
ESSAY II. CONTINUATION OF AN EXAMPLE OF C. DELLACHERIE

1. THE PROCESS R .

We consider a single occurrence in continuous time t > 0 which

happens at an instant T^ > 0 which may be random. For example, T
Λ
 may

be the failure time of some mechanical apparatus. Analytically, the

entire situation is described simply by the distribution function

F(x) = P{T^ < x} . We restrict F only by F(O-) = 0 and F(«>) < 1,

and we define T
Λ
 =» where T^ is not finite, so that P{T^ = «>} = 1 - F (»)

Without risk of confusion, we speak of the "occurrence of T
#
," thus

identifying the event with its instant.

From the viewpoint of an observer waiting for T^ to occur, the

situation presents itself not as a distribution function but as a

stochastic process, and as such it provides a basic example of general

methods. Thus we associate with T^ the process

(1.0) Rfc = I [ T Λ f < B ] ( t ) , — < t < - ,

where I denotes the usual indicator function.

This process was studied by C. Dellacherie (1972), and by C. S. Chou

and P. A. Meyer (1975). The closely related process T
Λ
 Λ t was also

studied briefly by C. Dellacherie and P. A. Meyer (1975), who corrected

some errors in [4]. Since we require some preliminary results from [4],

we use that formulation in large part. However, our purpose is to study

R
fc
 in terms of its prediction process, as defined in F. B. Knight (1975)

and P. A. Meyer (1976). This dictates that {T^ = 0} and {T^ = ~} be

permitted to have positive probability, which in turn makes it useful to

set R = 0 for - °° < t < 0 . Thus we introduce the probability space

(Ω,F°,P) where Ω = [0,~], F° is the Borel σ-field, and P(dx) = F(dx),

and we define T
Λ
 (x) = x on Ω, so that R (x) = I . (t) , -<χ> < t < » .

^^ r Lx i
 C0
J ""

Then the σ-field F° generated by R , s < t, is {Φ,Ω} for t < 0,

and is that generated by the atom (t,
00
] and the Borel sets of [0,t] for

t > 0 .

As an example of the "general theory of processes," R was replaced

in [4] by the supe martingale X = E (R^ - R |F )
 = I

rn Φ ^ ̂ '
 wn:

"-
cn w a s
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even a potential since P{T
Λ
 < «} = 1 was assumed. In the present case,

the argument of [4, Chap. 5, T56] transfers with no substantial change to

provide the Doob-Meyer decomposition of R . We need the usual augmented

σ-fields F (= ¥ ) generated by FT and all P-null sets in the completion

of P on F° . Observe that ¥ - Ψ , where for any adapted family of

σ-fields G
t
 we set G

fc+
 = ^ G

g
 and G

fc
_ = J

f c
 G

g
 .

THEOREM 1.1. The unique F -previsible increasing process R such that

R = P{R
Q
 = 1} and R ~

 R
Γ is a martingale is given by

R = 0 , -°° < t < 0

Λ

0-

:c
 Γ

*
 Λ t

 i

L = / (1 - F(u-)) dF(u) , 0 < t < oo ,

β
_ on IT

Λ
 < •>

+ 1 on {T. = °°} .
x>— *

REMARK. Uniqueness means unique up to a fixed P-null set.

In the present note we will go one step farther, and study R as an

example in the theory of Markov processes (as well as of martingales).

Indeed, a general feature of the prediction process construction is that

it permits any process to be viewed as a homogeneous Markov process—more

specifically, as a right process in the sense of P. A. Meyer and having

still additional structure. It may be said here that R provides a more

or less prototypical example of the prediction process of a positive pure-

jump submartingale. The behavior of this prediction process depends, in

turn, on classification of the stopping times of F , which accordingly is

our next concern. However, the reader may prefer to skip this rather

technical discussion, and go directly to Section 2 where the results are

applied. The connections with Essay I are postponed until the end of the

present essay, for reasons stated there.

We recall that a stopping time T is "totally inaccessible" if for

every increasing sequence of stopping times T one has Pίlim T = T < °°} = 0,

n n-x» n

and "previsible" if P{T = 0} = 0 or 1, and if when P{T = 0} = 0 there

exist T with 1 = P{T < T} = Pίlim T = T> . For the remaining concepts
n n n-*» n *

in our classification, as well as its existence and uniqueness, we refer to

[5, Chap. IV, Theorem 81], According to the basic representation theorem of

our particular situation ([4, III, T53]) a random time T is an F -stopping

time if and only if for some s < °°,
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(1.1)
 p

ί ί
τ
* < s Λ T} U {T

#
 > s = T}} = 1 .

We note that s is unique unless P{T
Λ
 > T} = 0

f
 and then we may choose

s
 s oo . The classification of stopping times depends on:

THEOREM 1.2. The accessible part of a stopping time T is given by

T = { , where
A
 [oo on A

C

(1.2) A = {T > T.} U {T = s < T J U U {T - T • s. }

* * S, < S * K

where s enumerate the values with P{T
#
 = s, } > 0 .

REMARK. It is easy to see that this set is unique up to a P-null

set even if s is not unique.

PROOF. We have {T = 0} - {T = 0 = T^} U {T - 0 < T^}, hence if

P{T = 0} > 0 then either 0 is an s or s = 0 . In either case

{T = 0} is in (1.2), as it should be. Now let T be any nondecreasing

sequence of stopping times, and let T = lim T . If we assume that
°°

 n

P{T < T } = 1 for all n (thus T is previsible) and let s
n °° °° n

correspond to T as in (1.1) with s = « whenever possible, then we
n n

see that lim s = s exists, and satisfies (1.1) for T . Then we have
n

n
{T. < s } c { T < T } up to a P-null set, and therefore

~ 00 "> OO

( 1 . 3 ) P { { T ^ < s Λ T } U { s = T. Λ T } } = 1 .
* 00 00 00 *f 00

Conversely, if a stopping time T satisfies (1.3) for some s^ and

P{T > 0} = 1, then we can construct a sequence T *T, P{τ < T} = 1,

n n
as follows. If s = °° then 1 = P{{T. < T} M {T. = T = «}} and

00 "
 v

 *>

writing T = f(T^) on Ω we can define T = f (T
Λ
) where f are any

measurable functions with f (°°) = n, and for x < °°, x < f (x) < f (x)

n n
and lim f (x) = f (x) . If 0 < s < °°, then we define for

n

f (T.) on {T. < s - n"
1
} U {T. = s < T}

U " *» "~ oo " o o

n < s
o

T
n

l
s - n elsewhere
oo

and observe that T satisfies (1.1) with s = s
m
 - n . Finally, if

s^ = 0 then P{T
Λ
 = 0} = 1 and T is equivalent to a positive constant.

It follows that (1.3) characterizes the previsible stopping times T with

P{T > 0} = 1 .

Next we observe that for constant c, any T is accessible on a set

of the form {T = c}, hence on {T = s}U U {T = T. = s. } . It remains
s

k
<s k
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to show that the rest of the accessible part is given by {T > T^} . That

this is contained in the accessible part follows by writing T
n
 = f

n
(T

#
)

as in the preceeding paragraph. On the other hand, by (1.1) we have

{T < T^} = {T = T^} U {T^ > s = T} up to a P-null set, hence the only

part of {T < T^} not already found excessible is {T = T^ ψ s^ for all k}

To see that this last is not accessible, note that for any previsible

stopping time T^ > 0, (1.3) implies that the set {T = T
#
 = T^} is

contained in {T = T. = T = s } up to a P-null set, where s corresponds
•» 00 CO °°

to T
ro
 as in (1.3). Therefore, only sets {T = T^ = s } of positive

probability can be in the accessible part, and the proof is complete.

COROLLARY 1.3. A stopping time T is: a) totally inaccessible if and only

if P{T > T^} = 0 and P{s = T < T^} = 0 for 0 < s < «>, b) previsible

if and only if P{T = 0} = 0 or 1 and, for some s, P{{T
#
 < s Λ T} U

{s = T^ Λ T}} = 1 .

PROOF. Part b) is just (1.3) , so we need only prove a). The condition

is obviously sufficient by Theorem 1.2. On the other hand, if

P { s = T < T ^ } > 0 for some s, then either s corresponds to T as in

(1.1) and P{s = T < T^} > 0, or else s is one of the
 s

v
'

s
 i-

n

Theorem 1.2 and P{T = T^ = s } > 0 . In either case, T is partially

accessible.

COROLLARY 1.4. If P{T^ = s} = 0 for all s < «, then T
A
 is totally

inaccessible and a stopping time T is previsible if and only if

p{τ = T^} = 0 . Furthermore, the necessary and sufficient condition that

F be free of times of discontinuity is that, for all s > 0,

P{T
Λ
 > s} > 0 implies that P{T

Λ
 = s} = 0 .

REMARK. It is known from [4, Chap. Ill, T51] that absence of times of

discontinuity is equivalent to the previsibility of all T whose accessible

part is Ω (up to a P-null set).

PROOF. The first assertion is immediate from Theorem 1.2. For the second,

assume P{τ = T^} = 0, and let s correspond to T as in (1.1). Since

P{T^ = s} = 0, we have P{τ
#
 = s Λ T> = 0, hence T satisfies Corollary

1.3 b ) . Conversely, if p{τ = T^}> 0 then T is inaccessible on this

set, hence not previsible.

It remains to prove the last assertion. Assume that the condition

holds; i.e., that the distribution of T^ has not atoms except perhaps its

maximal value, and suppose that the accessible part of T is Ω . Let s

correspond to T as in (1.1). If P(T^ = s} > 0, then by Theorem 1.2

we have 1 = P{{T > T^} U {T = T
Λ
 = s}}, and since T^ < s holds on

{T > T^}, T is previsible by Corollary 1.3 b). If, on the other hand,
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p{τ =
 s
} = o, then if P{T = T = s } > 0 for any s , we see from^ _

 β J
 _

 w
, —

W M
 _ .,_ _

#
 = s^j ;> u lυr any ^

Γ > s } = 0 and (1.1) that s < s, and hence s may replace s in
* k k K

(1.1). Thus either we have the former case, or P{T = T^ = s} = 0 for all

s . Then since T > T^ implies T^ < s except on a P-null set, and

1 = P{{T > T^} U {T = s < T^}}, by Corollary 1.3 b) T is again

previsible. Thus (see the Remark) F is free of discontinuities. The

converse is obvious, since P{τ^ > s} > 0 and P{T^ = s} > 0 imply

F ϊ F .
s- s

2. THE PREDICTION PROCESS OF R .

We turn now to the construction of the prediction process of R ,

which we will denote by Z . According to its definition, the values of Z

are the conditional probability distributions of
 τ

t +
( . \ given ψ (we

recall that ^. - ^. ) Clearly such distributions can be specified by

the conditional distribution of T
Λ
 - t given F , whence they have the

same form as F . Thus, writing Z (x) = Z (x,w) for the corresponding

distribution function, we have
 z

.(0) = 1 if t > T^ or F(t) = 1, while

Z
fc
(x) = (F(t + x) - F(t))/(1 - F(t)) otherwise. The left-limit process

of Z , in a suitable topology to be specified, is Z _(0) = 1 if

t > T^ or F(t-) = 1, and Z
fc
_ (x) = (F(t + x) - F(t-) )/(l-F(t-))

otherwise.

The prediction process may be used to best advantage only by

introducing it as a Markov process in its own right, instead of confining

it to the probability space of R (this represents a partial shift of the

author's views from those expressed in [9]). This is because there are

technical difficulties in carrying out the theory of additive functionals of

the prediction process if it is defined on the original probability space Ω

(as noted by R. K. Getoor (1978)). On the other hand, once we free ourselves

from this restriction, the theory becomes comparatively straightforward.

Furthermore, in a sense to be made precise, nothing concerning the process

R is lost in the transition. Therefore, we introduce formally both a new

state space and a new probability space.

DEFINITION 2.1. The prediction state space of R is the space (E , E )

t Z Z

where

E_ = {(F(t+ ) - F(t))/1 - F(t) , -co < t < »: F(t) ^ 1

(F(t+ •) - F(t-))/(l - F(t-)) , -« < t < oo: F(t-) ̂  1

F , and F } , with F (x) Ξ 0 , F (x) Ξ 1 ,
—OO -J-OO —OO -J-OO
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and E is the σ-field generated by the functions G(x), 0 < x < «>, as

Z
G varies on E . We denote elements of E

χ
 of the first two types by

F and F respectively (although, with this notation, they are not

necessarily distinct) . We let E^ denote {F_
oo
, F

+ O Q
, F

fc
, -« < t < «>} .

In the present very specialized situation, it is natural to introduce

in E the topology of weak convergence of measures on Ω, when Ω is

Z

considered as a subset of the space D with the Skorokhod J^-topology

(Billingsley, [2], Chapter 3). Specifically, to each x e Ω we associate

the element of D given by f (s) = R (x) with s = —(1 + — arctan t ) ,
X t η £ iΓ

-oo < t < °° . We note that f (s) = 0 for 0 < s < —, and that convergence
in D of f is the same as convergence of x in the extended topology of

x

[0,
00
] . It therefore follows that the continuous functions on Ω in the

D-topology are just C[0,~], and weak convergence of probabilities on Ω

becomes simply weak convergence of the corresponding distribution functions

F on [0, °°] . In particular, we note that E is a Borel set and that E

z z
is a Borel σ-field generated by this (metrizable) topology on E_ .

Δ

Furthermore, since F is right-continuous for t < minis: F(s) = 1 } ,

with left limits F for t > 0, it is clear that Z is right-continuous

with left limits in this topology. In fact, the space E is "almost"

z

compact, the only limit points not necessarily included being those of F

obtained as t — > -H» . This set is trivial if either F(°°) < 1 or

F(t) = 1 for some t < °°, but in general it cannot be avoided.

We turn next to the prediction probability space for the process Z ,

t

using the same notation Z for the process on the new space.

DEFINITION 2.2. Let (Ω. F , Z) consist of

z z t

a) The space of all paths z(t) , 0 < t < °°, with values in E and

~" Z

which are right-continuous, with left limits for t > 0, in the topology

of weak convergence,

b) The coordinate σ-field generated on Ω by ίz(t) e A>, t> 0,

Z —

c) The coordinate functions Z = Z (z) = z(t) .

We observe that the original F(=F ) is in Ω , and that the

u— z
process on Ω given by & for 0 < t < T and by F for t > t

< / t — * - ' o o — *

has its paths as points in Ω . Hence we can define a probability P

on (Ω , F ) such that the joint distributions of Z(t) are the same as

Δ Δ
those of the above process on Ω. Furthermore, to every z € E we can

z
 z

associate in the same way probability P on (Ω , F ), by using z in
z z

the role of F as the distribution of T
A
 . Thus the points z ^ E

* Z

correspond to probabilities for Z . If z = F for some t,
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-oo < t < °°, then P
Z
{Z = z} = 1 . However, if z = F ψ F , so that

F(t) - F(t-) > 0, then P
Z
{Z

Q
 = P

fc
} = 1 .

We are now in a position to view the family {P , z e E
z
> as a

Markov process on (Ω_, F_) . The points z such that z = F ψ F

are the "branching points" of this process, in the terminology of Walsh

and Meyer [13]. The transition function q(t,z,A) of the process is

such that for each (t,z) the probability is concentrated on at most two

points. Precisely, we have

DEFINITION 2.3. The transition function of Z is given by q(t,z,A),

t

1

1

> 0, z

i)

ii)

> F (t)
s

iii)

> F
g
(t)

iv)

v)

e E
z
, A e

qίt.p.rtpj)

qίt^^F^})

(=F(s+t)) ,

q(t,z,{F^})

, t > 0 ,

qίt^^F^})

q(0,z,{F
oo
>)

= 1

= 1

t >

= 1

= 1

= 1

where

, t >

- q(t,

0 ,

- q(t,

0

z,{F

Z,{F

in cases

- q(0,z,{F

s+t

s+t

ii)

})

}) =

}) =

and

= F

F (t) if z =

F _(t) if z

iii) if 1 = F

(0) in case

F and

s

= F 7*
s-

s
( t )

 '

iii).

and

It follows from the general theory of [9] and [11] (or can easily be

seen directly) that (Ω_, F_/ Z , P ) becomes a right process on E in

z z t z

the sense of P. A. Meyer, with transition function q, when we include

z z
the canonical translation operators θ. and σ-fields F . Of course,
both E and q are Borel, so the general U-space set-up of Getoor [6]

it

is unnecessary (this is quite generally true for the prediction process).

Furthermore, the process has unique left limits Z in E , t > 0 .

t~ Z

It is important to observe that probabilistically nothing is lost by
F +

considering (Z , P ) in place of (R ,P) . Thus we introduce on E
t t z

the Borel function

(2.1)
 φ

(G) =

Then φ(Z ) is P -equivalent to R in joint distribution, and is

right-continuous with left limits. Hence it is a valid replacement for

o, Z
R . The σ-fields F generated by Z , s < t, are of course larger
"C "t S

than those generated by φ(Z
g
), s < t . But the entire difference can be

traced to the fact that φ(Z
Q
) does not determine Z . Thus for each

initial point z the above two fields have the same P -completion, and

hence Z and φ(Z ) generate the same completed σ-fields F
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One basic feature of the prediction process which gives insight into

the given process is its times of discontinuity. The analogue of the jump

time T
A
 on Ω isof course the stopping time

(2.2) T
z
^ = inf {t: Z

fc
 = fj .

However, this is not necessarily a time of discontinuity for Z^ under

p
F
, and by no means the only one. By Theorem 1.2 the accessible part of

T under P
F
 consists of U {T = s }, where the s enumerate the

Z, k Z, k K.

jump points of F . But while R is discontinuous at t = s^ with

probability F(s,) - F(s. ), Z is discontinuous at t = s with
k k— t K

probability 1 - F(s -)(= P
F
{T * > s }) unless F(s ) = 1, when it is

continuous (since Z is then F -measurable). On the other hand, at
S
k V

the totally inaccessible part of T_ (i.e. the part where F is

continuous), Z like R has an inaccessible jump. It is clear that

Z is continuous except at IL {s } U {T .} hence we have classified
t
 F

 K K 6,

its discontinuities under P , and for other z e E_ the situation

Δ

is analogous. Thus, the conclusion which roughly emerges is that Z has

the same totally inaccessible jumps as R but it has additional accessible

jumps at times when R has a positive (but unrealized) potentiality for a

jump.

This distinction in the behavior of R and Z at the previsible
times s disappears when we replace R by the martingale R - R'*

k t t t

of Theorem 1.1. More generally, we introduce on Ω the previsible additive

2 — — — — — —
functional

Λ * Λ t
(2.3) A = / ' (1 - G(u-))

 x
 d G(u) on {Z

Λ
 = G} , G e E .

z
 o o z

(previsibility is clear since A is a Borel function of the previsible

process Ί^
 Λ
 Λ t) . The process φ(

z

t
) - Ψ(

Z

Q
) "

 z

t

 i s n o w s e e n
 to be a

martingale additive functional of Z . More importantly, one easily checks

that φ(Z ) - φ(Z ) = A and Z have the same times of discontinuity

for each P . This is an expression of the general fact that a right-

continuous martingale has its times of discontinuity contained in those of

its prediction process, as proved in F. Knight [10, Lemma 1.5]. However,

the application is not direct because the prediction process of

φ(Z
t
) - A

t
 for fixed G = Z

Q
 has a different (and less convenient) state

space than E^, and it cannot be identified with Z . For example, if

F(s) - F(s-) = 1 for some s then φ(
z
J - A = 0 for P

F
 while Z ,

although continuous, is not constant.
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R,

We consider finally the Levy system of Z , and its relevance to

and T - R
:ί
 . By definition [1, Corollary 5.2] this is a pair (N,H)

where N(x,dy) is a kernel on (E , E ), N(x,{x}) = 0, and H is a

previsible additive functional such that for 0 < f(x,y) &€*€„,

with f(z,z) = 0,

( 2 . 4 ) E * ( Σ f ( Z ,Z ) ) = E # \\ dH (/ N(Z , d y ) f ( Z , d y ) ) .
0 < s < t S " S O S E S s -

In the present case, although Z does not satisfy all the hypotheses of

[1, Cor. 5.2] it is easy to specify such a system explicitly. One has

only to take H = A from (2.3) and then define

q(0,x,dy) for x = F̂ __ ψ F̂ _, -°° < t < ~

N(x,dy)

6(F ) otherwise, x ^ F '
OO 00

where 6(F ) is the unit mass at F (we define N(F , ) in any
00 00 OO

 Λ

convenient way). As a compensator for the discontinuities of Z , the Levy

system is here more relevant to R - R^ than to R , for the reasons of

the preceeding paragraph. Thus we have an analogous "Levy system" for

R - R!_
C
 in the form (N'", R^) where

t t t

(2.6) N"(-R
::
 ,{-R

::
 + 1}) = F (0)

s.- s. s.-

D D D

for F(s.) - F(s.-) > 0, and N"(x,B} = I
Ώ
(x+l) for all x ψ {-R" } .

D D
 B

 s.-

It is clear that (2.6) is obtained from (2.5) by just substituting the

:: F

jumps of R - R for those of (Z ,P ) except at t = 0 and t = °°

which are disallowed as jump times of Z . Since (2.6) has a role

analogous to (2.4) but for the martingale R - R instead of Z , it is

natural to take it as the definition of a Levy system for the martingale.

Again, this is a very special case of a general existence theorem ([10,

Theorem 1.3]).

3. CONNECTIONS WITH THE GENERAL PREDICTION PROCESS.

For the reader who is already familiar with Essay I, the present

Section 2 is easily incorporated into that more general setting. However,

it is somewhat more natural to treat all single-jump processes simultaneously,

as realized by a single prediction process. This formalizes, so to speak,

the essence of the underlying idea. It has been carried out by Professor

John B. Walsh, who has consented to let us use the material that follows.
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We take w(t) = w (t) , with all other components discarded from the

notation. Let Ω (J for jump) be the set of functions of the form
J

w(x) = I. v (x) , 0 < T < «> . Then Ω inherits from Ω the topology of

pointwise convergence of the corresponding T . Hence it is compact.

Let H be the set of all probability measures on Ω_, with the weak-*
J J

topology. If we identify h e H with the probability distribution it

assigns to T, then convergence in H becomes weak convergence of

distribution functions on [0,«>] , and H_ is compact.
j

For h <= H (regarded as a measure on Ω vanishing outside Ω_) ,
J J

the prediction process Z remains in H , and so does Z for t > 0 .

t J t—
Thus H is a complete Borel packet, in the sense of Essay I, Definition

j

2.1, 3). The transition function of Z on H is given above by Essay 2,

t J

Definition 2.3. The elements of H Π H , regarded as distributions of T,

<j u

are just F^ and all F with F(0) = 0 . Thus Z is a right process on
H Π H . In fact, we have more in the present case.
J 0

PROPOSITION 3.1. Z^ is a Ray process on H, .
t

 m
 . J

PROOF. It is to be shown that /_ e~" q^fdt e C(H ) if f e C ( H ) , where

u t J J

q f(h) = /f (z)q(t,h,dz) . As before, we let F(t) = h{T < t} . Then we have

sy
λt
t [

F{
T- ;

where the last integrand is 0 if F(t) = 1 . Now if h -*• h, with

n

corresponding F -> F, the first term on the right obviously converges

to its limit with F in place of F . Also, if F(t) < 1 then

n

F
n
(t+ ) - F

n
(t)

has at most two weak limit points as n ->•«>:

F(t+ ) - F(t) _ F(t+ ) - F(t-)

1 _ -p (
t
)
 a n d

 Ί _ F(t-) *
 τ

"
u s a t

 continuity points t of F

with F(t) < 1 it converges to the same limit. Since f is bounded it is

easy to see that the contribution to the last integral for

t > inf {t : F(t) = 1} tends to 0 as n -»- °° . Hence by dominated

convergence, the last integrals also converge to their value at F,

completing the proof.

REMARK. It follows immediately that Conjecture 2.10 of Essay I holds for
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