
1. Introduction and some structural properties of empirical measures.

Many standard procedures in statistics are based on a random sample

x ,...,x of i.i.d. observations, i.e., it is assumed that observations (or

measurements) occur as realizations (or values) x. = ξ.(ω) in some sample space

X of a sequence of independent and identically distributed (i.i.d.) random ele-

ments ξ ,... ,ξ defined on some basic probability space (p-space for short)

(Ω,F,IP); here ξ is called a RANDOM ELEMENT in X whenever there exists a (Ω,F,P)

such that ξ: Ω •*• X is F,B-measurable for an appropriate σ-algebra B in X, in

which case the law μΞ [{ξ} of ξ is a well defined p-measure on B

(μ(B) =P({ωEΩ: ξ(ω)GB}) =P(ξEB) for short, BGB).

In classical situations, the sample space X is usually the k-dimensional

Euclidean space ΊR , k^l, with the Borel σ-algebra 43,. In the present notes, if

not stated otherwise, the sample space X is always an arbitrary measurable

space (X,B).

Given then i.i.d. random elements ξ. in X = (X,B) with (common) law μ on B

we can associate with each (sample size) n the so-called EMPIRICAL MEASURE

( 1 ) μ := - ( ε r + . . . + ε r ) on B,
n ξ>1 ξ n

{ 1 i f xGB
, BeB.

0 i f xtB

In other words, given the first n observations x. = ξ.(ω), i=l,...,n,

μ (B) Ξμ (B,ω) is the average number of the first n x.'s falling into B. (The

notation μ ( ,
ω
) should call attention to the fact that μ is a random

n n

p-measure on B.)

μ may be viewed as the statistical picture of μ and we are thus inte-

rested in the connection between μ and μ, especially when n tends to infinity.

n
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In what follows, let C be some subset of 8 (e.g., C = {(-»,t]: tθR }, the class

of all lower left orthants in X = E , or the class of all closed Euclidean

k
balls in ]R , to have at least two specific examples in mind). Denoting with 1

the indicator function of a set CEC, μ (C) can be rewritten in the form

Now, since the random variables 1 (ξ.), i=l,2,... are again i.i.d. with common

mean μ(C) and variance μ(C)(l-μ(C)), it results from classical probability

theory that

(2) (Strong Law of Large Numbers): For each fixed CEC one has

μ (C) -> μ(C) F-almost surely QP-a.s.)

as n tends to infinity.

(3) (Central Limit Theorem): For each fixed CEC one has

1/2 L —

n ' (μ (C) - μ(C)) + G (C) as n tends to infinity,

where G (C) is a random variable with

L{G
μ
(C)} = N(O,μ(C)(l-μ(C))).

(4) (Multidimensional Central Limit Theorem): For any finitely many
C
l

5
 " ''

C
k

e C O n e h a S

{n
1/2
(μ

n
(C.) - μ(C.)) : j=l,...,k} k {G

μ
(C.) : j=l,...,k}

as n tends to infinity, where Φ = (G ( C ) )
n c P
 is a mean-zero

μ μ Let

Gaussian process with covariance structure

cov(G (C), G (D)) = μ(CΠD) - μ(C)μ(D), C,DEC.

Here, according to Kolmogorov
f
s theorem (cf. Gaenssler-Stute (1977), 7.1.16),

— C
Φ is viewed as a random element in (IR , β

p
) , where B

n
 Ξ & IB denotes the pro-

μ t L p

C

duct σ-algebra in ]R of identical components β, β being the σ-algebra of Borel

sets in ΊR,

In this lecture we are going to present uniform analogues of (2) (with

the uniformity being in CEC) known as GLIVENKO-CANTELLI THEOREMS (Section 2)

and functional versions of (4), so-called FUNCTIONAL CENTRAL LIMIT THEOREMS

(Section 4 ) ; an appropriate setting for the latter is presented in Section 3
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which might also be of independent interest. First we want to give insight into

some more or less known

STRUCTURAL PROPERTIES OF EMPIRICAL MEASURES:

For this, consider instead of μ the counting process

N (B) := nμ (B), BEB.
n n

Note that L{N
n
(B)} = Bin(n,μ(B)) (i.e., F(N

n
(B)=j) = (* )μ(B)

 j
( l-μ(B) f"

2
 ,

j=O,l,...,n). The following Markov and Martingale properties associated with

empirical measures are well known; since however specific references are not

conveniently available, and especially not in the set-indexed context of these

lectures, we present detailed derivatives.

LEMMA 1 (MARKOV PROPERTY). For any 0 = B
Q
C B ^ . . . C B J ^ C B

R
C B

R + 1
 = X with

B.eB such that for D. := B.\B , μ(D.)>0, i=l,...,k+l, and for any

0 ̂ m ^ . . .̂ m, . ύ ΠL ^ n with m. E {0,1,... ,n} one has

Proofs 3P(N
n
(B

k
)=m

k
|N

n
(B

1
)=m

1
,...,N

n
(B

k
_

1
)=

m k
_

1
)

" • _ _ -
:
 —

 9 s a
y

9
 where

a =P(N
n
(D

1
)=m

1
,

1

n
1
(m

2
-m

1
)!...(m

k
-m

k
_

1
)!(n-m

k
)!

m. m_-m. m. .-m.
1
 /Γ
. x 2 1 ,_ x k-1 κ-2

3 (
" - \ - l

) !
 u(D

k
)

whence — =

b (m
k
-\i>

!
<
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proving equality of

the first and third term in the assertion of the lemma; the other equality-

follows in the same way by just taking B
19
...,B out of consideration. D

J. K — Z

Corollary. Let C be a subset of B which is linearly ordered by inclusion

then (N ( O )
 r

 is a Markov process.

Lemma 2. Let B68 be arbitrary but fixed such that 0 < μ(B) < 1 and let

C Ξ B ( B ) C B be linearly ordered by inclusion with B as its smallest element;

then for 0 £m <n

where N (D) := N μ (D), μ being the empirical measure pertaining to i.i.d.

random elements X. in (X,B) with L{"ξ. } =μ and μ(D) :=
 μ (

y ^ ^ for D€B.
l l μv.v o /

(Here the laws L{...} are considered to be defined on the product σ-algebra

in ]R and CB denotes the complement of B in X.)

Proof. It suffices to show that the finite dimensional marginal distributions

coincide.

1) As to the one-dimensional marginal distributions, let BEB with BQ3 be

arbitrary but fixed; then it follows from Lemma 1 that for k^m

n-k

(B) =k|N (B) =m) =
n

N (B) k|N
n n

k-m

μ(B\B)\ k~m / μ(B\B)
1

μ(CB)/ I μ(CB)

k-m

L L
On the other hand, taking into account that 1 (ξ.) = 1 \—(ξ.) (where = means

equality in law) and therefore N (B) = N (B\B) for any BGB with BCβ, one

obtains that

n-m \
μ(B)K m ( l - μ ( B ) ) n k =P(N (B) =k-m)

k-m / n ~ m

(B\B) =k-m) =]P(m+N (BVI)=k)n-m n-m
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proving the coincidence of the one-dimensional marginal distributions.

2) As to higher-dimensional marginal distributions, let us consider for sim-

plicity the two-dimensional case (the general case runs in the same way):

For this, let B^B, i=l,2, with B C B ^ B be arbitrary but fixed; then for

P(N (B)=m, N ( B 1 ) = k 1 , N ( B o ) = k o ) a
_ n n l l n z 2
- — — =: — , say, where

P ( N ( B ) = m ) b

= P ( N n ( B ) = m , Nn(B1\B) =k 1 -m, N n (B 2 \B 1 ) = k 2 - k l 9 Nn

Ώ ! ( k 1 - m ) ! ( k 2 - k 1 ) ! ( n - k 2 ) !

/ n \
b = μ(B)m(l-μ(B))n m , whence

(n-m)!

and

b (k 1 -m)!(k 2 -k 1 )!(n-k 2 )! μ(Cl)

(n-m)!

n-m

(n-m)!

m ' V m ( B 2 N 5 ) =

. D
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LEMMA 3 (MARTINGALE PROPERTY). Let CCβ be linearly ordered by inclusion such

that μ(CB) >0 for all BGC; then, for each fixed n,

N
R
(B) -nμ(B)

I is a martingale, i.e., for each B, BGC with BQ3 one has

N (B)-nμ(B) N (B)-nμ(B)

I P-6E| -2 |N (D) :

μ(CB)
 n

 \ *
 d < B

 μ(CB)

Proof. Since (N (C))
ne
-n is a Markov process (cf. Corollary to Lemma 1), it

follows that

N (B)-nμ(B) \ /N(B)-nμ(B) \

— |N (D) : CΞDCB = El — |N (5) ,

μ(CB) Π / ^ a S* J μ(fB) n J

N (B)-nμ(B) \ / N (B)-nμ(B)

where P. I J | N ( B ) ( ω ) = E ^ n _ _ J N ( g ) =

for all ω G {N (B) =m}, m=O,l,. .. ,n.

I N ( _

— IN (B) =m

N (B)-nμ(B)

μ(CB)

I m+N _ (BNB) \ nμ(B) m+(n-m)μ(B) nμ(B)

μ(CB) I μ(CB) μ(CB) μ(CB)

mμ(Cl) + (n-m)μ(BΠCI) ^ nμ(B)μ(CB)

μ(CB)μ(CH) (μ(BΠffi

m-my(B)+nμ(B)-mμ(B)-nμ(B)+mμ(B)-nμ(B)+nμ(B)μ(B)

μ(CB)μ(CI)

(l-μ(B))(m-nμ(B)) m-nμ(B)

μ(CB)μ(CB) μ(CB)

( N (B)-nμ(B) \ N (B)-nμ(B)

— |N (1) = -^
 t

 D
n
 /

Let us make at this place a remark concerning the covariance structure of

(N (B))
 β
 supplementing the properties (2)-(4 ) on page 2:

n Bto
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It is easy to check that for any B.EB, i=l,2,

(5) E(N
n
(B

1
)N

n
(B

2
)) = nμ(B

1
ΠB

2
) + n(n-l)μ(B

1
)μ(B

2
),

whence E U ^ B ^ N ^ B ^ ) = n(n-l)μ(B
;L
)μ(B

2
) if B

x
nB

2
 = 0;

together with E(N (B
1
>)E(N (B

2
>) = n

2
μ(B

1
)μ(B

2
) this yields

cov(N
n
(B

1
), N

n
(B

2
)) = - nμ(B

1
)μ(B

2
) Φ 0 if B . ^ = 0 and

therefore, B Πβ = 0 does not imply that N (B ) and N (B ) are indepen-

dent. (For the uniform empirical process, to be considered later, this

implies that it is not a process with independent increments.) This

situation changes if one considers instead the following

(6) POISSONIZATION: Let v be a Poisson random variable (defined on the same

p-space as the ξ.
f
s) with parameter λ and let for BGB

v(ω)

M(B) Ξ M(B,ω) := Σ l_(ξ.(ω)), ω€Ω.
i=l

 B X

Assume that v is independent of the sequence (ξ.). .

Then, for any pairwise disjoint B.GB, j=l,...,s, the random variables

M(B.), j=l,...,s, are independent.

Furthermore, for any BGB and any k£{0,l,2,...} one has

]P(M(B)=k) =
 ( λ

^
B ) )

 exp(-λμ(B)).

Proof. Let us prove first the last statement:

£ a

F(M(B)=k) =P( U { Σ l
R
(ξ.)=k, v=£}) = Σϊ( Σ l

R
(ξ. )=k) P(v=£)

B X B x

Σ φμ(B)
k
(l-μ(B))*~

k
 ^- exp(-λ)

or
Σ
 k'fΓ

(**=:») kl — l
m
,

0
 ml I" kl
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s s

As to the independence assertion let B := C( U B . ) , k := Σ k .
5
 and

S + 1
 j=l

 ]
 3=1

 3

k
r
, := l-k for iik. Then

I

P(M(B.) = k., j=l,...,s) = P( U { Σ l
β
 (ζ

±
) = k., j=l,...,s+l; v=A})

J6=k l-l 3

= Σ P( Σ L (ξ ) = k., j=l,...,s+l)P(v = £)

^ ^ _ exp(-λ)

.(*), where

k.

s (λμ(BJ)
 3

= Π 2 exp(-λ)'

j=l
 k

j
!
 Lm^O

[ ] = exp(λμ(B
s + 1

)), whence

s+1 s

exp(-λ) [ ] = exp(-λ( Σ μ(B.))) exp(λμ(B )) = exp(-λ( Σ μ(B.))).

Therefore

(*) = π
 V A μ

^ ]
/ y
 ' exp(-λμ(B.)), D

Later we will consider for a given CCβ the so-called EMPIRICAL C-PROCESS

3
q
Ξ (3

n
(C))

c e C
 defined by

3
n
(C) := n

1 / 2
(μ

n
(C)-μ(C)), CeC.

Using (5) one obtains

cov(3
n
(C

1
), 3

n
(C

2
)) = μ(C

1
ΠC

2
) - μ(C

1
)μ(C

2
), C

l 5
C

2
GC.

1/2
 Π

Furthermore, n ' (3 (C ) - 3 (C
9
)) = Σ η.(C

 9
C ) with

n n
 i = 1

 l

η. Ξη.(C
i 5
C

0
) := l

p
 (ξ.) - l

p
 (ξ.) - (μ(C-) - μ(C

o
)) being independent and

i l 1 ^ C
1
i C

2
 i 1 I

identically distributed with E(η.) = 0 and

Var(η.) = μ(C AC ) - (μ(C ) - μ(C )) ύ μ(C AC ), whence the following

Bernstein-type inequality applies (cf. G. Bennett (1962)):
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(7) Let η ,η ,... be a sequence of independent random variables with

E(η.) = 0 and Var(η.) = σ. and suppose that sup|η.| ^ M for some

n
 2

 n

constant 0<M<«; let S := Σ η. and τ := Σ σ. then for all n and
n
 i=l

 ί n
 i=l

 ί

ε>0

ε
2
/2

K S £ε) ̂ exp ( ).
n
 +M/3τ +εM/3

n

From (7) we obtain immediately

LEMMA 4. For every n and a>0 one has for any C.EC, i=l,2,

2

_ t na x

2exp ( γγz )
2nμ(C1ΔC )+4n 7 a/3

2

(i)

(ii)

P( 3
n
(C

and for

Γ( β
n
(C

any CEC

) ̂  2exp (-

We will conclude this section with a further fundamental property concer-

ning the so-called EMPIRICAL C-DISCREPANCY

D (C,μ) := sup|μ (C)-μ(C)|.
n
 CGC

 n

In what follows we shall write ||μ -μ|| instead of D (C
5
μ) and we assume

that ||μ -μ|| is a random variable, (i.e. F,β-measurable)
 t
 Then:

LEMMA 5. (|| μ -μ || ) is a REVERSED SUBMARTINGALE w.r.t. the sequence of
—————— ~[\ TitHN

σ-fields G := σ({μ (B), μ (B),... : BEB}) which means that for each m, n

with m^n

| ) S j jμ-μi| P-a.s.

Proof. As shown in Gaenssler-Stute (1977), 6.5.5(c), the following holds:

For each CGC the process (μ (C)-μ(C) )
n 6 J N

 is a REVERSED MARTINGALE w.r.t.

i.e., for each m, n with m^n one has

therefore

E((μm(C)-μ(C))|Gn) = μn(C)-μ(C);

TE(supjμ (C)-μ(C) | I G )
y~,^n m I ncec m
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^ sup| E((μ (C)-μ(C))|G )| = sup|μ (C

C6C
 m Π C€C Π

Now, as in the case of submartingales, there holds an analogous CONVER-

GENCE THEOREM FOR REVERSED SUBMARTINGALES (cf. Gaenssler-Stute (1977), 6.5.10)

stating that for any reversed submartingale (T ) ̂  (on some p-space (Ω,F,]P))T

w.r.t. a monotone decreasing sequence (G ) _ of sub-σ-fields of F satisfying

the condition that inf E(T )>-» there exists an integrable random variable T^

n

such that T -*T P-a.s. and in the mean,
n °°

From this and Lemma 5 one obtains a rather simple proof of the following

result (cf. D. Pollard (1981)) which, in a similar form, was one of the main

results in Steele
!
s paper (cf. M. Steele (1978)) proved there with different

methods based on the ergodic theory of subadditive stochastic processes.

LEMMA 6. Let (v ) ̂  be an arbitrary sequence of non-negative integer valued

]P IP
random variables on (Ω,F^P) such that v -»• » (where + denotes convergence in

probability; also here and in the following all statements about convergence

are understood to hold as n tends to infinity). Then

| |μn-μ||->0 P-a.s, iff | |μv -μ|i ? 0;

n

in particular, |jμ -μjj •> 0 ΊP-a.s, iff jjμ -μ|| •> 0.

(Note that according to our measurability assumption on ||μ -μ|| also the

RANDOMIZED DISCREPANCY ||μ -μ|| is a random variable; in fact,

n

ίω: || μv ( ω ) ( ,ω)-μ|| £a} = υ {vn=j}Π{||μ - μ | | <;a} for each a*0.)
n j£ΣZ

Proof. 1.) Only if-part: v ->• °° implies that for any subsequence (v
 f
) of (v )

_______ j} n n

there exists a further subsequence (v
 !f
) such that v „ •> » P-a.s.,whence

|| μ -μ|| -> 0 P-a.s. as n" tends to infinity, and therefore ||μ -μ|| ->- 0.

n" n

2.) If-part: According to Lemma 5 the process (||μ -μ||,G ) is a reversed sub-

martingale. It is uniformly bounded; therefore, by the convergence theorem for

reversed submartingales mentioned before, there exists an integrable random
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variable Ί
m
 such that ||μ -y|| -> T^ P-a.s. From this it follows as in part 1.)

TP
of our proof that ||μ -μ|| •> T , whence, by assumption, it follows that

n

T =0 IP-a.s. D




