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This paper discusses hypothesis testing in multivariate analysis from a

Bayesian point of view using the highest posterior density (HPD) region method-

ology. This approach is applied to the old, but still difficult problem of testing

for the equality of normal covariance matrices, and a new Bayesian criterion is

developed to carry out the test. Bartlett's classical test results as an approximate

special case. It is shown that under the simple case of vague prior distributions

for the covariance matrices a Bartlett-like test (Bartlett (1937)) results; but the

degrees of freedom are lower, so the classical test weights the evidence against

the null hypothesis of equality more heavily than is warranted by the posterior

probability distribution, a result analogous to that of Berger and Selke, 1987.

Moreover, more general (non-vague) prior distributions will generate a richer

class of tests than were previously available.

1. Introduction. This paper concerns hypothesis testing in mul-
tivariate analysis from a Bayesian point of view. Generally, estimation and
prediction are of much greater interest to Bayesian statisticians than is hy-
pothesis testing, but there are those situations in which hypothesis testing is
desirable and appropriate. Those situations are the ones with which we will
be concerned in this paper.

We begin in Section2 with a brief summary of the method of Box-Tiao
HPD region Bayesian hypothesis testing. In Section 3 and 4 we take up the
problem of Bayesian testing for the equality of normal covariance matrices. In
Section 3, we develop the joint posterior density for normal precision matrices.
In Section 4 we develop the joint posterior density for the "ratios" of normal
precision matrices, and we apply the HPD region method of hypothesis testing
to develop new Bayesian tests for the equality of normal covariance matrices.
In Section 5 we derive an asymptotic distribution appropriate for the required
test.
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2. Bayesian Highest Posterior Density (HPD) Region Testing.
Box and Tiao, 1973 (p.122) introduced the notion of HPD regions. In the case
of a one-dimensional quantity of interest, 0, they defined an "HPD interval"
as an interval (α,6) such that for a posterior cdf F for 0, and a preassigned
small a > 0:

1. F(b) - F(a) — 1 - α; and if p( ) denotes the posterior density for 0,
2. p(θ I Xι, ,Xn) is greater than that for any other interval for which

(1) holds.

REMARK 1. If (α,δ) is an HPD interval, for any 0i G (α,6) and any

0 2 £(α,δ),
p{θ\ I data) > p(02 | data),

and conversely, subject to condition (1).

REMARK 2. For higher dimensional θ Box and Tiao extended the idea
to regions instead of intervals. We merely need to change condition (1) to

P{θ e Region R | data} = 1 - α.

REMARK 3. If φ = f(θ) defines a one-to-one transformation from θ
to </>, any region of content (1 — α) in the space of θ transforms into a region
of the same content in the space of φ, but the HPD region for θ will not
transform into an HPD region for φ, unless the transformation is linear.

REMARK 4. HPD regions are often ideally suited for testing hypothe-
ses of interest in Bayesian multivariate analysis. This is because in higher
dimensions we are generally interested in the event that some vector or ma-
trix belongs to a particular region, and this event can generally be specified
either directly or in terms of some monotonic function (for more details, see
Box and Tiao, op. cit.).

REMARK 5. It might be noted that while some credibility regions might
also be HPD regions, credibility regions need not be HPD regions. Moreover,
while credibility regions might work well in one-dimensional problems, HPD
regions generally work well in both one-dimensional and higher-dimensional
problems.

The probability statements defining HPD regions can be derived directly
from the posterior distribution; any kind of prior information may be used
(vague or not) so that non-vague prior distributions will lead to a rich family
of tests; and no multidimensional integrations are involved once we have the
posterior distribution for θ (we must of course be able to evaluate the integral
for the cdf to evaluate the probability content of the distribution). In the
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sequel, we will adopt this HPD approach to develop a Bayesian test for the
equality of normal covariance matrices.

3. Joint Posterior Density for Normal Precision Matrices.

Notation. We have independent p-variate observations from K normal
populations, AΊ(i), ,Xjv,.(i) ~ iV(0;,Σ;), i = 1, ,/Γ with sample mean
vectors X{ = 7Vi~

1Σ1

 έ JΓα(i), and sample sums-of-squares matrices

Prior. In order to express the notion of "knowing little", and to provide
a "reference-type prior" that often produces frequentist-types of results, we
adopt a vague, Jeffreys-type of prior density (see Geisser and Cornfield (1963)
and Jeffreys (1961)) for the mean vectors and the precision matrices, Σ " 1 ,

K

Results are easily extendable to natural conjugate families of prior distribu-
tions with little change in results (except for changes in the numbers of degrees
of freedom).

Posterior. It is well-known (see e.g., Press, 1982) that the joint poste-
rior distribution of the mean vectors and precision matrices is normal-Wishart.
Integrating the posterior density with respect to the θ{ 's yields the marginal
posterior density for the precision matrices

(i)

4. Posterior Distribution of the "Ratios" of Normal Precision
Matrices. Testing for the equality of normal covariance matrices is a prob-
lem that was studied from a frequency point of view by Bartlett, 1937. The
test (for p > 1) is an asymptotic result, and involves what later came to be
called the multivariate beta distribution (see Olkin and Rubin (1964), Theo-
rem 3.1).

We begin by making the transformations,

K-\ _i K-\ _i

Στiy
2Ti(lp+Στή % » = 1, , # - 1 , (2)

ί=l i=l
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where T; = V£ * V;* Φ* V;* V£ *. The joint posterior distribution of (Γi, Γ2, ,
Γκ-i I X) is generalized multivariate Beta II (see Kim and Press, 1992,and
Tan, 1969). This now leads to the following result.

THEOREM. The joint posterior distribution of Z = (Zi, -Zκ-i) is
multivariate Beta I, with density given by

f(Z I X) = d i f \Zt\l»<->-M\l, - £ z | n *" P " 1 ) / a , (3)

where Z{ > 0, Ip — Σ ^ 1 %i > 0? &nd where

_ Γp(n/2)

PROOF. The result follows by successively making the transformations:
Q = (Ip + Σt'i1 2ί), ^i = Q-τTiQ-τ, i = 1,2, ,K - 2, from (ΓX,T2, ,
T*_i) to (ZUZ2,---,ZK-2,Q) with Jacobian J{TX,T2,- • • ,TK-\ ->
Z l 5 Z 2 ,---, ZK-2,<5) = Π ί i l Ί Q I ^ Then from Q to Zκ.λ by Z K - i =
Q-*ϊjf_iQ-i = Jp - Q-1 - Σ ί i f ^ with_J(g -* Z/c_i) = IQJP+1. The
transformations and the relation, (/p + Σj=T ^j)" 1 = Ip — Σ i=ϊ »̂ > 0?
yield the result. |

COROLLARY, in the special case when Φj = Ip, i = 1,2, , K — 1, the

joint density of the Z{ 's takes on the specific value (depending only upon the
data)

rτA -1 | Γ * | ( n i - p ) /

χ)« — : ι ι

where Γf = Vκ*ViVκ*.

PROOF. When Φ4 = Ip,Zi = [Ip+VPiΣ^VήV^-^VpViV^

= \h + VPiΈfj^ViWPY^x-r-VI2. The result follows by noticing these
expressions. |

Thus, under the hypothesis of equality of covariance matrices, H : Σi =
• = ΣK , Φ» = Ip for i — 1, , K — 1, and the transformation of the Tj's
to the Zj's is not sensitive to which covariance matrix is used as a reference
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matrix in Φ .̂ We will be testing H against the alternative hypothesis A: the
Σj's are unequal.

H.P.D. Region. The density function f(Z \ X) is a monotonic de-
creasing function of

where, from (3),

ϊ\— 1 c c / o i\—1

Π \°κ ,
i=l *

^ = m — p — 1, i = 1, ,ϋί, and <!> = Σΐ=i ^
Thus, the event f(Z \ X) > f(Z0 | X) is equivalent to the event M <

-2log Wo, where Zo and Wo are obtained by substituting a particular matrix
Φo for Φ in the expressions of Z and W', respectively. In particular, our interest
is in the point Φo = {Φo! Φoi = /p, for all i = 1, , K - 1} which corresponds
to the situation Σi = = Σ^. By the Corollary, we see that

-21og Wo = - < C + > δilogWΛ - δ\og > V{ > , (6)
i=l i=l

where C = pδlog δ — p ^ i = 1 δilog δ{. The right side of this expression is
similar to Bartlett's criterion, except that U{ in Bartlett's criterion is here
replaced by δ{ = Πi - p - 1, i = 1, ,ϋf. So the classical test weights the
evidence against H more heavily than is warranted by the posterior probability
distribution, a result analogous to that of Berger and Selke (1987). The actual
test becomes, reject A if

P{M < -2log Wo} < 1 - α ,

for some preassigned α, where Wo is defined in (6). But to carry out the test
we need an asymptotic result for M. Such a result is given in the next section.

5. Asymptotic Distribution of M. The asymptotic distribution of
M is obtained from the asymptotic Box approximation (Box (1949)). For our
context the result is given in the lemma below.

LEMMA. The h-th moment ofW is



328 BAYESIAN HYPOTHESIS TESTING

and is independent of V\, • • , VR, where Φ = π / p ( n / 2 ) .

PROOF. Using the generalized multivariate Beta I density integral (cf.

Tan (1969)):

fK-l
I 1 I I r r \Q,i-

J 5
κ-\

t = l

where o» > \{p — 1), i = 1, ,/ί, we obtain, from the distribution of Z 's,
the moment generating function of M:

£ e i M = E(W)
K

-2t

t = l

K-\

'^TKTΪ"'

K-\ δ
O

t = l

where

Letting h — —It gives the result. |

Set

6 = p, ^ = ί/2, % = {l-j + K(p

o = pJf, a?, = δi/2, δ; = {1 - j + (p + l)}/2,

i = i, 5p

β ι = Si(l - p ) / 2 , / = ( < -

The equation in the lemma can be expressed as

where ϋΓ = J[)=1 T{yά + Vj}/ ΠLi Π*i + «Γ> Since ΣΓ=i *ι = Σ*=i W =
pδ/2 and ^(W) 0 = 1, the random variable W, whose moments are certain
functions of gamma functions, satisfies the conditions for Box's (1949) theorem
of a general asymptotic expansion of the random variable (cf. Anderson (1984,
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p.311)): such that if we take a second order approximation to the distribution
of M ~ —2\ogW, the asymptotic H.P.D. region of probability content of the
event

f(Z I X) > f(Z0 \X) = M< -21og Wo,

is given by

P(pM < -2/>log Wo) =P(χ2

f < -2/>log Wo) + w2(P(χ2

j+4 < -2/>log Wo))

— P(Xf < — 2yθlθg Wo)] -

where

£*δi δj6(p+l)(K-iy

Here Bs(h) denotes the Bernoulli polynomial of degree 3, so that Bs(h) =
h3 - (3/2)h2 + (1/2)Λ.
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