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1. Introduction

The subject of nonparametric estimation of the survival function from

incomplete or censored observations has received much attention for more than

two decades. We may cite here the celebrated work of Kaplan and Meier (1958)

where a product-limit (PL-) estimator of the survival curve is obtained from a

sample in which each lifetime may be truncated (fixed censorship) due to limits

on observation. In Breslow and Crowley (1974) the properties of this estimator

are considered in the case of random censorship, where each lifetime has its

own censoring random variable, and the lifetimes and censoring times being each

independent and identically distributed (i.i.d.) sequences and also independent

of each other. By utilizing the notion of Dirichlet process priors introduced

by Ferguson (1973), Susarla and Van Ryzin (1976) obtain a nonparametric Bayesian

estimator of the survival function which generalizes the PL-estimator of Kaplan

and Meier.

The basic formulation in these works involves consideration of a random

sample of lifetimes X ,...,X which may not be completely observable due to the

26



27

existence of corresponding censoring variables Y-,. .. ,Y . The recorded data

for the sample is therefore (Z-,δ^),.. ., (Z ,6 ) where Z. = min(X. ,Y.) and δ . *= 0

or 1 according as X. >Y. or X. <_
γ
 • I

n
 several longitudinal investigations the

v a r i a b l e s { Z . : K i < n} a r e t i m e - o r d e r e d : Z / 1 N < Z / n λ < •< Z, N . The f i r s t
i — — ( 1 ; — (2) — — (n)

observation Z.-v is the smallest one followed by the next smallest Z.«v and so

on until the largest observation Z
(
 . is recorded last. In these circumstances

cost and time limitations often preclude prolonged experimentation until the

complete set of data {(Z.,ό.): l < i < n } has been recorded. Furthermore, cogent

ethical reasons make it imperative that observation be ceased at the earliest

possible stage if the current accumulated data warrants a clear statistical

decision. Thus a progressively censored scheme may be advocated in which

observation is curtailed at an intermediate stage determined by the cumulative

statistical information. If the experimentation is terminated at the k

n

stage, where k ε{l,...,n} may be a stopping time, then the recorded data are

{(Z..v,δ*): l £ i £ k K with δ* = 0 or 1 according as Z,.. is a censoring time

or a true lifetime. The only information available on the remaining n - k units

is that both their censoring and survival times exceed Z
n
 .; that is
C
 V

z
ω

In this paper we construct a nonparametric Bayesian estimator, under

ω
> z
( k

n
) > J-κ

n
 + i. ...*.

squared error loss, for the survival function F from the data {(Z...,δ*):

l<i<^k Z...>Z, ., j = k +l,...,n} when F follows a Dirichlet process prior.

Our estimator thus generalizes, to the progressively censored case, the esti-

mator of Susarla and Van Ryzin (1976) and encompasses both fixed and random

censorship. It includes, of course, the cases in which the complete sample is

observed (k = n), an extension of an estimator of Ferguson (1973) when no cen-

soring is present and the Kaplan-Meier estimator. It should be noted that in

a progressively censored scheme as described here the observed duration varia-

bles {Z , : l ^ i £ k } and their corresponding identifiers {ό*: l £ i ^ k } are

neither independent nor identically distributed. The absence of this important

technical facility in the case of progressive censoring (which is available

when the complete data set is observed as in the works cited earlier) introduces
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additional complications and subtleties in the analysis of progressively cen-

sored schemes. For some applications of progressive censoring see Sen, et al.

(1973, 1978, 1981).

The substantive material in this paper is distributed in the following

three sections. Section 2 introduces the basic assumptions, notation and pre-

liminary notions and provides a brief genesis of our estimator. Various special

cases are also dealt with here. We have placed the laborious technical mani-

pulations of construction in Section 4, while Section 3 provides a numerical

example.

2. Preliminaries

We are concerned with longitudinal studies in which n specimens under

test are followed from the onset with either the time to decrement (survival

time) X or its competing censoring time Y recorded for each unit up to the time

of the k ^ response, kε{l,...,n}. We suppose the survival distribution F of

X is a Dirichlet process (for the definition of a Dirichlet process and other

terms, See Ferguson (1973)) and given F, the survival times X_,,.»,X of the

sample are independent and identically distributed (with distribution 1-F).

Furthermore, we consider the corresponding censoring times Y^,..,,Y to be

independent of F, X-,...,X , but make no further assumptions on the distri-

bution of the Y.
?
s themselves.

The objective is to estimate the survival curve

(1) F(t) = P[X> t|F], t_> 0 .

We do not have at our disposal the complete set of data {(Z.,δ.): l<^i<n}

where

Z
±
 = min(X

i
,Y

i
)

δ. = 0 or 1 according as X. >Y. or X.£Y. ,
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but rather the first k order statistics {Z......,Z..} from {Z ,,..,Z } and

\±) \k ) 1 n

their corresponding identifiers {<$.,..., 6?}, where 6.=1 or 0 according as Z...

IK. l (i;

is a survival time or censoring time, as well as the information that Z..v>Z~
v j ) \K

j=k+l,...,n. On the basis of these recorded data we seek the Bayes estimator

F(t) of F(t) under the loss £

(F(x) - F(x))
2
dw(x)

where w is a weight function. Thus F(t) is simply the posterior conditional

expectation of F(t) given the data that is, we need to evaluate E(F(t) |(Z. .^,6^) :

l £ i < k , Z..V >Z.,v, j = k + 1,... ,n) , where E denotes expectation with respect

to the Dirichlet process with parameter α. As argued in Susarla and Van Ryzin

(1976) this may be accomplished in two stages. First relabel the data

{ ( Z
(i)'

6
i

) : 1
!

i
l

k
*
 a s f o l l o w s :

l e t Z
(1)
,...,Z

(Jl)
and Z

( £ + 1 )
,... , Z

( k )
 denote ,

respectively, the ordered survival times and ordered censoring times recorded

among Z .- v ,... ,Z .. . . Now consider a random sample of size £, say rL,...,ru

from a Dirichlet process ξ with parameter α and then a random sample size (k-&)

say Π Λ M , . . . , ^ , from the conditional process of ξ given η-,... ,TU. Then this

conditional process is itself a Dirichlet process with parameter 3, with 3

given by

β(O = β( ) + I lr ,(•) .

Therefore if the conditional process of F given (Z.-v,1),.*.,(Z... ,1) is a

Dirichlet process with parameter

(2) 3 = α + I Ir * -,
i=l

 i Z
( i )

;

then the construction of our estimator F(t) reduces to the evaluation of

E(F(t) I (Z* ,0) : l< i<k, Z... > Z. . , j = k + 1,. . . ,n) , where E now denotes
(1/ \3) \^/
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expectation with respect to the distribution of the Dirichlet process with

parameter β of (2). This will be shown to reduce to

E(F(t) { Π F(Z* )} {F(Z
Π k

(3) F(t) =

Π F(Z*

We shall defer the details of the evaluation of (3) to Section 4, The final

form of F(t) can be written as

(4) F(t) = B(t)W(t)

where

B(t) =

N
+
(t) + (n-k)

W(t) = Π

α(Z
(i)
,oo) + N (Z

( j )
) + (n-k) + λ,

α(Z
(j)
,°o) + N

+
(Z

( j )
) + (n-k)

[z
(J)
<t, δ.=o]A.

α(Z
 (k)
»°°) + (n-k)

and [A] denotes the indicator of a set A. Also,

N
+
(t)= I [Z

( j )
>t]

α(R
+
)
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λ. =number of censored observations tied at
 z
/.\»

 a
nd f: in an exponent is inter-

preted as unity. It is easy to see that F is left continuous at censored ob-

servations provided the measure α has no atoms at these points.

Several special cases follow from (4):

(a) Suppose the entire data set {(7,.
 9
6^) : l £ i £ n } is available. Then setting

k = n throughout we obtain

(5) F(t)
+ N

+
(t)

n

Π

α(Z.,°°) + N (Z.) + λ.
z._t

9
δ.

which is the estimator given by Susarla and Van Ryzin (1976). It is also

shown there that in the limit α(R )+0, (5) reduces to the Kaplan-Meier product-

limit estimator. If, however, we have only the partial data set {(Z..v,δ.):

1 < i < k, Z..
λ
 > Z

/ N
, j = k + l,...,n} of a progressively censored sample, then

for t<Z,,v, the limit of (4) as α(R ) -* 0 is

(6)
N

τ
(t) + (n-k)

N
+
(Z

(
.

)
) + (n-k) + λ.

N
+
(Z

( j )
) + (n-k)

[Z
( j )

£t,ό
j
=0]/λ

j

Now writing
N

+
(t) + (n-k)

-̂̂  —

N (Z
(
.

}
) + (n-k)

N
+
(Z

( j )
) + (n-k) +

λ* is the multiplicity of Z..,, we find that (6) reduces to

where

(7)
k

Π
N (Z

( 1 )
) + (n-k)

N
+
(Z

( j )
) + (n-k) + λ*

[Z
( j )

<t,6*
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If there are no ties among the uncensored observations this is precisely the

product-limit estimator for t<Z,,v. When t > Z
n N
 the behavior of F depends

on α even in the limit and we cannot recover F since for any M > 0 one can choose

measures OL ,α« which agree on (0,M] but differ on (M,°°) .

(b) Suppose that in addition to the entire set {(Z.,0^: l £ i £ n } being avail-

able there is no censoring present. Then setting k = n and \_Z ... ^ t ^ = 0] =0

in the terms following (4) we obtain

(8) F(t)
α(,t,°o) + N (t)

+ n

which is the estimator of F(t) proposed by Ferguson (1973). Again in the limit

as α(R
+
)+0, (8) reduces to

(9) ί
 (t)

[X, > t] ,

which is the empirical survival function of X_,...,X .

On the other hand, if under a progressively censored scheme the only

* ) : l £ i £ k Z > Z , , . , j = k + 1 , . , . ,n}, then the

\ reduces (4) to

available data are {(Z,..,δ*): l £ i £ k , Z

absence of observed censoring times among Z._.,...

(10) F(t)

α(t,oo) + N
+
(t) + (n-k)£t<Z

( k )
]

a(R
+
) + n

α(Z
(k)
,«Q

«(z
w
,.)

We may thus regard (10) as the appropriate generalization of the Ferguson

estimator (8) to the progressively censored case. Observe that if t<Z,,.,

the limit of (10) as α(R ) •* 0 is again the empirical survival function (9) .

For 12l
z
/vx this limit will depend on α and our previous remark in (a) applies.
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With the restrictions noted here we depict the interrelation among the various

estimators of F(t) diagrammatically in Figure 1:

Our estimator (4)

Susarla-Van Ryzin
estimator (5)

Kaplan-Meier
estimator (7)

k = n

no censoring

no censoring

Generalized Ferguson
estimator (10)

k = n

Ferguson estimator (8)

α(P ) + 0

empirical survival function (9)

FIGURE 1: Various estimators of F(t)

3. A Numerical Example

We illustrate here the power of a progressively censored scheme with

the partial data set ί(Z
( i )

,δ*): l £ i £ k , Z >Z , j = k + l,...,n} (k < n) to

yield results that are almost in agreement with those obtained when the com-

plete survival profiles {(Z.,<$.): l £ i £ n } of the sample have been recorded.

The data, taken from Johnson and Elandt-Johnson (1980) (p. 179) represent the

survival times in weeks of 81 patients in a melanoma study conducted through



34

the Central Oncology Group at the University of Wisconsin, Madison.

The censored survival times are indicated by a + sign.

136,

194+,

54,

103,

81+,

132+,

118,

26,

70,

58,

14,

98,

59,

152+,

140+,

53,

102,

73+,

55+,

90,

193+,

134+,

125+,

32,

120+,

93+,

19,

181+,

20,

138,

147+,

151+,

130+,

66,

80+,

38,

21,

130,

141,

152+,

34,

38,

46,

60,
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190+,

215+,

67+,

40,

27,

129+,
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21+,

76+,
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124,

50,

34,

148+,

100+,

114+,

44+,

13,

234,,

108+,

26,

57,

27,

19,

124+,

23,

16+,

We choose for our parameter α the measure generated through α(t,°°) = exρ(-θt),

t>;0 where θ > 0 is a real parameter. Since from (1) E(F(t)) = α(t,°°)/α(R ) =

—fit*
e (expectation with respect to the Dirichlet process F ) , we estimate θ by

k . k

A reason for this is that when the censoring times {Y.: 1< i < n } are i.i.d. and

the survival times are i.i.d. with survival distribution F
n
(t) = exρ(-θt) then
0

v

-1,
{θ : n ^ l } converges in probability to θ when n k •> 1 as n->°°. We have com-

n

 Λ
~
 Π

puted F(t) in three cases: 1) k = n = 81; 2) k = 73 and 3) k=65. The agree-

ment between the three curves is very good for time points < Z
(k)

t =

1)

2)

3)

25

.89779

.89736

.89691

44

.74449

.74382

.74317

54

.69184

.69107

.69034

65

.61091

.61005

.60925

76

.59691

.59597

.59512

100

.54368

.53361

.53267

148

.35401

.35259

.34307

190

.31245

.24209

.22655
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4. Proofs

Recall the notation introduced in Section 2. The proof that the conditional

process of F given {(Z..v,l): l^.i_5.&} ^
s a
 Dirichlet process with parameter 3

as specified in (2), follows along exactly the same lines as that of Theorem 4

in Susarla and Van Ryzin (1976). In order to demonstrate (3) write

(11) E ( F ( t ) | ( Z * ± ) , 0 ) : J K i £ k ) = j P[F(t) > a | (Z*± ) ,0) : J l<i£k]daί.
where E denotes (and in the sequel) expectation with respect to the Dirichlet

process with parameter 3. Now for l<±<_k, δ.=0, Z.. =X. Λ Y , =Y. SO that

X*>Z* and for k < j < n of course X., Y* > Z where Z. =X* Λ Y*, Therefc
i \]-) 3 3 \* ) \3) 3 3

the integrand in (11) may be written as the ratio I-./ϊo where

(12) I.. = E(P[F(t) > a , X. ε ( Z , . . , » ) , I < i < k, X., Y. ε ( Z n λ,°°), k < .

F(t), F ( Z
( k )

) ,

and I« is the resulting expectation obtained by suppressing both F(t) and

"F(t)>a" in (12). Since (Y
n
 ,. . . ,Y ) is independent of (F, X

Ί
 ,. . . ,X ) and

I n I n

including the terms Z* Ξ X* ε (0,oo) (when δ* = 1) , l < _ i £ £ we get on

s i m p l i f i c a t i o n

(13) I χ = E ( [ F ( t ) > a ] P [ x * ε ( 0 , ~ ) , l<±<_lf X* ε (Z*. ) }«>)

X * ε ( Z ( k ) , « ) , k < j £ n | F ( t ) , F ( Z ( k ) ) , F ( Z * ± ) ) , £

• P [ Y * ε ( Z ( k ) , c o ) , k < j £ n ] .
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Likewise I
2
 is obtained from (13) by suppressing [F(t)>a] and F(t). Since

{X ,...,X } is a random sample from F,the inner conditional probability in (13)

is almost surely

k

(14) { Π F(Z )} {F(Z ) }
n
"

k
 .

Finally, using (14) in 1-,/lα
 a n ( i

 carrying out the integration in (11) we obtain

(3).

We are now left with the tedious task of carrying out the integrations in

(3). Several cases must be considered depending on the position of the time

point t among the observed points Z
/ o
 ,

n N
 ,... ,Z

/ T x
 and Z

n N
 (=max{Z

/
 . >. :1 < i < k}) .

vχ/τi; (κj (κ; {ij — —
+ + *

Suppose Z
/ o
,

Ί
v, ..,Z, v denote the distinct ordered values among Z

., Z.,v with corresponding multiplicities ^n,.,,..., λ Thus

λ.>l, £ < i < m ; 1 < £ < k < n and & < m < k , £ λ.=k-£ .

The largest recorded observable Z., v may be either a survival time or a cen-

soring time. Suppose we are in the latter case so that Z .. . = Z
(
 . . Consider

the case t > Z , v. Select the partition of R = (O,
00
) given by the points

{Z* : A < i < m + 2} where Z^
o
. =0,z"^ ,.. =t and Z^ ,

0
. = «>. Then defining U. -

F(Z...) - F(Z,. .),λ<i<m+l, the random vector (U.,.. . »U ) has the

Dirichlet distribution with parameter (β
o
,...,β ,-) where

a m+±

as)

and 3 as given in (2).

+ i ~ 1

Now F(Z,. .) = (1 - I U.), £ < i < m + l . Therefore the integrand in the
j =
* m

3
 " λ

numerator of (3), F(t) { Π (F(z"^.
N
))

 Σ
} {F(Z^ v)

Π
'

k
K
 c a n

 be written
( i ) ( m )
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m+1 / i-1 \ λ. / m-1
π I 1 " Σ u i ) " I 1 - Σ

m-1 \ n-k

with λ
 Ί

 =1. For the denominator in (3) the integrand is the same as (16)

except that λ
 tΛ
 = 0.

m+1

Now (U
0
,.,,,U ) has probability density
.Jo m

/m+1 \

( J. 0
m+1
π Γ(β.)

n u. ( m \ I

1 - Σ u )
m+1

-1

0<all u .

and 0 < ΐ u . < 1 ,
j-A J

where Γ denotes the Gamma function. The expectation of (16) involves inte-

gration over the variables u
o
, ..,u . Suppressing all terms not involving u ,

Jo m m
the integral over u is

m

m-1

• n i o / m—1 \(3 + λ ) — 1

ί
i
=
x» p -~1 /- v

1
 λ m+1 m+1 ,

m ( l - ) u . - u l du

0

Now proceeding with the successive integrations over u -,...,u
0
 we finally

obtain for the numerator of (3)
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(17) <

'm+1

Γ\i=£
m+l

π

m-1
Π

/m+1
Γ(β.) Γ( I (β,

\j=i+l J

(n-k)
J

(

m+1
Γ(β. + I (β.+λ.) + (n-k))

1 j i + l J J

Note that in (17) the value of λ t 1 is 1. For the denominator of (3) we have
m+l

the same expression except that λ = 0.

m+l

Proceeding with cancellations of the common factors in the numerator and

denominator of (3) yields our estimator

(18) F(t) -
m+1

β + β
m m+1 •

Recall (15) and (2). A trite computation shows

3 ̂ _ = α(t,°°) + # (observed lifetimes > t)
m+1

3 + β , Ίm m+1
"̂  . ,») + # (observed lifetimes > Z

+
,
 λ
)

(m) (m)

(19) I (β + λ ) + = a(Z+...,<*>) + # (observed l i f e t i m e s > Z* )
(J) (j)

+ # (obseirved c e n s o r i n g t i m e s > Z,.- ,)

„+.,+
i = j

β . + λ . }
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Substituting in (18) and again cancelling out common factors we get for the

product term in (18)

(20)
m

π
(n-k)

α(Z
.
 }

*.
)
 ) + (n-k)+λ .

+ (n-k)

Now Z
(
 . = Z. . and Z... 0. Also in the case considered here N (

z
/
m
\)

 =
 °»

N
+
(t)=O. Using these in (19) and (20) yields

F(t)
m

Π

(n-k)

(n-k) + λ

(n-k)

which is the form of (4) for this cape.

All other cases are handled in exactly the same manner and lead to the

general form of F(t) given in (4).

5. Concluding Remarks

It can be shown that when the censoring times {Y.: i^_l) are i.i.d.

with continuous right distribution function G on (0,°°), the survival times

{X.: i>1} are i.i.d. with continuous right distribution F, and

n k ->γε (0,1], then for any T > 0 with F(T)G(T) > 1-γ, the process {n
2
(F(t) -

n

F(t)): tε[0,T} converges weakly to a Gaussian process. Furthermore under

appropriate conditions strong convergence and consistency can be demonstrated.
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