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A locally most powerful (LMP) rank test against logistic alternatives is

derived for the two-way experiment with random treatment effects and fixed

block effects. We tabulate the critical values of the test criterion for b = 2, 3, 4,

C = 2, 3, 4 and U{j = n = 2(1) 10. We study its asymptotic behavior when the

null hypothesis is true.

1. Introduction and S u m m a r y . The use of blocks in a design

represents an attempt to remove a source of variability in the observations

and so makes it possible to obtain a more accurate evaluation of the factor of

interest. Observational material is segregated into groups which should be as

homogeneous as possible and the effect of the factor of interest is observed on

each of the groups individually.

The model one would use for this situation is

fc = l, ,nij, j = l, ,c; and i = l, ••-,&,

where Yj and εijk are mutually independent random variables. The hypothesis

we wish to test is: HQ : the treatment Yj produces uniform results, hence its

variance is 0.

Traditionally one would assume that the ε^k are normally distributed

with mean zero and variance σ\ that the Yj are also normal, with mean zero

and variance σ\\ and that the block effects, the /?«, are additive. One would

then usually use the familiar test criterion F =MST/MSE.

In this paper we describe a locally most powerful (LMP) rank test of

HQ against logistic alternatives. We also study its asymptotic behavior and

find its computational form, and provide a table of critical values of the test

critierion for b = 2,3,4, c = 2,3,4, and niά = n = 2(1)10.

AMS 1980 Subject Classifications: 62G10, 62K10.

Key words: LMP rank test, null distribution for small and large sample sizes, random

effects, two-way experiments.
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2. Model and Assumptions. In this section we will present the model
of interest, define our notation, and give the regularity assumptions made.

Consider now the model:

fc = l , . . . ,ny; i = 1, — 6; j = l, c;

where, the Yj and the Sijk are mutually independent random variables, and
βi is the fixed block effect, with b the number of blocks, c the number of
treatments and n^ the number of observations recorded for the (i,j)th cell.

Let m. = Σ j=i Uij.n.j = Σi=i nij> a n d N = Σ*=i n i . = Σj=i n i
We will also define G(y) and F to be the distribution functions of the

treatment effects (Yj's) and the random errors (safe's) respectively. Appealing
to the invariance property of rank tests under translation, we will let μ = 0;
furthermore we can assume that J ^ ydG(y) = 0. We also assume that the
block effects βj are additive, i.e. there is no interaction between block and
treatment effects. A further assumption needed is that J ^ ^ y2dF(y) = σ2 <

f OO

-oo

OO .

With the above set up, we are interested in testing the null and alternative
hypotheses given by

0 for y < 0,

1 for y > 0,

versus,
H\ : G(y) is a member of the class of nontrivial distribution functions.

Let G(y) = G(y/A) be a class of nontrivial distribution functions for some
small and positive Δ. Then we note that for this class, the statement that the
distribution is degenerate at zero is equivalent to the statement that Δ = 0.

Hence, in order to derive a LMP rank test for the multiple-block design
we consider the hypotheses

Ho : Δ = 0 versus HA : A> 0.

Let Wι < < Wiΐi. denote the combined ordered sample of the vari-
ables Xijk, k = 1, , riij, j = 1, , c within the i th block. Note that since
βi is a fixed effect for i th block, the ranks of Xijk and Xijk — βi are the
same. Also let (ZJ , ••• ,Znl)' = Z ^ denote the c-sample rank order for
the Ith block, that is , ZĴ  = j if W^ — Xiji for some / = 1, ,Π;J with
Z = (Z^1) , , zSh^ ). The vector z_ will denote any possible realization of the
H^=1(ni\/Iί^=1nij\) possible rank orders.

3. The Locally Most Powerful (LMP) Rank Test Statistic. The
LMP rank test statistic for the two-way mixed model described in Section 2
is given in this section.
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THEOREM 3.1. Tie IMP rank test for Ho against HA is given by:
Reject Ho when

b c n». Πj.

+ ΣΣΣ*»

(3.1)

where Ka is determined by the level of significance α and δij = 1 if i = j and
0 otherwise, provided the conditions below are satisfied:

i. the density f has a derivative that is absolutely continuous over finite
intervals,

ii. fn(x) is continuous almost everywhere,

iii. J ^ ^ y2dG(y) < oo, and

< oo.

PROOF. The proof is too technical and hence is omitted. For details,
the reader is referred to Clemmens (1986, pp.27-35).

In comparing expression (3.1) and the test statistic of Govindarajulu
(1975), we see that the test statistic for the two-way blocked layout consists of
a sum of one-way test statistics (one for each block) plus a second (nontrivial)
term which might be labeled as a 6between-blocks' contribution.

4. Test Statistic for Logistic Scores. In this section, we will derive
the form of the test statistic when the density function / has the logistic form.
In addition we will put it into a form which makes calculation of its value
easier, whether in the equal or unequal sample size cases.

LEMMA 4.1. When f(x) = ex(l + ex)~2, the two-way LMP rank test for
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Ho against HA is given by: Reject Ho when

6 4 c

(ϊ)

6 6

wiiere

Πi.Ί

5V' = Y f̂cΛ o = sum of the ranks associated with the observations

getting the j t h treatment in ith block,

k<m

and Kα is determined by α.

PROOF. The first four additive terms of the two-way statistics are di-
rectly analogous to those in the logistic form of the one-way statistic derived in
Clemmens and Govindarajulu (1990) requiring only the addition of the block
index i to the variables and appropriate summation.

The final term of (4.1) is derived from the fact that in the logistic case

k=l

where ί7^ are standard uniform order statistics in a sample of size n2 ..

A test statistic written in terms of ranks rather than the δ functions is
more convenient for computational purposes. Such a form for the test statistic
ΦL requries that the ranks within each cell must be ordered, smallest to largest.
Then we define iC^ to be the kth smallest rank in cell (i, j ) .

COROLLARY 4 . 1 . 1 . The test statistic Φ L denned in (4.1) can, for the



ANN CLEMMENS and Z. GOVINDARAJULU 431

case of logistic scores, be written as

έ ί
„

6 c n%j

YYY

c V b

έ ί έ ί (ni + 1)2(ni + 2 )

(4.3)

PROOF. It can be shown that

(i) 2 n ( n

12

and it can easily be shown that

b b c(0 c(k)

h ">•+

j=lk=l

-Σ

Substituting these expressions into (4.1) and combining terms yields expression

(4.3). Note that all but one of these terms are either constant or dependent

solely on the sums of the ranks within each cell; this is the most attractive

feature of this form for computation.

Further simplification results when we consider the case when the sample

size is the same in each cell, i.e. n t j = n; in this case,

Φ L =bnc - b2cn2 2bcn(2cn + 1) Abcn2

3(nc + 2) en+ 2

c V b i 2

c 6

c b n

ΣΣΣ**S (4.4)

It should be noted that despite the seeming complexity of the constants and

leading multipliers, the three stochastic terms are relatively easy to accumu-

late.
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5. Asymptotic form for ΦL under Ho. One can show (see Clemmens
(1986 pp.39-40)) that E 0 Φ L = 0. Further, we will show that the statistic ΦL

has asymptotically a chi-square distribution. We will also find an asymptotic
form of the statistic with which to compute values that can be compared with
tabled chi-squared values.

We noted earlier that the statistic Φ^ can be considered as a sum of
statistics one for each of the b blocks plus a term which can be described as a
'between-blocks' contribution. Notationally we can write

where £ * = 1 T& includes the first two terms of (3.1) and
iφk

repre-

sents the third term of (3.1). Referring to Govindarajulu (1975, Section 2)
and substituting from (4.2) allow us to state that

C 7lj Tlj

ΣΣΣ
j=lm=lί=l

b b c

+ ΣΣΣ
L m = l

m

=Σ Σ Σ Σ Σ E» [σ -
j l i l kl l ί l

c b b

ΣΣΣ
j = l i = l fc=l m = l ί = l

Thus one can write

.t=l

where
b

and the rest is R. Or, since asymptotically only R* is stochastic,

R* VR+ (5.1)

We appeal to Lemma 3.6.1 and Theorem 3.6.3 in Clemmens (1986) to note
that asymptotically f - ΣLi Σ J = I ajfeli j ^ 0 in probability as N -> 00.

In the equal sample size case, when n̂ - = n, we will need a term for
comparison with chi-squared tables. Thus we can say that the distribution
of 3cΦ£/δ = ZcR*/Nb is asymptotically equivalent to a central chi-squared



ANN CLEMMENS and Z. GOVINDARAJULU 433

variable with c— 1 degrees of freedom. The form required for table comparisons
will be

b bn (en - 1) v y

Remark. Since EO^L = 0, and since c(n — l)/(cn — 1) —• 1, we can
deduce that E^c^^jb) —> c - 1 in the equal sample size case, identical to the
expected value of a central chi-squared variable with c — 1 degrees of freedom.

6. Calculation Methods. To find the exact distribution of Φ^ it
would be necessary to determine all possible partitions of ranks of the c sub-
samples of sizes ni l , . . . > ^ic for each of the blocks and compute the value
of the test statistic for each partition. When c, 6, and the n^ are small,
this can be done but in practice we found that this direct method became
unwieldy rather quickly, i.e. when N is relatively small. Therefore we turned
to computer simulation in order to generate the approximate distribution and
critical values of Φ^.

To simulate the distribution of Φ^ values, we need to draw samples re-
peatedly from the population of X's which is valid when the null hypothesis
holds. Recall that our model is

where we assumed μ = 0 and J^ yjdG(yj) — 0. Under the null hypothesis
the Yj 's are constant and equal to 0, so X^ = β% + ey*; since we rank all the
observations within each block separately, without loss of generality, we can
set the block effect βi = 0.

Now, since the distribution of ΦL when Ho is true is free of the underlying
distribution of the Sijk again without loss of generality, we can assume that

are standard uniform random variables.

7. Tables of Critical Values of Ψ&. In this section we present tables
of simulated critical values of the ΦL statistic for the 6 = 2,3,4, c = 2,3,4 and
n = 2(1)10 and for the most commonly used values of α, namely .01 (where
available), 0.05, and 0.10. Since this statistic has a discrete distribution, we
will not be able to give critical regions with exactly the nominal value of a
when N is small; in these cases we will provide the value or values which come
closest and give the actual probability.

The number of distributions we could investigate is enormous; so we must
limit our labors to those most likely to be of use. Our expectation is that
experimenters will find the partitions with equal sample sizes to be of most
interest and so in the tables for simulated distributions we include critical
values only for distributions of this type. We also need these equal sample size
distributions in order to investigate asymptotic behavior.
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With the exception of the case of b = c = n = 2 all of the critical values
for ΦL given in this section were derived from simulated distributions (The
simulated values agree with the exact values for the case of 6 = c = n = 2).

For our simulation study, we used the IMSL library function GGUW to
generate b random samples of size nc from the uniform (0,1) distribution to
produce one possible value of the statistic ΦL For each combination of 6,c
and n, we repeated the above procedure a minimum of 15,000 times; for large
values of n, we used as many as 140,000 iterations.

8. Asymptotic Behavior of Φ^. According to the results of Section
5, when Πj = n for all j,3cΦ£/6 is asymptotically distributed as a central
chi-square with c - 1 degrees of freedom. Equation (5.2) gives us a method
for converting ΦL to a variable asymptotically equal to 3cΦ£/6; by comparing
these to the appropriate values of chi-square distribution, we can determine
the value of n beyond which the asymptotic behavior holds.

Let WL = 3cΦ£/6 = ^ - $£ΞΪ} + c. When comparing the values of

to the χ2 values we noticed that the value of n is the most important
factor in determining how rapidly the distribution approaches the asymptotic
distribution.

Critical values of WL approach the corresponding χ2 values more rapidly
for a = 0.10 than for a = 0.05 and more rapidly for a = 0.05 than for a = 0.01.

From the comparisons we have made, we conclude that for WL the chi-
square distribution would serve as a good approximation for the critical values
for any combination of b and c provided n > 10. For example, when b = c =
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TABLE 1. Critical Values of Φ L for Equal Size n

ΦL,Q.OI ΦL,O.O5 ΦL,O.IO

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

8.9

12.2

16.2

19.3

23.6

27.2

31.6

37.2

6.2

10.6

16.9

19.9

25.4

32.8

36.0

40.0

47.4

7.2

12.2

18.6

24.6

29.6

35.8

41.5

46.0

52.3

10.1

12.4

18.9

23.5

29.3

33.4

39.2

45.9

53.8

9.9

17.5

25.9

33.5

39.6

46.4

53.8

(0.013)

(0.011)

(0.008)

4.2

4.4

5.8

8.2

10.1

11.5

13.7

15.8

17.2

4.1

6.8

10.0

11.8

14.0

17.6

20.5

21.2

25.4

5.0

7.6

11.5

14.9

18.0

21.1

42.1

27.4

30.7

6.4

6.7

10.7

11.6

15.4

18.5

20.7

24.2

27.5

6.6

10.5

14.7

19.3

22.5

26.8

29.7

(0.058)

(0.060)

(0.051)

(0.048)

(0.034)

(0.051)

1.8

4.1

4.0

5.1

5.9

7.2

8.3

9.3

10.2

2.8

4.6

6.8

8.4

9.3

11.9

13.9

14.0

17.5

3.7

5.3

7.9

10.2

12.5

14.6

16.7

18.9

21.0

3.6

4.4

6.3

7.5

9.7

11.4

12.6

14.9

16.6

4.6

6.8

9.2

12.8

15.1

17.6

20.3

(0.168)

(0.091)

(0.098)

(0.099)

(0.095)

(0.093)

(0.101)

(0.101)
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b c n ΦL,.oi ΦL,.O5

3

4

4

4

4

4

2

3

4

4

9

10

1

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

60.1

73.0

4.2 (.016)

12.6

21.1

29.4

37.6

45.7

54.5

61.7

69.8

78.8

9.6(.O21)

16.7

24.2

35.2

41.1

48.3

54.0

63.4

69.1

6.0(.005)

4.5(.O43)

14.6

24.6

33.5

43.7

54.2

63.5

71.9

81.7

93.4

6.7

17.6

29.8

38.9

50.7

61.1

73.3

83.4

93.5

104.9

32.8

38.5

3.2(0.05)

7.9

12.7

17.8

22.1

27.2

31.9

36.7

40.9

46.1

5.9(.O72)

9.8

12.2

17.8

20.1

25.4

28.0

32.0

36.3

4.5(.O43)

4.0(.073)

8.5

14.4

19.0

24.3

30.0

35.3

40.4

46.4

51.3

4.8

10.7

17.5

23.5

30.0

35.9

42.7

48.4

54.9

61.6

22.3

25.3

2.9 (.074)

2.2 (.147)

5.6

8.8

12.1

15.5

18.6

21.9

25.0

28.1

31.5

3.1(.122)

6.8

7.4

10.9

13.4

15.3

16.7

19.4

21.0

4.0(.073)

2.5(.127)

5.8

9.6

12.7

16.2

20.0

23.5

26.5

30.2

33.8

3.2

7.5

12.0

16.2

20.4

24.3

29.0

33.1

37.4

42.0
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