies d (A.,C) ̂  μ(A.\A.) < ε,

i.e.,C E C ) . This proves (54).

Now, as shown by R.M. Dudley (1978), Theorem 5.1, the following result

holds true:

THEOREM A. (M) together with

(E ): J (log N (χ
2
,C,μ))

1 / 2
 dx < «>

0

imply that 3 — > (E .
n μ
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The proof of Theorem A is based on the following fundamental characterization

theorem (cf, R.M. Dudley (1978)):

THEOREM B. Let (X,B) be an arbitrary measurable space considered as sample

space for a given sequence ξ^ξ^... of i.i.d, random elements ξ. in (X
9
B)

9

where the ξ^'s are viewed as coordinate projections of (Ω,F,]P) = (X
 9
 B , x μ)

onto X with law L{ξ.} Ξ μ on B. Suppose, given some subclass C of B together

with the empirical C-process 3 Ξ (3 (O)
C
£C based on ξ ξ

 9
 that (M) is

fulfilled.

L
Then 3 » (B (in which case C will be called a μ-DONSKER CLASS) if and only

n μ J

i f b o t h

( a ) C i s t o t a l l y bounded f o r d 9 and

( b ) f o r any ε , η > 0 t h e r e e x i s t s a δ = δ ( ε 9 η ) 9 0 < δ < 1 ,

and t h e r e e x i s t s a n n = n ( ε 9 η 9 δ ) E ] N s u c h t h a t f o r n ^ n
o o o

P * ( M ; Q ( δ ) > ε ) < η 9

3 n

where tϋ (δ) := sup { |φ(C
1
) - φ(C

2
>|: d (C

1 >
C

2
) < δ

9
 C

l 9
C

2
 E C}

for φ E S Ξ D (C,μ).
o

(55) REMARK. A comparison with (45) shows the complete analogy with the classi-

cal situation X = [θ
9
l], B = [0,1] Π flB

5
 μ = uniform distribution on B,

C = {[θ,t]: t E [0,1]}, where 3 can be identified with the uniform empirical

process α note that, due to the compactness of the unit interval,

C = {[0,t]: t E [0
9
l]} is totally bounded for d : given any ε>0 let

n := infίn: - ^ 2ε} and C. := {[θ
9
tl: U ύ t < ί };. : {[θ
9
tl: t

3 n
Q
 n

Q

n
o

then d -diam (C.) ύ 2ε and C = U C..

Before proving Theorem B we will show two auxiliary results:

PROPOSITION B (cf. Problem © above). Suppose that (a) and (b) of Theorem B
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are fulfilled; then G = (S (C))
Pί
_

Γ
 has a version in S = u (C,d ), i.e.,there

μ μ L/vzL o μ

exists a Gaussian process Φ = (G (C))
n
^

p
 having all its sample paths in S and

μ μ LtL o

L
such that Φ = <G .

μ f.d, μ

Thus, by Lemma 21, Φ can be viewed as a random element in (S,B, (S,p)) with

L{Φ }(S ) = 1, where, by (51), S is separable and p-closed.

Proof of Proposition B.. As already remarked in connection with problem (b)

_ C —
above, the process φ is viewed as the coordinate process on OR ,/B

Γi
L{& })

tμ v̂  μ

According to (a), for every n E Έ there exist m E U and C
 Λ

 ,,.,,C E C

n n,l n
9
m

such that C - U B^ (C . , - ) , where B^ (C. ,-) := {C E C: d (C. ,C) ̂  -}

._
1
 d n,i n d i,n'n μ i,n' n *

m
n

therefore, V := U U { c ,} is a countable and d -dense subset of C. Let

U(P,d ) := {φ: V •*• ]R, φ uniformly d -continuous}, and let

Φ β = (G (D))j,gQ9 viewed as the coordinate process on

(Ω,FJί) = (]R,βp,L{G ^ } ) . Then it suffices to show

@ There exists a Gaussian process (B ^ = (G (D)) ^p on some

p-space (Ω
1
 ,F

!
 ,£>' ) having all its sample paths in U(P,d )

L
and such that Φ -n =, ® -n

μ,P f.d. μ,P

In fact, once © is shown, we can define for each ω ' E Ω
τ
 G (ω

f
) as the

μ

uniquely determined uniformly d -continuous extension on C of Φ r}(
ω
') (i.e

t

for each C E C G (C,ω
!
 ) = lim G (D

n
,ω

!
), (

D

n
)

n e ] N

C V
 being such that

d (C,D ) -> 0 as n •> «>). It follows that

(*) € (ω1
 ) is bounded for each ω

τ
, whence Φ (ω

1
) E S for all ω',

and (**) β
μ f

=
d
 β

 μ
.

ad (*): By (a), for every ε>0 there exist an n = n (ε) 63N and C. C C,
o o 3

n
o

j=l,...,n , such that d -diam (C.) S 2ε and C = U C..

° U 3
 j = 1

 3
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Let ω
f
 6 Ω

1
 be arbitrary but fixed^ since € (ω!

) is uniformly continuous on

C, for each δ>0 there exists an ε = ε(δ,ω
!
) > 0 such that

|G
μ
(C

1 5
ω')-G (C

2 5
ω

!
)| < δ whenever d ( C ^ C ^ ^ 2ε for C^C^ E C.

Now, given an arbitrary C £ C, there exists a j G {l,...,n } and a C. EC.

such that d (C,C.) ̂  2ε, and therefore

G
μ
(C,ω

f
)| ^ |G

μ
(C

5
ω

!
) - G^(C.,ω

f
)| + |G ( C . ω

1
) ! £ δ + |G (C.,ω

f
)|, whence

sup |G (C,ω')| ^ δ + sup |G (C.,ω
f
)| < «.

CEC
 μ

 l^j^n
Q

 μ :

ad (**); Let us confine here to show that L{G (C)} = L{G (C)} for each fixed

C 6 C; concerning the higher-dimensional fidis the proof runs in a similar way.

Now, given any C E C , let (D ) C V be such that d (C,D ) •* 0 as n -> °°,

whence, by construction,

G (C,ω
!
) = lim G (D ,ω

!
) for all ω

1
 E Ω

!
,

i m p l y i n g G (D ) - ^ G ( C ) . Now, by © , L{G (D )} = L{G (D )} =J^ 7 & μ n μ > J \~s * μ n μn

W(O,μ(D ) ( 1 - μ(D ) ) ) (cf. (3) of Section 1) for each n E ]N, where
n n

μ(D ) -*• μ(C) as n •><», s ince lim d (C,D ) = 0;
n - μ n

therefore L{G (C)} = N(O,μ(C)(l - μ(C))) = L{G (C)},

So it remains to show ^^ :

According to Lemma 7.2.31 and Satz 7.1.18 in Gaenssler-Stute (1977) (+) is

equivalent with

(t+) P
p
({φ βΈ

0
: Q E ,

μ
 ,

where φ E U(V
9
ά ) iff lim W (δ) = 0 with

μ
 64-0

 φ

iλPiδ) := sup ίiφCDj^) - φ(D
2
)|: d ( D ^ D ^ < δ, D

l S
D

2
 E V}

being B^, B-measurable as a function in φ.

Note that for any φ E ]R and any δ>0

ι/
n
(δ) f ̂ ( δ ) as P t V

9

φ φ n
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whence for any ε>0 we have

(c) {φ El?: (/(δ) > ε} C U {
φ
 e^: t/

n
(δ) > ε} as V t P.

Φ
 nEΦJ

 Ψ

We are going to show next that ^ Ώ is implied by

(R ): For any ε,η > 0 there exists a δ = δ(ε,η), 0 < δ < 1, such that

Pp({φ EΈ°: MJ (δ) > ε}) < η.

In fact, (R ) implies that for each fixed ε>0

Σ U?p({φ E E : ttf (δ ) >ε}) <°°
nEU

 Φ n

for some suitable sequence δ I 0, whence, by the Borel~Cantelli lemma, for

Pβ-almost
 a
H Ψ E ]R there exists an n(φ) E IN such that for all n ^ n(φ)

MJ (δ ) ̂  ε which implies, by repeating the argument for a sequence of ε's

- V
tending to zero, that for Pp-almost all φ E E

lim (λ) (δ) = 0, i.e. φ E U(V,d ),
δΨO

 φ μ

which proves (jĤ  .

So far we only made use of assumption (a); now, the proof of Proposition B

will be concluded by showing that the other assumption (b) implies (R ):

for this, remembering that V is countable, let V C V
9
 n GUN, with \V \ < °°

V f P; then, according to (c) it suffices to show:

(d) For any ε,η > 0 there exists a δ = δ ( ε , η )
9
O < δ < l ,

such that for any V
y
 C V with |P

f
| < »

P ^ C ί φ E E : M J ( δ ) > ε } ) < n *

w h e r e , f o r Vy - { D 1 5 . . . , D O } , M; ' ( δ ) > ε i f f ( φ ( D . . ) , . . . , φ ( D β ) ) E G

J. X/ ψ J. Λι

with G = G _ being some open subset of E .
ε ,o

Now, given an arbitrary ε>0 and an arbitrary η>0 choose δ = δ(ε,n)
9
 0 < δ < 1

according to (b) such that for all n ^ n (ε,n
9
δ)

(e) P (UJ
O
 (δ) > ε) < η.

3
n
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Then it follows that for each V
r
 = ίD

i 9
, .,D

β
} C V (C C)

— -1 -1

= P|Λ «π (G) = L{ϋ } *π (G)

^ lim inf L{β } π
r
 , (G) = lim inf P * (π

r
_ _ , ββ )~ (G)

n-*» n {D
19
...,D

£
} ^ {D

19
..,,D

£
} n

P
1
 *

= lim inf P(MJ
O
 (6) > ε) ύ lim inf P (M; (δ) > ε) ύ η,

n-x» n n-*»
 H

n (e)

where for the first inequality above we made use of (28) and the fact that

according to (52) and (**) 3 ,. •, > Φ .

n r.α. y

This proves Proposition B ^ D

(56) REMARK. The proof just given of Proposition B shows that in order to get

a result like (53), it suffices to show that an entropy condition like (E )

implies (R ). This was nicely demonstrated by D. Pollard (1982) in one of his

Seminar talks at Seattle using an analogue of the chaining argument of R.M.

Dudley ((1978), pp. 915, 924); cf. also D. Pollard (1981), pp. 191-192.

PROPOSITION B . Suppose that (a) and (b) of Theorem B are fulfilled and also

(M); then (L{β }) „_ is δ-tight w.r.t. S = U
b
(C,d ),

n nE-DM o μ

(Note again that L{$ } 6 M ^ S ) , S Ξ D (C,μ)J
n a o

For the proof of Proposition B we will make use of the

Kirszbraun-McShane-Theorem (cf. M.D. Kirszbraun (1934) and McShane (1934)):

let S = (S,d) be a metric space, A C S , and let φ be a real-valued function

defined on A such that

sup { |φ(x) - φ(y) | /d(x,y): x,y G A, x + y} =: K < °°;

then φ can be extended to a function ψ on all of S with

sup ί|ψ(x) - ψ(y)|/d(x,y): x,y 6 S, x Φ y} = K.

Proof of Proposition B
o
 (cf. R.M. Dudley (1978), Lemma (1,3)).
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For any ε,δ > 0 let

B. := {φ E D (C,μ): 3C. ,C
Q
 E C s.t. d (C

19
C_) < δ and |φ(C.) - φ(C

o
)| > ε}.

θ j . ε o ± z μ j - z i z

Note that φ E B. iff itf (ό) > ε,

o
5
ε φ

We have to show:

for any 0 < ε < 1 there exists a compact set K C Lr(C,d ) such that for each

γ>0 L{3 }(K
Ύ
) > 1 - ε for n large enough.

(Note that K
Ύ
 E B (S,p) C A by (M).)

Let 0 < ε < 1 be given; by (b) take δ = δ(ε)
9
 0 < δ < 1, such that

Θ P*(β E B
Γ / o

) <
 ε
Λ for all n ̂  n (ε,δ(ε)),

n δ,ε/2 o

According to (a) there exists a finite C = C (&) C C such that for all C e C .

o o
d (C,C ) < δ for some C E C .
μ ' o o o

Let k := |C |; then k = k(δ(ε)) E H .

Take M = M(ε) large enough so that (M - 1)~ < ε/k; then

Γb) 3P(sup |3 (C)| > M) < ε/2 for all n ̂  n (ε) Ξ n (ε,δ(ε)).
^ CEC

 n
 o o

ad (b): Note that {ω: sup |β (C,ω)| > M} E F according to (M);
CEC

 n

now, for each C E C , ]P( j β (C ) | > M - 1) < ε/M k by Chebyshev's inequality

(and the choice of M), whence

© P(sup |β (C )| > M - 1) < ε/4,
CEC

 n
 °

o

Next, sup |β (C,ω)| > M and |β (C.,ω) - β (C
o
,ω)| ^ ε/2

CθC
 n

 n i n z

for all C ,C E C with d (C ,C ) < δ together imply (due to the choice of C )

that there exists a C £ C such that
o o

|β (C ,ω)| > M - ε/2 > M - 1, whence

{sup |β (C)| > M} C {3 6B. ,J U {sup |β (C )| > M - 1}

CEC
 n n δ

'
ε / 2

 C EC
 Π

 °

o o

which implies \bj according to (a} and (bj ,
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Now, for any j E E , let ε(j) := ε 2
 3
; then by (b) there exists a sequence

ό(j) = ό(j,ε) > 0 , ] 6 1 , such that

(i) δ(j + 1) < δ(j)/2
9
 and

(ii) P*(3
n
 E B

6 ( j ) ε ( j )
) < ε(j) for all n ^ n

Q
(ε,j).

Let A. : = B., .
λ
 , .

 Λ
 and 6 . : = —~z— - ^ *

3 δ(]),ε(]) ] 2 ^ 1

then, by (i), we have

(iii) ό. < δ./M- and . is increasing with j,
3+1 j Q

Furthermore, for m ^ 2, let

F := {φ E D (C,μ): sup |φ(C)| ^ M and s.t. for all C
1
,C E C

m
 ° CEC

 X l

d (C ,C )

IφίC^) - φ(C
2
)| si ε(j).max (1, -=—^ ) for j=2,..,,m};

j
then

(c) sup |φ(C)| ^ M for some φ E D (C,μ) and φ 6 JA. for j=2,,.,,m

CEC °
 3

together imply that φ E F ,

ad (c) : sup jφ(C)| ύ M implies that for all C ,C E C
CEC

|φ(C ) - φ(C
o
)| ύ 2M = — ~ — — £ ε(j) — — ^ , if

X 2. 0 . 0 .

d (C
l9
C

2
) ^ δ(j) for all C

l 9
C

2
 E C; on the other hand,

d (C
l9
C

2
) < ό(j) for some C^C^ E C together with φ E CA.

imply IΦCC^) - φ(C
2
)| ^ ε(j), which proves (c) .

We will show next that (ii) together with Q y and ^c) imply

Id) For each m ^ 2 there exists an n
1
 =n

1
(ε

9
m) 6 3N such that for all

n ^ n
1
 there exists an E £¥ with P(E ) > 1-ε and β ( ,ω) E F

1 nm nm n π

for all ω E E

nm

ad (d): According to (ii), let n (ε,m) be large enough such that for all

n ^ n (ε,m) and each j=2,...
5
m there exist E', E F with

° n3
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{3 6 A . } C E 1 . a n d 3P(E f . ) < ε ( j ) = ε 2 ^ ,
n 3 n j • nj

m m m
w h e n c e P ( f u E ' . ) > l - ε / 2 a n d C u E ' . C Π {β e f A . } ;

j = 2 n : l j = 2 n ^ j = 2 n 3

m

thus, for E := ( £ U E
τ
 .) Π {sup |3 (C) | ̂  M} G F,

nm
 j = 2

 n
3 C E C

 n

we obtain together with ζ y and ^ ) that for n ̂  n := max(n (ε,m),n (ε))

]P(E ) > 1-ε and 3 ( ,ω) 6 F for all ω 6 E .
nm n m nm

This proves (d}

Now let

K := {φ E A C ) : sup |φ(C)| ύ M and s.t. for all j G I

ceC

d μ ( C l 9 C 2 ) < δ ' / 2 i m P l i e s

Then K C LΓ(C,d ). Now, (C,d ) is totally bounded and K is a uniformly bounded

and equicontinuous family of functions being p-closed in the Banach space

00

(£ (C),p) whence, by the Arzela-Ascoli theorem (applied to the completion of

(C,d )) it follows that K is compact.

So, it remains to show that for each γ>0

For this it suffices to prove

H 3 }(K
Ύ
) > 1-ε for n large enough,

(e) For each γ>0 there exists an m = m(ε,γ) such that F C K
Ύ
,

In fact, (e) together with (d) imply L{3 }(K
Ύ
) k P*(β β F ) £ F(E ) > 1-ε

v-
^ "̂̂  n n m nm

for n ̂  n.. (ε,m(ε,γ)), which concludes the proof of Proposition B~

ad (e) : Given γ>0, choose m = m(ε,γ) such that ε(m) < γ/2 and take a maximal

set C C C such that
m

d (C
1 5
C_) ^ δ for all C. Φ C_ in C .

μ 1 2 m 1 2 m

Then C is finite by (a) and for all C E C, d (C,C) < δ for some C E C

(by the maximality of C ),
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d (C ,C )

Now, if φ G F and C. ,C_ G C , then (since - ^ — = — — ^ 1 for C, * C
o
)

m l 2 m 6 1 2
m

we obtain (cf. the definition of F )

m

d ( C ,C )

1
) - φ(C

2
)| ^ e(m) g

m

Applying the Kirszbraun-McShane Theorem, rest^ φ can be extended to a function

m

ψ on C with

d ( C
5
C )

(iv) |Ψ(C
1
) - ψ(C

2
)| ^ ε(m)

 s
 for all C^C,, G C.

m

In addition, w.l.o.g, we may assume that sup |ψ(C)| ^ M,

CGC

Let us show that ψ G K, i.e.,

for all j GIN d C ^ , ^ ) < δ./2 implies IψC^) - ψ(C
2
> | ύ 3ε(j).

For j ^ m, since ^ ^ —-z— by (iii), we obtain from (iv)

j
 m

^ ) - ψ(C
2
)| ύ ε(j) if d

μ
(C

l 5
C

2
) ύ δ

for j < m, given C. G C, i=l,2, with d (C, ,C
O
) < δ./2, choose C! G C

l μ ± z 3 l m

such that d (C.
3
C!) < 6 , i=l,2;

then d (C' Ci) < 2δ + 6./2 ^ δ., and so by (iv)
μ λ 2 m

 ^
 ( i i i )

 D

(note that rest^ ψ = rest^ φ, φ G F )
L L m

)
m

m

- ψ(C
2
)|

- ψ(C
2
)| ύ ε(m) + ε(j) + ε(m)

Thus ψ E K ,

Now, we have p(φ,ψ) < γ since for any C G C there exists a C G C such that

m

d (C,C
f
) < δ , whence (since φ G F and by (iv))

y m m

|φ(C) - ψ(C)| ̂  |φ(C) - φ(C
f
)| + |ψ(C

τ
) - ψ(C)|

^ 2ε(m) < γ.

So F C K which concludes the proof of (e) . D

m ^^
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We are now in a position to give the

Proof of Theorem B. First assume (a) and (b). Then, by Proposition B , we can

view (B Ξ (G (C))
n
^n as a random element in (S,EL(S,p)) with L{<& }(S ) = 1,

μ μ CEL D μ o

S Ξ LΓ(C,d ) being p-closed and separable; furthermore, as mentioned at the

end of the proof of Proposition B., we have

(T) £ -J^f <G ,
s
-*' n f .α. μ

Now, by Proposition B , (L{3 })
 e
_, is δ-tight w.r.t. S , whence it follows

from Theorem 11 that

for every subsequence (L{β ,}) of (L{3 }) there exists a

further subsequence (L{β „}) of (L{β ,}) and a

v = v, ,
λ t
 ... € M, (S) with v(S ) = 1 such that

(n'),(n") b o

Since each projection π : S -»• ]R is A,B -measurable and p^continuous

C
i a
...,L

k
 k

and since (M) is assumed, we obtain from (^ by Theorem 3 that

for each C
1
,.. , ,C, € C.

Together with ^ ^ this implies that v and L{<G } must have the same fidis;

thus v = L{(β } on B (S,ρ) (cf. Lemma 21) and therefore

n b μ
 9
 ' * n μ*

Conversely if C is a μ-Donsker class, then (a) holds (cf. Proposition 3.4 in

R.M. Dudley (1967)). So it remains to prove (b) (where it suffices to prove

the assertion there by taking n = ε).

Now, by Theorem 12 there exists a sequence (3 , n E l , of random elements in

(S,A) and a random element (B in (S,B(S,p)), all defined on an appropriate

p-space (Ω,F»P), such that
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© Lίί } = L{$ } (on A) for all n E3N, L{£ } = L{€ } (on B, (S,p))
•̂̂  n n μ μ D

and

© p(β (ώ), Φ (ω)) = sup |β (C,ώ) - G (C,ώ)| -> 0 as n + °°
n μ CEC

 n μ

for all ώ E Ω G F with P(Ω ) = 1.
o o

Since L{Φ }(S ) = L{φ }(S ) = 1, we may assume w.l.o.g. that Φ (ώ) E S for

all ω E Ω, whence for any ε>0 there exists a ό = < S ( ε ) > 0 such that

© 3P(M;- (6) > ε/2) < ε/2.

μ

(Note that {ώ E Ω: uft /-N(<S) > ε/2} E F if, as just assumed,
(B(ω) 5j 5

μ

Φ (ω) E S for all ώ E Ω.)
μ o

Now, since S is separable, take a sequence {φ : m E Έ] dense in S Π QB^ .

(with B
fi ε / 2

 := {φ E S: 3 ^ , ^ E C s.t. d ( C ^ C ^ < δ and |φ(C
1
)-φ(C ) | >ε/2}).

Let

T := U B (φ ,ε/4) (B (φ ,ε/4) denoting the open p-ballΛ
 p m p m

with center φ and radius ε/4):
m

then T
Q
 E ^(S.p) whence, by (M)

t
 {&

n
 $ T

Q
} E F as well as

ίi $ T } E F for each n.
no

Furthermore we have

T n B. = 0 :
o o,ε

in fact, φ E T implies that p(φ ,φ) < ε/M for some m E IN, and since

φ
m
 E ffB

fi ε / 2
, we have for any C^Cj E C

either d (C
l 9
C

2
) ^ δ or I Φ ^ C ^ ) - Φ

m
(

c

2

)
l =

 ε / 2
'

implying in the latter case that |φ(C
1
) - φ(C

2
>| ^ |Φ(C

1
) - Φ ^ ^ ) |

+
 '

C p
m

( C
l

)
 "

 φ
m

( C
2

)
l

 +
 '

φ
m

( C
2

)
 "

 (
P

( C

2

)
I

 < ε
'
 w h e n c e

 Φ
 E

C
B
δ , ε '

We thus obtain for each n E ]N
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1P*(M>O ( δ ) > ε ) = Έ (ft e B. ) £ P (ft φ T ) = P ( β φ T ) = P(ft φ T ) ,
ft n δ , ε n r o n r o n τ o

and so it remains to show

(j) P(B φ T ) < ε for n sufficiently large.

This will follow now easily from ( y together with (θj:

At first Q) implies that there exists an n =n (ε) GIN such that
- o o

0 P*(p(β
n
,C ) > ε/8) < ε/2 for all n ^ n .

Next, if £ (ώ) φ T then p(φ ,§ (ω)) ̂  ε/4 for all itι6E
}
 whence

either p(ft (ω), Φ (ώ)) > ε/8

or ρ(φ , G (ω)) k ε/8 for all m G IN
m μ

(note that p(ft (ω), Φ (ω)) ^ ε/8 implies ρ(φ , 5 (ώ))
n μ m μ

^ ρ(φ
 5
3 (ω)) - p(ft (ω), S (ω))^ε/M - ε/8 = ε/8 for all m G U ) .

m n n μ

But since P(Φ
m
, ϊ (ώ)) ̂  ε/8 for all m 6 E implies Uft (£)(

δ
> >

 ε
/

2

μ

(note that MĴ  /-\(^) ̂
 ε
/

2
 would imply φ (ω) G H := S Π CB . , whence

p(φ , Φ (ω)) < ε/8 for some m G U since {φ : m G 3N} is dense in H ) ,
m μ m

it follows from (^ together with (s) that Q holds true.

This concludes the proof of Theorem B. D

After having taken great care in proving the fundamental characterization

theorem for μ-Donsker classes , we can confine ourselves now to giving

Dudley
!
s

Proof of Theorem A.

In view of (E ) and (54) we have N(ε,C,μ) < «> for each e>0, i.e. C is totally

bounded for d
 9
 and therefore by Theorem B it suffices to prove

By the way, if instead of Theorem 12 the Portmanteau theorem (cf. (b) there)

is used, the last part of the proof becomes much simpler.



EMPIRICAL PROCESSES 125

(+): (E. ) implies that for any 0 < ε < 1 there exists a 6 = δ (ε),
l o o

0 < δ < 1, and there exists an n = n (ε,δ ) such that for each n > n

Ω n n n r

F*(M>
β
 (δ ) > ε) < ε.
P O

n

Let 0 < ε < 1 be arbitrary but fixed and N (x) = N (x,C,μ).

Suppose that δ , k=0,l,2,.,. is a sequence of nonnegative real numbers tending

to zero (δ will be specified below).

According to the definition of N (δ ,C,μ) take sets

^I' Λmίk)
 6 B
'
 m ( k ) :=

 W «

such that for each C 6 C and k=O,l,2
9
... there exist

i(k) = i(k,C) and j(k) = j(k,C), i(k),j(k) G {1,...,m(k)}
9

TVΓT Ί~Ή Δ ™̂" f £"" Δ 3*πH H I A ^ Δ i ^ /R

ki(k) κ](k) k](k) ki(k) k

Since {(λ)
o
 (δ ) > ε} = ίsup[|p (C) - p (D)|: C,D E C

9
 μ(CΛD) < δ ] > ε}

p o n n o
n

C {sup |p (C) - 3 (A .,
 n

, ) \ > ε/2}

cec
 n n

 °^
(o
'

c)

U {sup [J3 (A ) - p" (A )|, μ(A Δ A ) < 3δ , r,s E ίl
9
, , , ,m(O)>l > ε/2}

= E
1
(ε,δ

Q 9
n) U E

2
(ε,δ

Q 9
n), say,

it suffices to show that P (E.(ε,δ
 9
n))<ε/2, i=l,2, for an appropriate

δ = δ (ε) and n sufficiently large.

STEP Q : Let us consider first E
2
 replacing (in view of STEP (g) below)

ε by ε/2, i.e. we will show that

P
2
 := P*(E

2
(ε/2,δ

Q
,n)) = P(E

2
(ε/2,δ

Q
,n)) < ε/4 for a proper choice of

δ = δ (ε) and n sufficiently large.
o o

Applying Lemma 4 (i) of Section 1 we get

2 2

P
o
 ύ 2 [m(O)]

2
exp (

 Z
 (^ ,

 / o
 „ ) ̂  2 [m(0)] exp

6δ
o
 + - n - o

2 2
for n > n := ε /(256 δ );

o o

now, as to m(0), it follows from ( E ^ together with N^-Cx) + as x Ψ 0 that
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xlog N (x) •> 0 as x •> 0, whence there is a γ = γ(ε) > 0 such that

£l) N (x) ύ exp(ε
2
/(8OO x)) for all 0 < x ^ γ.

2 2 2

Thus, for δ
o
 έ γ and n > n

Q
, ?

2
 έ 2 exp ( J^- -

 I
§

5 ?
- ) = 2 exp ( - 3 ^ — ).

o o o

But since

2

@ exp (- ) < ε/8 for α small enough,

we obtain for δ ^ min(γ,α) that P
2
 < ε/4 for all n > n .

STEP (^: To cope with the other event E- a certain chaining argument will be

used: for this we note first that the entropy condition (E^ is equivalent to

ί y"
1/2
(log N (y))

1 / 2
 dy < - and to Z ^ l o g N ( 2 ^ ) )

1 / 2
 < «;

0
 X

 HEM

therefore, there exists a u = u(ε) so that

0 Σ (2~
1
log N (2"

X
))

1 / 2
 < ε/96 and

Σ exp(-2
£ + U
 ε

2
/(9000(il+l)

4
)) < ε/32.

•~r
Now, let 6 = ά ( ε ) : = 2 with r ^ u and r large enough so that also

δ ^ min(γ,α) (cf. STEP O ) .

For k=l,2,... let δ, : = δ - 2~
k
 =

 2
^

( r + k )
 and b, := (2~

k
log m(k))

1 / 2
,

K O K

i.e. b
v
δ

 1 / 2
 = (2-

( r + k )
log N

τ
t 2 -

( r + k )
) )

1 / 2
 so that by © we have

Σ b. δ ' < ε/96.

k
°

Next, let
 B ] <

 = B^C) ;= ̂ . ^
 N

 A ^ ^ . ^ ^ and

D
k

 = D
k

( C ) : =
 ^ljCk-elC) N ^ j d c C )

5 t h e n
 " ^ ί

 < δ
k

and μlD
k
) < δ

k + 1
 < δ

R
 (cf. STEP (ΐ)).

we choose n := ε /(256 δ ). (Note that δ ^ α < ε /1600,
o o o xjv

2
so that n > 10.000/ε -> ~ as ε •* 0.)

o

Then, for each n > n there is a unique k = k(n) such that
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Θ
1 /9

1/2 < 86. n ' /ε £ 1.
K

Now, f o r e a c h n > n and e a c h C 6 C we o h t a i n ( w i t h k = k ( n ) , i ( k ) = i ( k , C )

and j ( k ) = j ( k , O )

s-*κ 1 /9

© β n ( A ki(k) ) " ε / δ * & n ( A ki(k) ) * δk n * β n ( C )

Also

β (B )| + |β (D )|1.
n l n

 ^

Let S
n
 be the collection of sets B = A

n
.N.A

n Λ
 or A

Λ Λ
 vA

n
. with

j E {1,. . . ,m(A)} and m 6 {1,. , ,
 5
m(λ+l)}, respectively, and so that μ(B) < <S

J

Then, for each C e C, B
β
(C) and D

β
(C) G S

o
.

The number of sets in S. is bounded by

(§) |S |̂  2m(£Jm(A+l).

For later use, note that (by the definition of b
0
)

Jo

m(£) = £ ^

Let d& := max( U + l ) " " 2 ε / 3 2 , 6 b £ + 1 6 Q

l i ^ " ) then by (3^)

(g) Σ d < e/8.

1/2 1/2

For each I ύ k = k ( n ) , n > n , we have n δ Z n ' <S > ε/16;
O )L K s£S

thus by (9)

Now, by Lemma 4 (ii) of Section 1 we obtain for each B 6 S

4
P :=P(|β (B)| > d ) ί 2exp( ryx ).

-1/2
Thus, since μ(B) < 6^ and d^n ^ 2δ^, we have
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Let
o {.+9 9

mU)mU+l) ^ 4[mU+l)] = 4 exp(2 b £ + 1 ) .

Then, using (^ and (lg> we obtain

P
£
 := Γ( |β (B)| > d for some B 6 S )

2d

7
 } = M

i
 exp(
" T2Γ

Now, by definition of d
0
, d

2
/(8 δ ) and
JO O

d
2
/8 ε

2
/(8 (32)

2
(ί,+l)

i+
) and so

4 exp(-2
A + Γ
 ε

2
/(9000(ic+l)

i+
)).

Thus, by k = k ( n ) (n > n ) we have
o

Σ P < 4 ε/32 = ε/8.

Next, again for k = k ( n )
9
n > n , let

and Q := P(V > ε/8).
n n

Then by Lemma 4 (i) of Section 1 and (jΓ) (according to which

4 -1/2 ε

3
n
 ϊ -

3 δ
k

}

U(k)]
2
 . 2 exp(

^ ,

= exp(2 2 kb 2) 2 exp(- J L 2 _

• 2 exp(-

8"

k 9 r 2 9 Γ

= 2 e x p [ 2 K ( 2 b 1 " - - | — - ) ] .

Now, for s := k+r,

2b
2
 = 2

1 k
log m(k) = 2

1
"

k
log \i\) = 2

1
"

k
log
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Thus Q
n
 S 2 exp -ξ!

Now, if V £ ε/8 then by (?) |β (C) - β (A..,, * ) I ^ε/4 for all C E C,

and therefore

1 1 o

utc " - * -

= (E
1
 Π{V > ε/8}) U (E

1
 Π{V ^ ε/8.}) C {V > ε/8} U W

In In n n

with W := {sup |β (\
i(k c )

) " β (A .
(
 J| > ε/H}.

Now W C W
!
 := {sup[ Σ | β (B,(C)) | I > ε/8} U {sup[ Σ j β (D

β
(C)) \ I > ε/8} ,

©
 n

 CGC 0^£<k
 n

 ^ CEC 0

where according to (?) (note that B (C), D (C) 6 5 )
^ ^ ^ At ΛJ JO

P(W') ̂  Σ P + Σ P < ε/4;
n Λ n

 (l^

thus, together with P(V > ε / 8 ) = Q < ε/4 it follows that

P (E.Cεjδ ,n)) < ε/2 for n > n ,
1 o o

This proves (+) and concludes the proof of Theorem A, D

(57) REMARK. The above proof shows that the two conditions (a) and (b) of

Theorem B are implied by (E^ without imposing (M). I,S. Borisov (1981) has

shown that (E.) cannot be weakened, being necessary in case C is the collection

of all subsets of a countable set X, where (E-) is equivalent to

1 /9
Σ (μ({x})) < «; cf. also M. Durst and R.M. Dudley (1980).

x6X

(58) EXAMPLE. As an illustration of the applicability of Theorem A we will

show that in (X,B) = QR
k

5
/B ), kill, the class C = J

R
 of all lower left

orthants is a μ-Donsker class for any p-measure μ on β, (proved by M,D. Donsker

(1952) for k = 1 and by R.M. Dudley (1966) for k k 1).
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As remarked in (48) (a), condition (M) holds true for J, so, by Theorem A
9

we must show that (E.) is fulfilled:

a) For k = 1, consider for any 0 < ε ^ 1 the partition

-« =: t < t <....< t
 Λ

 < t := ~ of ]R
9
 where

o 1 m-1 m

t.
 1
 := sup {t 6 Έ: μ((t.,tl) ύ ε/2}.

Since μ((t.,t 1) ̂  ε/2 and μQR) = 1
9
 we have m - 1 £ 2/ε.

Then, taking as A.
!
s in the definition of N (ε,J

 9
μ) all sets of the form

we obtain

min {n 6 ϋ: 3A
l5
...,A £ β s.t. for all C 6 l there exist i,j with

A. C C C A. and μ(A.\ A.) < ε}

^ 2(m-l) + 2 = 2m ύ 4/ε + 2 ύ 6/ε.

2 2

This implies that log N (ε ,J..,μ) ̂  log 6/ε showing that (E ) is fulfilled

for k = 1.

b) For k > 1 the result is an immediate consequence of a) and the inequality

(59) of the following lemma (formulated in greater generality as needed in

the present case),

LEMMA, Let (X,B) be a measurable space and let μ be a probability measure

k
 k

on the product σ-algebra © B in X , k ^ 1, with marginal laws π.μ on B,

i=l,...,k. Let C. C B, i=l,...,k, be given classes of sets and

k
C := { x C : C. 6 C , i=l,,..

9
k}.

i=k
 1 x x

Then
k

(59) N
I
(ε

9
C

9
μ) ύ Π N ^ ε / k ^ ^ μ ) .

Proof. We may and do assume that n. := N (ε/k
9
C.

 9
τr.μ) < °° for each i=l

9
,

t l 9
k.

Then there exist A. ,...
9
A. 6 B such that for any C. 6 C. there exist

i

r.,s. 6 {1,...,n.} with
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A
ir

 C C
i

 C A
is

 a n d π
i

μ ( A
is

 V A
i r

 } < ε / k
>

i i i i

i=l,...,k. This implies that

x
 A. C x c. C x A. and μ( x A. \ x A. )

• _-. ir. ._
1
 l . is. . is. .

 Λ
 lr.

l-l l 1=1 i=l l i=l i i=l i

Σ μ(B.) (with B. := Xx ... xX x (A. X A. ) x Xx ... xX)

=l
 X x 1 S

i
 x r

i

= Σ π.μ(A. \ A. ) < ε.
. _- l is. IΓ.
i=l l l

Since there are at most n n ... ΓL approximating sets of the form

x A. βΘ B, (59) follows. D

i=l i 1

SOME REMARKS ON OTHER MEASURABILITY ASSUMPTIONS AND FURTHER RESULTS:

Instead of (M) Dudley (1978) used the following measurability assumption

(M ) (again w.r.t. the canonical model (Ω
5
F,JP) = (X ,β , x μ)):

H

(M ): 3 : Ω ^ S Ξ D (C
9
μ) is ?.B, (S,ρ)-measurable,

o n o o

where F denotes the measure-theoretic completion of

F w.r.t, P = x μ .

H

Imposing (M), it follows that β is F,B^(S,p)-measurable, whence

(M) implies (M ).

On the other hand, replacing A = σ({π: C (Ξ C}) by

A := σ({π_: C 6 C; p(
 9
φ ) : φ E S})

o c

and imposing (M ) instead of (M), it follows that

β is F,A -measurable,

where B (S,ρ) C A C B(S,ρ) (cf. (47)), which means that also under (M )

one meets the basic model of Section 3.

Thus, Theorem A and Theorem B hold as well (with the same proof) if (M) is
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replaced by (M ),

Besides (M ) Dudley (1978) Introduced a second measurability assumption
o

(M ) (called a μE Suslin property for C ) ,

stronger that (M ), which turned out to be verifiable in cases of interest

where (M) or (SE) fails to hold (cf. (48) (b))
t

As shown in Gaenssler (1983), based on Theorem A (with (M) replaced by (M ))

one obtains a functional central limit theorem for empirical C-processes

indexed by classes C allowing a finite-dimensional parametrization in the sense

of the following theorem:

THEOREM C. Let X be a locally compact, separable metric space, B = B(X) be

the σ-algebra of Borel sets in X, and let K be a compact subset of ΊR , I ^ 1.

Suppose that

f: X x K +H

is a function satisfying the following conditions (i) - (iii) ((iii) with

respect to a given probability measure μ on B):

(i) f := f( jz): X ^ E is continuous for each z 6 K
z

(ii) f.(x): K -> B is "uniformly Lipschitz", i,e,,

M :- sup sup{jf (x) - f
 t
(x)j / |z - z

!
|, z + z

1
, z,z' E K} < »

xEX
 z Z

(where |z - z'| denotes the Euclidean distance between z and z
1
)

(iii) μ({f E [-ε,ε)}) = Cf(ε) uniformly in z E K.
z

Let C C B be defined by C := {{f k 0}: z E K}.

z

Then C is a μ-Donsker class; furthermore, (M ) (and therefore also (M )) is

satisfied for C and μ.

(60) EXAMPLES, (a): Let (X,B,μ) = ([θ,l]
k
, [θ,l]

k n
^ ,

5
λ

l
 ), k ^ 1, λ, being

K k K

the k-dimensional Lebesgue measure on [θ,l] Π (β , and let C C β be the class

of all closed Euclidean balls in [θ,l] . Then C is a λ-Donsker class and (M^

is satisfied for C and λ, .
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In fact, take

K := ίz = (y,r): y E [θ,l]
k
, 0 ̂  r ̂  r

y
 := sup {r: B

C
(y,r) C [θ,l]

k
}},

c k

where B (y,r) := ίx 6 E : e(x,y) ύ r} (e denoting the Euclidean distance in

[0
9
l]

k
)

5
 and define f: [θ,l]

k
 x K + ]R by

f(x,z) := e(x,£B°(y,r)) - e(x,B
C
(y,r)), z = (y,r) E K

(= r - e(x,y))

where B (y,r) := ίx E E. : e(x,y) < r}.

Then {{f ^ 0}: z E K} is the class of all closed Euclidean balls in
z

X = [θ,l] and it is easy to verify (i) - (iii) of Theorem C giving the result,

(b) (cf. (48)(b)): consider the same p-space (X,B,μ) as in (a) and let

C := {(C + z) n [0
9
ll

k
: z E [θ,l]

k
},

C being a fixed closed and convex subset of X = [θ,l] , k k 1, (cf. R. Pyke

(1979)). As in (a) let f(x,z) := e(x,CC°) - e(x
9
C ), x

9
z E [θ

9
l]

k
, with

z z
C := C + z and C denoting the interior of C .
z z

 &
 z

Then C is a λ -Donsker class and (M.,) is satisfied for C and λ, . This follows

again from Theorem C; for this we have to verify the conditions (i) - (iii)

there and also that

C = {{f ^ 0}: z E [0
9
ll

k
}

9
 i.e., that

( + ) C = if ^0} for each z' E [θ
9
l]

k
.

ad (+): x E C implies that e(x,C ) = 0 whence f (x) = e(x
9
tC°) ̂  0; on the

other hand, if x E ()C then e(x
9
C ) > 0

9
 since C is closed, and e(x

9
CC ) = 0

z z z z

whence f (x) = -e(x
9
C ) < 0, this shows (+).

z z

ad (i) follows immediately from the fact that for any 0 * A C X

|e(x ,A) - e(x ,A)| ̂  e(x ,x ) for each x ^ ^ £ X

ad (ii): let f'(x) := e(x,CC°) and f"(x) := e(x,C ), i.e..,
—^—^^—— 2 Z z Z

f.(x) = f
τ
.(x) - fV(x) for all x E [θ,l] , Then it suffices to show that both
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f;(x) and f"(x) are uniformly Lipschiΐz:

as to fj(x) this follows from

0 V x e [0
5
l]

k
: |e(x,CC°) - e(x

9
CC°,)| ^ e(z,z') Vz

9
z' E Lθ

9
l]

k
.

^^ z z

ad Q ) : we use the following fact which is easy to prove:

(+) For any closed F C [θ
5
l] and any x 6 F° there exists

a w E 9F such that e(x,w) = e(x
9
CF°).

Now, given any x E Lθ,l] let w.l.o.g, z and z
1
 be such that x 6 C° Π c°

τ
;

z z

applying then (+) for F = C and F = C ,, respectively, we obtain

z z

e(x,(JC
O
) = e(x,w ) and e(x,(JC°

t
) = e(x,w

 t
) for some w E 3C and

Z X
5
Z Z X

9
Z XjZ Z

w , 6 3C
 l 5
 respectively.

Furthermore3 since C and C . are closed,3
 z z

1

w = c + z and w . = c , -t z
1

x,z χ
5
z x

9
z' x

9
z'

for some c E C and c , E C
9
 respectively, and

X
 9
 Z X

 9
 Z

(++) e(x
9
c + z) ύ e(x,c

 f
 + z) and e(x

9
c , + z

1
 )

X
9
Z X j Z XjZ

c + z
f
)

9
 respectively.

X, Z

Thus

C^) - e(x,CC° ) = e(x
9
c + z) - e(x

9
c + z

f
)

^ e(x
9
c . + z) - e(x

9
c , + z') ^ e(c . + z

9
c . + z

1
) = e(z.z').

x z
τ 9

 x
9
z' x

9
z

τ
 x

9
z'

This proves ^ ^ .

That also f" is uniformly Lipschitz follows from

(2) Vx E [0
9
l]

k
: |e(x,C ) - e(x

9
C , ) | ^ e(z,z

!
) Vz

9
z

τ
 E [θ

9
l]

k
.

1
 Z Z

ad (2) : Given any x E [θ,ll and any ε>0 there exists a c = c(x
9
ε) E C such

that for all z
9
z

!
 E [θ

9
ll

 9
 e(x

9
c + z) ύ e(x,C ) + ε and thus

e(x,C ,) ̂  e(x
9
c + z

!
) ύ e(x

9
c + z) + e(c + z,c + z

f
)

z

= e ( x 9 c + z ) + e ( z , z ' ) ύ e ( x , C z ) + ε + e ( z , z ' ) f o r any ε > 0 9

whence e ( x 9 C f ) - e ( x , C ) ^ e ( z 9 z ! ) y i e l d i n g Cty by symmetry.
z z "̂*̂
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Before proving (iii), let us remark that so far we have only used that C is a

closed subset of [θ,ll for proving (iii), in addition, some smoothness of the

boundary of C is needed. So we will now use that C is convex,

ad (iii): We must show that

λ ({f G [-ε,ε)}) = βf(ε) uniformly in z G K,
K z

For this it suffices to prove

0 {f G L-ε,ε)} C c ε \ C for a l l z G L θ , l l k , and
z z ε z

CO sup . λ. (C \ C ) ^ c. ε for ε Ψ 0 with some
£-r̂  -, i k k z ε z k

constant c depending only on k.

(Here Aε := {x: e(x,A) ^ ε} and A := {x: e(x,CA) > ε}.)

x G X, whence

(a) f (x) = -e(x,C ) iff x G CC°,
z z z

(b) f (x) = e(x,CC°) iff x G C , and
z z z

(c) f (x) = 0 iff x G ac .
z z

Thus (note tha t X = [(βC°) \3C 1 + (C \ 3C ) + 3C )
z z z z z

-ε £ f (x) < ε
z

-ε < e(x,C ) ύ ε
z

x G ( C C ° ) \ 3 C f ( a ) I x G ( C C ° ) \ a C
z z I I v z z

x G C \ C ,
z ε z

-ε £ f (x) < ε

x G C \3C
z z

(b)

-ε ύ e(x,Cc ) < ε
z

x G . ac
> => x G C \ C , and

z ε z'

f (x) < ε

z

x G 3C

This proves

(c)

f (x) = 0
z

x G ac
x G C° \ C ,

z
 N
ε z

Ad (j+): Due to the translation invariance of λ, Qϊ) is equivalent to

λ (C \ C) ̂ c, ε as ε Ψ 0.

K ε K
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Now, as shown in Gaenssler (1981) one has

(61) sup λ (C
ε
\ C) ύ c ε as ε Ψ 0,

CE<Γ
k

 k ε K

where (C denotes the class of all convex Borel sets

in [θ,l]
k
, k Ξ> l.

This proves the assertion of Example (b), D

(62) ADDITIONAL REMARKS, (a): the above considerations show that the set of all

translates of a fixed closed but not necessarily convex set C is a λ, -Donsker

class provided that C has a smooth boundary in the sense that

λ (C
ε
\ C) = CΓ(ε). Based on a result of E.M. Bron^tein (1976) it was shown by

K ε

Dudley (1981a) that for the class <Ĉ  of all closed convex Borel sets in [θ,ll ,

k ^ 2, the following inequality holds true:

(63) N_(ε
9
C£,λ, ) ̂  exp(M/ε

( k
"

1 ) / 2
) for 0 < ε ^ 1

1 K K

and some constant M < °° depending only on k,

For k = 2 this yields that (E ) is fulfilled for €ί and λ in fact,

J (log N_(χ
2
,C^,λ_))

1 / 2
 dx ^ J M

1 / 2
 x ~

1 / 2
 dx < »,

o
 λ z z

 o

implying a result of Bolthausen (1978) according to which C is a λ
2
-Donsker

class,

But, for k ^ 3, (63) does not yield ( E ^ for (C and λ which is in accordance

with a result of Dudley (1979a) showing that C is not a λ -Donsker class for

k ^ 3.

(b): let us reconsider the example in (60)(b) according to which for any fixed

in-
closed and convex set C in X = [θ,l] , k ^ l ,

C = {(C + z) n [0,l]
k
: z 6 [0,l]

k
}

is a λ -Donsker class and also (M.) (and therefore also (M )) is satisfied

K 1 O

for C and λ, . The way we derived this result from Theorem C shows that λ
Λ
 can

be replaced by any p-measure μ on [θ,ll Π β having a bounded density w.r.t.
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λ^, whence, by Theorem 3 (using (M )),

1/2 L
n sup |μ (C) - μ(C)| > sup |G (C)|

CEC
 n

 CEC
 μ

implying (note that w.l.o.g. G ( ,ω) E S and therefore sup |G (C,ω)| < «>
μ
 ° CEC

 μ

for each ω)

sup |μ (C) - μ(C)| = D (C,μ) - ϊ * 0
CEC

 n n

being equivalent with

D (C,μ) -> 0 P-a.s.
n

according to Lemma 6 in Section 1. (Note that the necessary measurability for

D
n
(C,μ) is implied by (M ).)

Thus

C = {(C + z) Π [ 0 9 l l k : z E Lθ,ll k}

is also a Glivenko-Cantelli class (compare this with our conjecture at the end

of Section 2 stating that C is not a Vapnik-Chervonenkis class). Of course

the above reasoning works in general, i.e. one gets

(64) Any μ-Donsker class C satisfying (M ) is also a Glivenko-Cantelli

class.

(c): Let (X,B) be the Euclidean space ]R , k ̂  1, with its Borel σ-algebra

β = /B and let μ be any p-measure on (B . Let B be the class of all closed

Euclidean balls in Έ. . As shown at the end of Section 2 B is a Vapnik-Chervo-

nenkis class (VCC); we also know from (48)(a) that (M) holds true for B .

Furthermore, as pointed out in Gaenssler (1983), also (M^) is satisfied for

C = B, and any μ on β. , Thus, for any μ, B, is a μ-Donsker class according to

the following general result of R,M. Dudley ((1978), Theorem 7.1) stated here

without proof (cf. also D. Pollard (1981):

THEOREM D. Let (X,B,μ) be an arbitrary sample space and C C B be a VCC such

that (M ) is satisfied for C and μ; then C is a μ-Donsker class.

(d): A condition like (61) was also basic for the results of R. Pyke (1977 and

1982) on the Haar function construction of Brownian motion indexed by sets and
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on functional limit theorems for partial-sum processes indexed by sets (1982a).

In fact, Pyke considers classes C of closed sets in X = [θ,ll , k ^ 1, ful-

filling (besides an entropy condition) the following two conditions:

Al. There is a constant c > 0 such that for all ε > 0 and C E C

λ
k
(C

ε
\

£
C) ^ cε.

A2. C is totally bounded with respect to the Hausdorff metric d^ defined by

rl
d(C,D) := inf {ε > 0: C C D

ε
 and D C C

£
} for C,D E C

rl

(and C
ε
 := ίx: e(x,C) ύ ε}).

In another very important and original contribution of T.G. Sun and R.

Pyke (1982) on weak convergence of empirical processes, a certain index family

C of closed sets in [θ,l] , k ^ 1, closely related to one introduced by Dudley

(1974) is studied and it is shown in particular that this class fulfills Al.

In contrary to Dudley's (1978) approach to functional central limit theorems

for empirical measures (i.e., empirical C-processes) the paper of Sun and Pyke

(based on results of Sun's thesis (1977)) involves first the study of a

SMOOTHED VERSION of the empirical processes obtained by replacing the unit

point masses assigned to each observation by a uniform distribution of equal

mass on a small ball (in the sample space (X,B,μ) = ([θ,ll
k
, [0,ll

k
 Π β , χ ))

of radius r centered at the observations (i.e. 3 (C,ω) is replaced by

3
Γ
(C,ω) := n "

1 / 2
 Σ ζ?(C,ω) with ζ?(C,ω) := λ,(C Π B°(ξ.(ω),r))/λ. (B°(ξ.(ω),r))

n . _.. l i K l κ i

-λ (C), where B (ξ.(ω),r) denotes the closed ball of radius r centered at the

K 1

observation ξ.(ω)).

This approach has the advantage that the smoothed version has continuous

sample paths in the space of all d -continuous functions on C, The remaining

steps in the Sun-Pyke approach are then to show the uniform (w.r.t, C) close-

ness of the smoothed and unsmoothed versions and to establish weak sequential

compactness which amounts to verify a conditions like (b) in Theorem B on the
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uniform (w.r.t. n) behaviour of the modulus of continuity.

In this context the following mode of weak convergence is used (cf. R.

Pyke and G. Shorack (1968)):

If η , n 6 1 , and η are defined on some p-space (Ω,F,]P) with values in a metric

space S = (S,d) (like e.g., D (C,d )), the Π
 f
s and η. being not assumed F,A-

measurable for some σ-algebra A in S (with B (S,d) C A C B(S))
9
 then n is

said to converge weakly to η iff lim E(f(η )) = E(f(η)) for all f € C (S)

n-*» n

which are, in addition, such that each f(n ), n E H , and f(η.) is a random

variable, i.e.^F,/B-measurable ,

This concludes our remarks on the other measurability assumptions and

further results. For other extensions the reader is referred to our concluding

remarks at the end of Section 4.

At this place we prefer to present some of the interesting results ob-

tained by G. Shorack (1979).

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR WEIGHTED EMPIRICAL PROCESSES:

This part is concerned with some results on weak convergence of so-called

weighted empirical processes supplementing in another way our earlier remarks

in Section 2 on the a.s. behaviour of weighted discrepancies and giving at the

same time a further illustration of the special results concerning the D[θ,l]-

case summarized at the end of Section 3. We will follow closely the presen-

tation in Shorack
!
s (1979) paper using some modifications due to W. Schneemeier

in a first draft of his Diploma-Thesis, University of Munich, 1981/82.

Let (ξ •)-,<•< 9
 n
 ^INj be an array of row-wise independent random variables

defined on some p-space (Ω,FjP) with distribution functions F ., l^i^n, n (Ξ U,

being concentrated on Lθ,l] (i.e.
 F

n i
(°) = °

 a n d
 F .(1) = 1 for all

n en).
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Before introducing some weight functions q as in Section 2, let us start

with the consideration of the following form of a WEIGHTED EMPIRICAL PROCESS W

based on (ξ .) and on a given array of so-called scores (c )-,^ ^ , n 6 U :

-1/9
 n

(65) W
n
(t) := n J ^ ί l ^ j ί ^ ) - F^Ct)], t e [o.l],

where the constant scores c . are assumed to satisfy

m

-1
 Π
 2

(66) n Σ c . = 1 for each n.

Note that for c . Ξ 1 and for ξ . being uniformly distributed on [θ,ll W

reduces to the uniform empirical process α considered at the end of Section 3.

In the same way as α there, also W will be considered as a random element inJ
 n

 5
 n

(D
9
B

b
(D

3
p)) as well as in (D,B(D,s)).

Generalizing Donsker
!
s functional central limit theorem for α we are

going to give sufficient conditions under which there exists a certain Gaussian

stochastic process W being a random element in (D,B (D,p)) with JL{W}(C) = 1

(C = C[θ,ll being again the space of continuous functions on [θ,ll) and such

L
that W -=•* W.

n

Before proving one of the main results of Shorack (1979), Theorem 1.1,

we will mention some basic facts and preliminary results.

(67) REMARKS, (a) It follows from (66) that v , defined by

v
n
(t) := if

1
 j ^ . F

n
.(t), t € [0,11,

is a distribution function on [θ,l] (with v (0) = 0 and v (1) = 1).

n n

(b) For each 0 ̂  s, t U we have E(W (t)) = 0 and

n

1
 n
 9

K (s,t) := cov(W (s),W (t)) = n Σ c .[F ,(sAt) - F .(s)F .(t)l,
n n n . _ ni m ni ni

whence

(68) E(W
2
(t)) ύ v (t) for all t 6 [θ,l].

n n
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In the following, let F ,(s,tl := F .(t) - F ,(s), v (s
9
t] := v (t) - v (s),

ni ni ni n n n

and W (s,t] := W (t) - W (s) for 0 ύ s ύ t ^ 1; then we have
n n n

L E M M A 2 2 . ( i ) E ( W 2 ( r 9 s ] • W 2 ( s 9 t ] ) ^ 3 v ( r , s l . v ( s 9 t ] , O ^ r S s S t S l ;
n n n n

2

( i i ) E ( W 4 ( s , t ] ) ύ 3 v 2 ( s , t ] + ( max - ^ ) v ( s , t l , 0 ύ s < t < 1.
n n l£ i£n n n

-1 /9
Proof (cf. G. Shorack (1979), INEQUALITY 1.1). Writing c. for n

 L
 c . we have

i m

for 0 ^ r ύ s ^ 1

n

(a) W
n
(r,s] = Σ cΛΛr.s) with X

i
(r,s) := 1

(
^

 s
j(ξ

n i
) -

 F

n i

( r
*

s
l '

furthermore, for O ^ r ^ s ^ t ^ l ,

(bl) EUΛr.s)) = 0

(b2) E(X?(r,s)) = F .(r,s](l - F .(r,s]) ύ F .(r,sl
l ni ni ni

(b3) ECX^Cr^)) ̂  F ,(r,s]
l ni

(b4) 3E(X.(r,s)X.(s,t)) = -F ,(r,sl F .(s,tl
l l ni ni

(b5) E(X?(r
9
s) X?(s,t)) ύ F .(r,s] F .(s,tl

i i ni ni

(b6) If {i,j,k,£} C {l,...,n} such that |{i,j,k,£}| ^ 3, then

assuming w.l.o.g. that i (ji {j
9
k

9
£}, we have (by independence)

E(X
i
(r,s)X.(r,s)X

k
(s,t)X

£
(s,t))

=E(X
i
(r,s))E(X.(r,s)X

k
(s,t)X

A
(s,t)) = 0.

Therefore,

9 9
 n

 2
 n
 2

E(W (r
9
s]W (s,tl) =E(( ΣcX(r

s
s))'( Z c.X. (s,t))^)

n n
 i = 1

 l l
 i = 1

 l i

n

= Σ c.c.cc E(X.(r,s)X.(r,s)X, (s ,t)X
0
 (s ,t))

i,j,k,£=l 1 3 k £ i : T< £

n

= Σ c.c.c. c
0
 E(X.(r,s)X.(r

9
s)X, (s

9
t)X

0
(s,t))

(b6) i,j,k,io=l
 J

Σ c?c
2
 E(X?(r

 9
s ) ) E(X?(s

π - ί V O - 1
1

i=j*k=£
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n
 9 2
Σ cfcT E(X.(r,s)X.(s,t)) E(X.(r,s)X.(s,t))

A
 k
 o-i

 1
 3 i i 3 3

n
 9 9
Σ cTc, E(X.(r,s)X.(s,t)) E(X, (r,s)X (

i j k * = l
l k X

 Tc k

n
 11

 n
 9 9

^ Σ c. F ,(r,s] F ,(s,t] + 3 Σ c.c. F .(r,sl F . (s,t]

(b5)
9
(b2),(b4) i=l i,k=l

i*k

n
 2

 n

^ 3( Σ c. F .(r,s])( Σ c, F (s,tl) = 3v (r
5
slv (s,tl proving (i).

._- 1 ni , _
1
 K nK π n

4
 Π

 4

As to (ii) we have E(W (s,t])= E(( Σ c.X.(s,t)) )
n
 i=l

 X x

= Σ c?E(X?(s,t)) + 3 Σ c?c?E(X?(s,t)X?(s,t))
i=l

 1
 " i,k = l

 x k x k

i+k

3( Σ c^E(X^(s,t)))
2
 - 3 Σ c^CE(X^(s,t)))

2
 + Σ c^

1 1 1 1

2 9
ύ 3v (s,t] + ( max c.) v (s,11 proving (ii), •

Cb2λ(b3)
 n

 l^i^n
 X n

THEOREM 18 (G. Shorack (1979), Theorem 1,1),

(i) If there exists a monotone increasing and continuous function

G: [0,1] + E. for which

either (a) v (r,s] ^ G(r,s] := G(s) - G(r) for all O ^ r ^ s ^ l and all n 6 I

or (b) lim v (t) = G(t) for all t € [0,1],

then (W ) is relatively L-sequentially compact.

2
c .

max • 0 as n
n

(ii) If further

then any possible limiting process, i.e.,any random element W in

(D,B(D,s)) = (D,B (D,ρ)) such that W , > W for some subsequence

(n
!
) of H, satisfies L{W}(C) = 1;
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thus (cf. Lemma 18) (W ) is relatively L -sequentially compact.

(iii) Suppose the hypotheses of (i) and (ii) hold. Then

there exists a random element W in (D,B (D,p)) being a mean-zero

Gaussian stochastic process with cov(W(s),W(t)) = K(s,t), L{W}(C) = 1

L
and such that W > W in (D,ρ)

if and only if

lim K (s,t) = K(s,t) for all 0 ^ s ^ t ^ 1.

Proof. ad (i): We shall apply Theorem 14 in connection with our remarks (41)

and (42). In view of this we have to verify the conditions (Q, (jP) , (Cj) and

Θ for ξ = W choosing F : = /3~ v and F := / 3 " G ,
n n & n n

ad (5y: Follows immediately from the above assumptions (a) or ^ ) according to

the choice of F and F in the present situation.

ad (cj) : Follows from Lemma 22 (i) according to the choice of F ,

ad ^Bj) : Given any ε > 0 we have to show that

( + ) lim sup P(|W (δ) - W (0)| £ ε) •* 0 as 6 + 0

and

(++) lim sup P(|W
n
(l) - W (δ)| £ ε) -• 0 as δ + 1,

n-*»

ad ( + ): P(|W (δ) - W (0)| ̂  ε) ύ ε"
2
 E(W

2
(O,δl)

n n n

ε'V
1
 Σ c

2
.[F ,(0

9
δ] -F

2
.(O,δl] ̂ ε ' V

1
 Σ c

2
. F .(0,δ]

/, ., x /
κo
x
 τ o o

 ._
1
 m m ni .

 1
 ni ni

(bl)
3
(b2),L.22 i=l i=l

= ε v (0,6], whence by (a) or ^ )

lim sup P( |W. (δ) - W (0) | £ ε) £ ε~
2
(G(δ) - G(0)) ̂ 0 as δ + 0

since G was assumed to be continuous,

ad (++): Follows in the same way as (+).

ad (&: By (42) (cj) implies (c)which together with ζϊj) implies ζ?) by (41),

According to (C*) , given any η > 0 there exist δ - δ(η) > 0 and
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n = n (δ(η)) G H such that for all n ̂  n P(W" (<5) £ 1) £ n/2.
o o o W

n

Now, choose k 6 1 and a > 0 such that

k"
1
 < δ and a"

2
 ύ η/2;

then

Furthermore,

ρ < i

for

<

n s

„ - 2
a a

ϊ n o '

Σ v

l e t

1 * . » a

(Aii, i l

s a L

( 6 7 ) ( a )

«<'

» η/2.

k .
A := n {|w (-V

1
, ^1| < a} n {u;;; (δ) < 1} n {w (0) = o};

n . - . n κ κ w n
i=l n

then P(A ) ̂  1 - η and for each ω 6 A we have for any t 6 [θ,l] and 1 ύ i ύ k

so that t 6 [^^)

min {|W
n
i

ω
) - W (t,ω)|, |w (t,ω) - W (^i,ω)|}

K n n n K

) ^ ^ ^
 a + W

W (ω)
( δ )
 *

 a + 1 W h e n c e

|W (t,ω)| < ka + 1, and therefore

ΊP(jjW |i £ ka + 1) ̂  1 - η for all n ̂  n which proves (2p.

This concludes the proof of (i).

ad (ii); Suppose that for some random element W in (D
9
B(D,s)) = (D,8 (D,p))

W , — > W for some subsequence (n
1
 ) of I;

then for any 0 ύ s ̂  t ύ 1 such that

s,t E T := {r E [0,1]: π is L{W}-a.e. s-continuous}

it follows from Theorem 5.1 in Billingsley (1968) that

(+) |W
n
,(t) - W

n t
(s)|

3
 -ί> |w(t) - W(s)|

3
;

on the other hand it follows from Lemma 22 (ii) that
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2
Q

(++) 3E(w\(s,tl) ̂  3v
2

f
(s,tl + ( max - ^ ) v ,(s,tl ^ 4 for

n n - s .̂ _
 f
 n n

all n
1
 (cf. (66) and (67)(a)).

But (+) together with (++) imply (cf. Gaenssler-Stute (1977), Exercise

1.14.4, p. 114) that

E(|W(s,t]|
3
) = lim E(|W

 t
(s,tl|

3
) ύ lim sup (E(w\ (s ,tl) )

3 / 4

n'-*»
 n

 (Holder) n
!
->~

 n

(++) and (a) or

(3G
2
(s,t])

3/4
 έ 3(G(s,tl)

3/2
.

Since T contains 0 and 1 and is dense in [θ,l] (cf, Billingsley (1968)), itw

follows that

E(|W(t) - W(s)|
3
) έ 3|G(t) - G(s)|

3 / 2

for all 0 £ s £ t £ 1,

whence by Lemma 19 P(W 6 C) = 1.

ad (iii): Assume first that

lim K (s,t) = K(s,t) for all 0 £ s £ t £ 1.
n

We are going to show that for any α
l5
...,α € ]R and any t ,.. , ,t E [θ,ll

k , k

(+++) Σ α.W (t.) -=^W(O,V) with V := Σ α α K(t ,t ).
.
 Λ
 j n j

 Λ
 r s r s

j=l
 J J

 r,s=l

ad (+++): If V = 0, then for any ε > 0

k k
P(| Σ α.W (t.)| ̂ ε) ̂  ε E( | Σ α.W (t.)| )

j = 1
 3 n 3

 j = 1
 3 n 3

-2
 k
 -2

- ε Σ α α K ( t , t ) —=> ε V = 0 asn-^°° which proves (+++)

(cf.(67)(b)) r,s=l
 Γ S n Γ S

in case V = 0.

If V > 0, consider

C
ni

[
 j
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Then the ζ .'s form a triangular array of row-wise independent random variables

with E(ζ .) = 0 and such that
ni

n
 n

 2 -1
 k

 2

Σ ECζ .) =E(( Σ ζ .Γ) = V
 ±
τ(( Σ α.W (t.)Γ)

Π 1 Π 1
 ^

 Π
 ^

-1
= V Σ α α K (t ,t ) + 1 as n -*- «;

, r s n r 9 s
r , s=l

furthermore, for any δ > 0 we have

n 2
Σ E ( ζ . l r i I . x λ ) + 0 a s n -* « :

i = l n l { l ζ n i l > δ }

in fact, given any ε > 0 let p := 1 +
 ε
/2 and q > 0 be such that 1/p + 1/q = 1;

then, by Holder's and Markov's inequality we obtain for any ό > 0

Jfsi
(Vn) l l

y-l-ε/2 ( m a χ ϋ n J > ε

-^Oasn-^
0 0
 = 1

Thus, it follows from the Central Limit Theorem (cf, Gaenssler-Stute (1977),

9.2.9) that

n
 L
Z ζ . — > N(O,1) which proves (+++).

i=l
 n l

Next, let W be a mean-zero Gaussian process with covariance structure given

by K. Then, again for any α ,. .. ,α E H and any t.. ,. . , ,t, G [θ,ll

k

L{ Σ α.W(t.)} = N(O,V) with V defined as above.

Therefore, by the Cramer-Wold Device (cf. Gaenssler-Stute (1977), 8.7.6) it

follows together with (+++) that
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W ~f W.
n f .α.

Now, by (ii), for any subsequence (W
 f
 ) of (W ) there exists a further subse-

quence (W ,,) and a random element W,
 τ
x,

 ft
x in (D,8, (D,ρ)) such that

L {
V ) ( n » )

K C )
 =

 land

V^
W
(n')(n")

 in (D
'

p}

Applying Theorem 3 and using the fact that each W,
 t
,
 M )

 is uniquely deter-

mined by its fidis, it follows that

L L
W,

 n
, ,

n
 =: W = W and therefore

(n
1
)(n")

 d

L
W —> W in (D,p).

V,,.To prove the other direction, suppose that W —•> W in (D,p) where W is a

r.e. in (D,& (D,p)) and is a mean-zero Gaussian process with covariance struc-

ture given by K (and such that L{W}(C) = 1). Then, by Theorem 3, for any

0 ύ s ύ t ύ 1

W
n
(s) - W

n
(t) -^> W(s) W(t) as n -> «,

and E(W
2
(s) W

2
(t)) S E(W

4
(s))

1 / 2
 EίW^Ct))

1 7 2
 ύ 4

n n n n

for all n 6 Έ (cf. (+++) above), whence (by the same reasoning as in the proof

of (ii))

E(W(s) W(t)) = lim E(W (s) W (t)), i.e.,

lim K (s,t) = K(s,t) for all 0 ύ s £ t ύ 1. D

n
^o

 n

SOME GENERAL REMARKS ON WEAK CONVERGENCE OF RANDOM ELEMENTS IN

D Ξ D[0,ll w.r.t. p -METRICS:

Let q be any weight function belonging to the set

(L := {q: [θ,l] ->]R
9
 q continuous, q(0) = q(l) = 0 and q(t) > 0 for all

t G (0,1), having the following additional properties (i ) - (iii )}:

There exists a δ = δ ( q ) , O < δ ^ 1/2, such that
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(i ) q(t) and q(l-t) are monotone increasing on Lθ,ό 1;

(ii ) yr and /*-— are monotone decreasing on [θ,δ 1;

(iii ) J q (u)du < °° and J q (u)du < °°
q
 0 1-6

(i.e. q square integrable).

Here and in the following we make use of the convention — := 0,

REMARK. Let q 6 ^ then for any t ύ <5

t 1/2 t -2 1/2 t -2 1/2:
 (—« ) = (J q (t)du) ^ (J q (u)du) , whence by (iii ) one
q (t) 0 0

 q

has

(iv ) "TTT "̂  0 as t ^ 0; similarly, by symmetry,

- T Γ Γ + 0 as t + 1.
q(t)

Now, let ξ , n ^ 0, be random elements in (D,B, (D,p)), defined on a common

p-space (Ω,FjP), such that P(ξ (0) = 0, ξ (1) = 0) = 1 andP(ξ /qED) = 1

for all n ^ 0; in this case we shall assume w.l.o.g. that

ξ
n
( ,ω)

— j — . — E D for each ω E Ω and all n Z 0.
q( )

Then the ξ /q, n ^ 0, are also random elements in (D,B
b
(D,p)) (cf. (37)).

Let q E !L and define

D := {y = qx: x E D} Ξ qD
9
 and C := qC

with C Ξ C[0,ll, and define the p -METRIC on D by

p (y-,y
2
) :

=
 p(x

l 3
x

2
) if y. = qx. E D , i=l,2, where we tacitly

assume that x(0) = x(l) = 0 whenever x E D occurs.

Let B, (D ,p ) be the σ-algebra in D generated by the open p -balls and con-
b q q

 to
 q ° q

sider the map

T : D •> D , defined by T (x) := qx for x E D;

then T. is B, (D,ρ), B,(D ,p )-measurable:
1 b

 9 K
 b q

9
 q
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in fact, let B (y,ε) be the open p -ball with center y E D and radius ε;

p
q
 q q

then

T^(B (y,ε)) = {x G D: p (y,qx) < ε} = {x E D: p(y/q,x) < ε} E B
b
(D,p).

In the same way

T : D •> D, defined by T (y) := y/q, is B (D ,p ), B,(D,p) -measurable.

This implies that

ξ/q is a random element in (D,B(D,p)) iff

ξ is a random element in (D jB^tD sP ))•

Note also (cf. (39)) that C G B, (D ,p ) and that (C ,ρ ) is a separable and

q b q q q
9
 q

closed subspace of (D ,p ).

Furthermore, one has the following

LEMMA 23, In the just described setting, the following two statements are

equivalent:

(i) ξ /q - ^ ξ /q in (D,p) and L{ξ /q}(C) = 1
n o o

(ii) ξ -̂ -> ξ in (D ,p ) and L{ξ }(C ) = 1,
n o q q o q

Proof. (i) => (ii): Note first that L{ξ }(C ) = P(ξ G C = qC)
o q o q

= P(ξ
Q
/q E C ) : L{ξ

Q
/q}(C),

Now, according to (28) (cf, (h
!
) there) it remains to show

( + ) E(f(ξ )) ->E(f(ξ )) for every f: D -> ]R which
n o q

is bounded, uniformly p -continuous and

B, (D ,p ), 0S-measurable.
b q q

So, let f: D •> E be bounded, uniformly p -continuous and B (D ,p ), β-measu-

rable, and let g: D •> ]R be defined by g(x) := f(qx), x G D; then g is bounded,

B (D,p), /B-measurable (since g = f T.) and uniformly p-continuous (since

p(x.,x
o
) = p (qx,,qx

o
) and |g(x^ - g(x

o
)|

 =
 |fCqx.) - f(qx )j for any

1 2 q 1 2 1 2 1 2

x
l 9
x

2
 G D, i.e. qx

l 3
qx

2
 G D ). Therefore, by (i) and (28)

E(g(ξ /q)) ->E(g(ξ /q)) which implies ( + ) since E(g(ξ
n
/q)) =E(f(ξ

n
>) for all
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n Z 0.

(ii) =*• (i): follows in the same way, D

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR WEIGHTED EMPIRICAL PROCESSES

w.r.t. p -METRICS:q

As before let W be a weighted empirical process based on an array (ξ .)

of row-wise independent random variables ξ ., 1 ^ i ^ n, n G I , defined on some

p-space (Ω,F,P), and on an array (c .) of given scores (cf. (65)).

We assume again that the distribution functions F . of the ξ .
f
s are concen-

trated on [0,1]; here, in addition, we suppose that

-1
 n

(69) for each n 6 3M: n Σ F .(t) = t for all t G [θ,l].
n l

Then , for any q 6 (L, we have

LEMMA 24, P ( W / q £ D ) = 1 for all n, whence we may and do assume w,l.o,g, that

W ( ,ω)/q( ) 6 D for each ω 6 Ω and all n EΈ.

Proof. According to the definition of W , for P-a,a. ω 6 Ω there exists a

t = t(ω) ύ δ such that by (69) and (iv )

|W Ct,ω)| , n F (t) ,
n
 ± n

 1 / 2
 Σ |c . I -2i-r- ί ( max |c . | ) n

1 / 2
 - ^ + 0l

 m» q(t) J m
,. ± n Σ |c . I -2i-r- ί ( max |c .

q(t)
 i = 1

l
 m» q(t) ^ J m

|W (t,ω)l
as t ->- 0; similarly, —

n
 , . — -> 0 as t ->• 1 for P-a.a. ω

which implies the assertion (imposing the convention — := 0). D

Now, for uniformly bounded scores, Shorack (1979) has shown:

THEOREM 19 (Shorack (1979), Theorem 1,2).

Suppose that

(70) sup ( max jc . |) ̂  M < °°.

Then for all q € ζL we haveq € ζL
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(i) (W /q) ^ is relatively [.-sequentially compact (in (D,s)).

(ii) Any limiting process, i.e. any random element W in

(D,B(D,s)) = (D,B (D,p)) such that W ,/q > W for some subsequence

(n
1
) ofW, satisfies L{W}(C) = 1, whence, by Lemma 18, (W /q)

is relatively L -sequentially compact in (D,p) such that for

any limiting process W L{W}(C) = 1,

and therefore, by Lemma 23,

(W ) is relatively L -sequentially compact in (D ,p )

such that for any limiting process W L{W }(C ) = 1.

(iii) There exists a random element W in (D
 9
B,(D ,p )) being a mean-zero

o q b q q

Gaussian stochastic process with

C O V ( W
Q
( S ) , W (t)) = K

Q
(s,t), L { W

Q
} ( C ) = 1 and such that

W -^> W in (D ,p )
n o q q

if and only if (for K (s,t) = cov(W (s), W (t)))

lim K (s,t) = K (s,t) for all 0 ^ s ^ t ^ 1.

n+~
 n

 °

The proof of Theorem 19 (being based on Theorem 18 and Theorem 17) can be

carried through along the lines presented in Shorack's (1979) paper with some

slight modifications being necessary due to our choice of 0 : by the way,

instead of (15) on p. 171 it suffices to impose (iv ) and instead of

P(A ) ύ exp(-l/a ) one shows P(A ) ̂  1 - I/a to get (v) on p. 181. We are not

going to give further details here. Instead, since the proof of Theorem 1.2 in

Shorack (1979) seems not suited to carry over to give a proof of his Theorem 1,

3 as mentioned there on p. 182 (note that in the case of not uniformly bounded

scores it is not possible to estimate

2

( max )(t - s) by M (t - s) for t - s > n , which was essentially used

l ^ n
 n

to get (c) on p. 179) we want to present here a completely different proof of

the following result:
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THEOREM 20 (Shorack (1979), Theorem 1.3).

If a l l ξ . are uniformly distributed on Lθ,ll and if instead of (70)

2
c .

(71) max —^- ->- 0 as n •> °°,

L
b o

then, for any q E (L, W > B° in (D ,p ) as n -> °° and L{B°}(C ) = 1, where

B denotes the Brownian bridge.

The proof of Theorem 20 is based on the following lemmata which may be of

independent interest.

The first lemma is concerned with a martingale property of the weighted empiri-

cal process W based on ξ . which are uniformly distributed on [θ,l],

LEMMA 25. Let n E U be arbitrary but fixed and write ξ. and c. instead of ξ .J
 l i ni

and c ̂ , respectively.Suppose that F .(t) = t for all t E [θ
$
ll. Then for any

( c l 5 . . . 5 c n ) EIRn

n 1 / 2 W n ( t )
( ϊ=t W<i

n 1 / 2 W (s)()
martingale w.r.t. F := σ({—zr—^ : s ̂  t})

9
 0

t _L S
t < 1.

Proof. We use the following auxiliary result which is easy to prove:

(72) Let ( C
t
)

0
^

t < T

 a n d ( η

t

)
o^t<T

9 T
 " °°

5 b e m a r t i n
S

a l e s
 w.r.t.

(F
t
 := σ({ζ

s
: s £ t } ) )

Q
^

< T
 and (G

t
 := σ ( ί

V
 s

respectively. Assume that (C
t
)

Q
^t<T

 a n d
 ^

η
t^0^t<T

 a Γ e i n d e
P

e n d e n t

Then (ζ
t
 +

 η

t
^o^t<T

 i s a m a r t i n
£

a
l e w.r.t.

(H
t
 := σ({ζ

s
,η

s
: s ύ t } ) )

Q
^

t < τ

 a
nd therefore also w.r.t.

Now, given any (C.J. .JC ) E ]R , put

:= Ji
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n t : ς 4 n ) , O ί t < i ,

and apply (72) to get the assertion of Lemma 25 by induction on n; for n = 1

cf. Lemma 3 in Section 1 (choosing (X,B,μ) = (Lθ,ll
9
Lθ,ll Π β ^ )

}
 λ = Lebesgue

measure, and C := {[θ,t]: 0 ύ t < 1} there),

LEMMA 26. Suppose that F .(t) = t for all t E [θ,l]; let q £ ^ and

6 = δ*(q), 0 < ό ^ 1/2, be as in the definition of (L.

Then, for any n E IN, each ε > 0, and any 6 ^ 6 , one has

Wi t )
 9

 δ
 9

(i) P( sup I -^γ-γ I > ε) £ ε - 8 J q~^(u)du, and

te[o,δ] q C t } o

W (t) 1
(ii) P( sup I - A T T I > ε) ^ ε 8 / q̂  (u)du.

[ ] q ( t ;

Proof, ad (i): let n 6 I b e arbitrary but fixed and for each k G IN and

ie{0,...,2
k
} let

t
k
. : , i .

δ / 2
\

Then, due to the path properties of W /q (cf. Lemma 24), it suffices to show

that for each ε > 0 and any k E l one has

W
n

( t
ki

}
 -2

 δ
 -2

( + ) JP( sup j
 n
 * \ I > ε) ̂  ε 8 J q ̂ (u)du,

l^i^2
k q U

k i
;
 0

For later use note that

(++) 1 ̂  (1 - t Γ
2
 ^ 4 for each k and i,

ad ( + ): let ε > 0 and k E l b e arbitrary but fixed.

Since, by Lemma 25, for any fixed n E Έ

w
n
(t)

( ^ ^
S a m a r t

i
n
S

a l e
9
 w e c a n a

Pp!y Chow's inequality (cf. Gaenssler-(

Stute (1977), (6.6.2)) on the submartingale

W(t)

ε

2

 P( max
 |!ίL^4l *

 ε)
 =

 ε2]P( max
k q ( t }
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-2 W n ( t k l } 2 2 -2 W

π

( t k i } 2 W n ( t k
q 2 ( t ) E ( ( - ^ - ^ ) 2 ) + Σ q 2 ( t . . ) E ( ( " k l ) 2 " J

1
"

t
k l i=2

 k l

N o w , s i n c e E ( W 2 ( t ) ) = n " 1 Σ c 2 . [ F . ( t ) - F 2 . ( t ) ] = n " 1 Σ C

2 . ( t - t 2 )
n . . m m ni . _.. ni

= t ( l - t ) ^ t , we get by the second inequality in (++)
(66)

q ' 2 ( t v 1 ) E(( * . k l ) 2 ) έ 4 q ' 2 ( t . )t έ 4 J k l q" 2 (u)du ί 4 j
k l 1 " ΐ k i k l k l ( i ) o o

q
on the other hand

i=2 ki k,i

t t 2k

^ k i 1

i=2 k l 1 \ i 2 ^ . i - l (cf.(++)) i=2

q~ 2 (u)du S 4 J δ q~ 2 (u)du.

So, in summary we have

max , I
 n

f
.

ki
. I > ε) £ ε

 2
 8 J

6
 q"

2
(u)du

k q U ;
0

which proves (+).

ad (ii): by symmetry this follows in the same way. D

LEMMA 27. For any q e (λ we have P(B°/q 6 C) = 1, where B° denotes the

Brownian bridge and C is the space of all continuous functions on [θ,ll.

Proof. We have to show that B /q is P-a.s. continuous at 0 (and also at 1 which

is shown similarly). For this, according to Lemma 19, it suffices to show that

for some constants a > 1, b > 0 and some continuous function F: [θ,l] •> E.

( + ) E(|B°(t) - B°(s)|
b
) έ |F(t) - F(s)|

a

for all 0 ύ s ̂  t ̂  1, where (using again the convention — := 0)
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(δ = δ (q) as in the definition of

ad (+): since, for any 0 ̂  s ̂  t ύ 1, B°(t) - B°(s) is normally distributed

with mean zero and variance (t - s)(l - (t - s)), we have

° θ ^ , = 3 ( t - s ) 2 ( l - ( t - s ) ) 2

 O ί a S t i l
( a ) E (

 ,
 = t O ί a S t i

q (t) q\t)

On the other hand, for any 0 < s ̂  t ^ δ ,we have

(s)) [ _ - ] ) _ [ - _ ! . 3 s (1 - s) ,

w h e r e

2
f
 1 1

 Ί
*+ _ r /Γ

 n
 q(s) .-,4

S L
 q(s) " q(t)

 J
 "

 L
 q(s)

 K±
 ' q(t)

 n

[ ̂ y (1 - ψ)f (since ̂ y + on [0,6*1 by (ii

Γ
/ t " - ϊ / s "

Ί
4 ^

/
t - s

Λ
2

= L —
n (
 -x J ^ ( -5 )

 9
 whence

(b
,
 E

(CB°(s)Λ 1 . 1 I
1
*, ̂

 3 ( t
T

s
;

2 ( 1
'

s ) 2
 , 0 < s £ t . δ *

Now, it follows from (a) and (b) that for 0 < s ̂  t ^ δ

, B°(t) B°(
S
) 4 B°(t) - B°(s) o

q(t) q(s) I } - E U q(t) + B C s ) L q(t) q(s)

2 \ E ( ( B ^ t ^ B ^ s ) ) 4 , + E ( ( B o ( B ) ) ^ 1 . 1 f n

q ( t ) q ^ t ; q ^ S ;

2

4 [ 3 C t - s ) 2 ( l > ( t - s ) ) 2 + 3 ( t - s ) 2 ( l - s ) 2 j

6 ( q " 2 ( t ) ( t - s ) ) 2 ύ (i+i/Γj11 q" 2 (u)du) 2 .

Thus, taking F(t) := 4^T J
t
 q"

2
(u)du, we get ( + ) (with b = 4, a = 2) for all

0

0 < s ύ t ύ 1.

It remains to consider the case s = 0 and 0 < t ύ δ but, by (a),

11 q" 2 (u)du) 2

F 2 ( t ) = | F ( t ) - F ( 0 ) | 2 . T h i s p r o v e s ( + ) . D
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Proof of Theorem 20. In the setting of Theorem 18 and its preceding remarks

(67) we have in the present situation (where F .(t) = t for all t E [θ,l]) that

(cf. (66))

v
n
(t) = t (=: G(t)) for all t E [θ,l]

and K (s,t) = K(s9t) = sΛt - st = cov (B°(s), B°(t)).

Therefore, by Theorem 18 ( i i i ) , we have

L

(a) Wn A » B ° in ( D , p ) .

Furthermore, by Lemma 24 and Lemma 27, for any q 6 (̂  we have

(b) F(W /q E D) = 1 for all n E Ή and F(B°/q E C) = 1.

We are thus in a situation where our general remarks on weak convergence of

random elements in D = D[θ,l] w.r.t. p -metrics can be applied.

So, by Lemma 23, it remains to show

L

(c) W
n
/q - ^ B ° / q in (D,p).

ad (c): let q Ξ 1 and for m £1 let

q := q 1 + q(-) 1 + q(l-i) 1

Since q is continuous and q > 0 on [θ,l]

L
(d) W

n
/q

m
 - £ * B

0
/ ^ in (D

t
p) as n -> «,

Now, according to (28), (c) holds if we show that

lim E(f(W
n
/q)) =E(f(B°/q)) for all f E U^(D,p).

n-χ»

But, again by (28) and (d), we have for each m that

lim ECfCW^c^)) =E(f(B°/qm)) for a l l f E u£(D,p);
n->oo

furthermore, by Lebesgue's theorem

lim E(f(B°/q )) =E(f(B°/q)) for all f EU^(D,p),

m ^ ^
 b

since, by Lemma 27, P(B°/q E C) = 1 and therefore lim p(B°/q , B°/q) = 0

m
->oo

F-a.s.
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Thus, given any f G U.(D,p), choosing for each m 6 UN

k > k
 Λ

 (with k := 0) such that
m m-1 o

and putting for each n 6 IN i := m if n 6 {k
 9
.,.

5
k *1}, we obtain

lim E(f(W /q. )) = E(f(B°/q)).
n-**>

 n x
n

So, it remains to show

(e) lim |E(f(W /q
±
 )) -E(f(W /q))| = 0.

n-*»
 1

n

For this, let ε > 0 be arbitrary and δ = δ(ε) > 0 be such that ρ(x,y) ̂  6

implies |f(x) - f(y) | S ε. (Note also that ||f|| := sup |f(x)| < °°.)

xGD

Then for n sufficiently large (i.e. such that i ύ 6 )

n
| E ( f ( V q i ) } - E ( f < v q ) ) i ^ E ( ι f ( w

n

/ q i } ' f ( V q ) ' }

n n

& ε + 2 ||f|| . P ( p ( W n / q i , W /q) > 6)
n

W ( t ) W ( t )
έ ε + 2 j | f | | [P( sup | - i L - y | > δ/2) + ]P( sup | - ϋ - _ | > δ / 2 ) l ,

tG[o,i 1 ' te[i-i ,H
n n

whence it follows from Lemma 26 that

|E(f(W
n
/q

i
 ))

 n

n

£ ε + 2 ||f|| [(δ/2)^
2
. 8(1^ q^

2
(u)du + / q"

2
(u)du)]

9

0
 ^i

and therefore, by (iii ),

lim sup |E(f(W /q^) -E(f(W /q))| ^ ε.

n-^ n

Since ε > 0 was arbitrary, this proves (e) and therefore (c) is shown. D

(73) REMARKS, (a) W. Schneemeier (1982) has given an example showing that

Theorem 19 fails to hold if the uniform boundedness condition (70) on the

scores is replaced by the condition



158 PETER GAENSSLER

2
c .

max - ^ + 0 as n •> °°
n

which was imposed in Theorem 18. Thus, the assumption in Theorem 20 of ξ .

being uniformly distributed on [θ,l] cannot be weakened to the assumption that

-1
 n

for every n 6 Iί n~ Σ F .(t) = t for all t e [0,1] (cf. (69)) without

strengthening the condition on the scores.

(b) As to the L -statements in Theorem 18 and Theorem 19 it is possible by

making use of Theorem 11 a) (or Theorem 11 ) to modify the given proofs such

that they operate totally within our theory of L -convergence.

Note, for example, that along the same lines as in the proof of Proposi-

tion B together with an application of Theorem 11 one obtains (within the

theory of L -convergence) that any sequence (ξ ) _
τ
 of random elements in

(D,B (D,p)) which satisfies the following two conditions

(i) lim lim sup TP(u) (<S) > ε) - 0 for each ε > 0

δΨO n-*»
 ξ

n

and

( i i ) lim lim sup ]P(||ξ | | > M) = 0

is relatively L -sequentially compact and such that for any limiting random

element ξ one has L{ξ }(C) = 1.
o o

Further results in this direction will be contained in a forthcoming paper

by P. Gaenssler, E. Haeusler and W. Schneemeier (1983).

CONCLUDING REMARKS ON FURTHER RESULTS FOR EMPIRICAL PROCESSES INDEXED BY

CLASSES OF SETS OR CLASSES OF FUNCTIONS:

(a) FUNCTIONAL LAWS OF THE ITERATED LOGARITHM

(cf. Gaenssler-Stute (1979), Section 1.3, concerning results for the

uniform empirical process α ).

One of the main theorems in Kuelbs and Dudley (1980) states that for any
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p-space (X,B,μ) the following holds true:

(74) If (M^) is satisfied for a class C C β and μ, and if C is a μ-Donsker

class, then C is a STRASSEN LOG-LOG CLASS for μ, i.e., with probability

one the set

β
n
(C)

{( Γ75" )
nar

: n
 -

 n
 ^ ^

s
 relatively compact

(21oglogn)
1/2 L t L

 °

(w.r.t. the supremum metric p in D (C,μ)) with limit set

B
r
 := {φ: C H- J fdμ, C 6 C; f 6 B}, where
L
 C

B := {f e i.
2
(X

5
8

5
μ): J f dμ = 0 and J|f|

2
dμ ύ 1}.

X X

(Note that B
n
 C iP(C,d ) C D (C,μ).)
L μ o

Now
1̂

, as pointed out in Gaenssler (1983), since for (X,B,μ) = (]R ,β ,μ), k ^ 1,

the class C = J, of all lower left orthants satisfies (M ) and is a μ-Donsker

class for any μ by (58), one obtains by (74) the results of Finkelstein (1971)

and Richter (1974), namely

(75) J is a Strassen log log class for every p-measure μ on β, , k ^ 1,

That the same holds true for C = B (the class of all closed Euclidean balls

in E j k ^ 1) is a consequence of our remarks preceding Theorem D and of

Corollary 2.4 in Kuelbs and Dudley (1980) according to which one has

(76) If (M.) is satisfied for μ and a Vapnik-Chervonenkis class C, then C is

a Strassen log log class for μ.

(b) DONSKER CLASSES OF FUNCTIONS.

Let α be the uniform empirical process (cf, the end of Section 3) and let

q be some weight function considered above in connection with weak convergence

of random elements in D = D[θ,l] w.r.t. p -metrics. For any q £ Q^ we know

from Theorem 20 (with c . = 1) that

ni

or, equivalently by Lemma 23, that
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(77) α
n
/q - ^ B°/q (in (D,p)).

Now, from a different point of view, taking for each t € [θ,ll the functions

f
t
: [0,1] +]R defined by

f
t
(s) := q"

1
(t) 1

[ Q
 j(s), s E [θ,U,

α /q can be considered as an empirical process indexed by a class of functions;

in fact, let

then for each t E [θ,l]

tF
Q
 := ίf

t
: t G [0,11},

α (t)/q(t) = J
1
 f_(s) dα (s) =: α (f ).

n ~ t n n t

Also the limiting process in (77) can be viewed as a mean-zero Gaussian

process C (μ being here Lebesgue measure on X = [θ,ll) indexed by tF , i.e.,

<G Ξ (G (f))r;^j:
 3
 with covariance structure

μ μ o

(78) cov(G (f. ), G (f. )) = J
1
 f. f dμ - J

1
 f. dμ . J

1
 f dμ;

μ t
l V

 t
2 0

 t
l
 t
2 0 * 1 0

 t
2

note that cov(q"
1
(t

1
) B°(t

1
), q'

1
(t

2
) B°(t

2
>)

= q " l ( t 1 ) q " l ( t _ ) [ t Λ t 9 - t t l = J 1 f f d μ - J 1 f d μ - J 1 f d μ .
l I l l l z o τ i T 2 0 1 0 τ 2

Hence (77) is equivalent to

This leads to the problem of generalizing Dudley's central limit theory from

empirical C-processes to the case of

defined by

EMPIRICAL 2F-PR0CESSES 3 = (3
n n

3 ( f ) := n 1 / 2 (μ ( f ) - μ ( f ) ) , f 6 f,
n n

where f is a given class of measurable functions defined on an arbitrary sample

space (X,B,μ), and where

μ (f) := J fdμ , μ(f) := J f dμ, f 6fF,
n n
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μ being the empirical measure based on i,i.d. ξ.'s with values in X and

distribution μ on 8,

For uniformly bounded classes of functions such an extension is more or

less straightforward, but this does of course not meet the special case men-

tioned before (note that q is approaching °° at the endpoints of [θ,l]).

For possibly unbounded classes iF the present knowledge is by recent work of

R.M. Dudley (1981a), R.M. Dudley (1981b) and D. Pollard (1981a) as follows:

let (X,β,μ) be an arbitrary p-space and β = (3 (f)) *. be an empirical f-

2
process with fF C L (X,B,μ). It turns out that there are proper extensions of

the spaces S = u (C,d ) and S Ξ D (C,μ) considered at the beginning of Section

4 (corresponding to the special situation ίF = 1̂ , := ίl
c
: C E C}) to the present

case with d on C being replaced by

9 1/9
e
μ

( f
l '

f
2

} : = (J
"

(f
l "

 f
2

) d μ )
 '

 f
l'

f
2
 e t F

'
X

9 1 /9

(or better P ^ f ^ ) := (/(^ '
 f

2
 ~

 5if
l ~

 f
2

) d μ ) d μ ) 5 f
l'

f
2
 G t F )

'

X X

leading to certain spaces S = S (f ,e ) and S = S(tF,μ) of functions φ: tF -* R

which can be chosen in such a way that under certain conditions o n f S (ίF,e )

o μ

becomes a separable subspace of (S(tF,μ)
9
p) and such that (3 (f))j=̂ -i:

 n
^

s a
ll

its sample paths in S(jF,μ); here as before p denotes the supremum metric, i.e.,
p(φ

i9
φ.) := sup |φ Cf) - Φ

o
(f)| for φ ,φ G S(f,μ).

1 2
 f e f

 1 2 1 2

Now, again under certain measurability assumptions (like (M) or (M ) im-

posed in the case of empirical C-processes) the setting of a functional limit

theorem for empirical iF-processes 3 = (3 (f))
f
 ̂ψ in the sense of L^-conver-

gence for random elements in (S(f,μ), 8, (S(ί,μ) ,p)) applies, i.e., one can

speak of

(80) 3 — ^ (E , where (E Ξ (G (f))^^^r is
 a
 mean-zero Gaussian process with

n μ μ μ f Efr

covariance structure (cf. (78))

cov(G ( f^ , G (f )) = J f,f9dμ - J f dμ •/ f dμ.
μ - L μ i X λ Z X ± X
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If (80) holds true, f is called a μ-DONSKER CLASS OF FUNCTIONS.

Generalizing Theorem A from classes of sets to classes of functions the

main result of R.M. Dudley (1981a) is:

(81) Suppose (M ) (which means here that 6 : X -> S(?F,μ) is measurable from
o n

]N
the measure-theoretic completion of (X ,B , x μ) to

M
 IN

(S(f,μ), B ^ S ^ μ ^ p ) ) ) and suppose that F := sup{|f|: f G f } G L
P
(X,B,μ)

for some p > 2; assume further that for γ with 0 < γ < 1 - 2/p and some

M < °°

(E ) N (ε,OF,μ) ̂  exp (M ε ) for ε small enough.

Then tF is a μ-Donsker class.

In this connection, N (ε,ίF,μ), a natural extension of N (ε,C,μ), is defined

2

as the smallest m E ]N such that for some f
Λ
 ,...,f E l (X,B,μ) (not necessarily

1 m

in tF), for every f E tF there exist j ,k ύ m with f.(x) ^ f(x) ̂  f\(
χ
) ^

O Γ a
-^

3 *
x E X and such that J (f - f.)dμ < ε.

χ
 K 3

Note that for f = 1^ with C C β one has for any μ

(82) N_(ε,l
Γ
,μ) ύ N

χ
(ε,C,μ) ύ 2 N (ε,l

p 9
μ).

In fact, as to the first inequality, suppose that n := N (ε,C,μ) < °°; then

there exist A ,...,A E B such that for every C E C there exist i,j with

A. C C C A. and μ(A. \ A.) < ε. Take f. := 1
Δ
 , i=l,.,.,n

9
 to obtain

1
 3 3 ! -

1
 i

f
i
 E L

2
(X,B,μ) so that for every f = 1

Q
 f

±
 £ f £ f. and J(f. - fjdμ

= μ(A.\A.) < ε. To verify the second inequality, let m := N (ε,l^,μ) < °°;

then there exist f.,...,f E L
2
(X,B,\i) such that for every f = 1 E l

p
 there

exist j,k ^ m with f. £ 1 £ f and J(f, - f.)dμ < ε. Taking as A ,. . , ,A

all sets of the form if. > 0} and if. ̂  l}, i=l,...,m, we obtain that for

every C E C there exist j ,k ύ 2m such that A. C C C A^ and μ(A^\A.) < ε in

3
 κ κ

 3
fact, A. := if. > 0} and A, := if ^ 1} serves for this.

3 3 K K

(83) (R.M. Dudley (1981a)): as p -* » the condition on γ in (81) approaches

γ < 1; if ί is a collection of indicator functions of sets, i,e.,
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tF = l
c
 for some C C δ, then (E

2
> does imply (E ) for C (cf (82)). For

γ = 1 it appears that (81) fails, specifically it fails when if is the

collection of indicator functions of convex sets in ]R and μ is Lebesgue

measure on the unit cube (cf. (63) and its consequences).

Now, if one would try to infer (79) from (81), there is the problem of

verifying (E ); on the other hand the condition on the envelope function F im~

posed in (81) is rather restrictive since this forces q to be in L. (X,B,μ)

for some p > 2 (cf. instead the condition (iii ) imposed in the definition of

ζL). But, from another point of view, the class

f - {q~ (t) lr -,; t € [0,1]} considered in (79) is of the following

special form:

fo = { V gt: t e [0'1]} with fo = q'1 and gt ( s ) ;=

where % r τ + 0 as s -> 0.
q(t)

Thus, restricting our attention at this place to weight functions q for

which q is continuous, monotone decreasing on (0,1/2), symmetric around

s = 1/2 and such that q (s) ̂  <5 > 0 for all s 6 [θ,ll, then there exists some

M < oo such that for each t E [θ,l] sup |g Cs) | ̂  M and such that

s6[0,ll
 t

{g ((a,b]): a < b} forms a Vapnik-Chervonenkis class,

since for each a < b g ((a,bl) consists of one or at most two disjoint

intervals (c,d] in [θ,l] (cf. FIGURE 5).

Thus, the following result of R.M. Dudley (1981b) gives another way to

obtain (79) (for proper weight functions q):

(84) Suppose f = {f g: gE^} where for some constant M < °° and some (suitably

measurable) Vapnik-Chervonenkis class C

a) $= ί g : X + [-M,M], g " 1 ( ( a , b ] ) € C Va<b} and

-2 -3
b) f £ 0 , f i s measurable and μ({f > t } ) = β r ( t ( log t ) ) as t->«

o o o

for some β > 4,

then f is a μ-Donsker class.
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FIGURE 5

Note that b ) , even for 3 > 1, implies f 6 L (X,B,μ). Conversely, the condition

on μ(ίf > t}) is implied by f 6 L
P
(X

9
B,μ) for some p > 2.

Note also that by taking f = 1 one obtains Theorem D as a corollary of (84).

In this context the following result of D, Pollard (1981a) extends a special

2
case of (84) to the case where only f E ί (X,B,μ) is assumed:

(85) If f € L (X,B,μ) and if C is a Vapnik-Chervonenkis class of sets,

then (for a separable version of &^ Ξ (& (f ) )
f e
f) > f : = ίf

Q
 l

c
: C G C}

is a μ^Donsker class.

(c) STRONG APPROXIMATIONS (cf. Gaenssler-Stute (1979), Section 3,

concerning results for the uniform empirical process α ).

In a recent paper by R.M. Dudley and W. Philipp (1983) almost sure and

probability invariance principles are established for sums of independent not

necessarily (Borel-)measurable random elements with values in a not necessarily
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separable Banach space like the closure of D (C,μ) in (I (C),ρ) fitting readi-

ly into the theory of empirical C-processes β = ((3 (C))-,
cr
, being now viewed as

partial sum processes

-1/2
 n

β = n
 ±/Z

 Σ ζ

i=l
 X

with ζ
±
 Ξ (ζ

i
(C))

c e C
 defined by ζ.,(C) := l

c
(ξ

1
) - μ(C)

(for a given sequence (ξ.). of random elements in (X,8) with distribution μ

on β) having its values in D (C,μ).

In an analogous way the same viewpoint applies for empirical tF-processes.

This approach of getting strong resp. weak invariance principles has the

advantage that one can bypass most of the problems of measurability and topo-

logical characteristics which occurred in our theory of L, -convergence where

it was essential to choose proper sample spaces S and S for the processes

β and £ , respectively, together with suitable σ-algebras in S and S on which

the laws of 3 and Φ could be defined,
n μ

On the other hand, we think that the availability of the presented theory

of weak convergence of empirical processes is at the least necessary to support

Dudley's and Philipp's claim that strong approximation results are strengthened

versions of functional central limit theorems.




