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Compositional data consisting of vectors of positive components subject to

a unit-sum constraint arise in many disciplines, for example in geology as major-

oxide compositions of rocks, in economics as budget share patterns of household

expenditures, in medicine as compositions of renal calculi, in psychology as activ-

ity patterns of subjects. 'Standard' multivariate techniques, designed for uncon-

strained data, are wholly inappropriate and uninterpretable for such data and yet

are still being commonly misapplied. Recognition that the study of compositions

must satisfy simple principles has led recently to the advocacy of new forms of

analysis of compositional data. The nature of the absurdities arising from apply-

ing traditional multivariate techniques to compositions is briefly highlighted and

a description of the essential aspects and the advantages of the new methodology

is provided.

1. Introduction: the Nature of Compositions. An alternative title
for this paper could have been Compositional Data, Analysis is Easy, though
the history of the subject would hardly support this view. Almost a century
ago Pearson (1897) warned us to beware of naive interpretations of correla-
tions of his product-moment correlation COΓΓ(MI,M2), when u\yU2 are of the
form (^1,^2) = (^i?^2)/(^i + χ2 + £3), that is when uι,u2 are essentially
components of a composition. Statisticians and non-statisticians alike have
largely disregarded the warning. A recent statistician-created disregard is in
the software package Execustat Student Edition (1991) where the introduc-
tory tutorial unfortunately uses compositional data consisting of proportions
of sand, silt and clay in sediments and refers to correlation coefficients of
such proportions. For non-statistician examples the reader has only to browse
through geological research journals abounding in arguments which depend
on the interpretation of such uninterpretable correlation coefficients. For a
detailed account of the sad history of compositional data see Aitchison (1986,
Chapter 3).
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to a unit-sum constraint commonly arise in many disciplines, for example in

geology as major-oxide compositions of rocks, in economics as budget share

patterns of household expenditures, in medicine as compositions of renal cal-

culi, in psychology as activity patterns of subjects. Thus a typical D-part com-

position is a vector u = (uι, , UD) of D positive components or proportions

m (i = 1, , D) satisfying the unit-sum constraint u\ + h up = 1. This

unit-sum constraint reduces the effective dimension of D-part compositions to

d — D — 1, and an appropriate sample space for the study of compositions is

then the d-dimensional unit simplex

5 d = {(«!,-•• ,«£>): ui > 0 (i = l, , £ ) , UX + + UD = 1}.

More generally a composition may be regarded as a D-dimensional vec-

tor x — (#i , ,XD) in positive space R+, where each component X{ (i =

1, , D) is measured in the same units. It is then widely recognized that the

particular unit chosen, for example ounces or grams, should make no difference

in any statistical analysis of such specimens, nor should the size of the exper-

imental object. Thus two compositions x and X are regarded as equivalent,

x rsj X, if there is some a > 0 such that X — ax. We are here involved with

the group of scale transformations a : x -* ax from R+ to R+ and with equiv-

alent compositions falling into a compositional class c = {ax : a > 0}. Any

such compositional class, geometrically represented by a ray from the origin

in Λ^, can be specified by its unit-sum composition u = x/(x\ + h XD),

the intersection of the ray with the simplex Sd, where x is any composition

in c. Since it should not matter which composition in a compositional class is

chosen to represent the physical entity it follows that any meaningful function

/ of a composition must satisfy the requirement of scale invariance

f(ax) = f(x) for every x E c and for every a > 0.

A maximal invariant is the set of ratios XI/XD (i = 1, , d) and so it follows

that any meaningful function of a composition must be expressible in terms

of a set of such ratios or some equivalent set. This rather obvious perception

about compositions seems to be a real stumbling block in some disciplines,

as demonstrated by some recent published correspondence (Aitchison 1990a,

1991, 1992a; Watson 1990, 1991). In what follows we shall confine our atten-

tion to the unit-sum representations within the simplex and note that since the

ratios of every pair of components in any equivalent compositions are the same

Ui/uj = Xijxj, and so any meaningful function of a unit-sum composition u

is expressible in terms of ratios such as Ui /up (i = 1, , d).

2. Subcompositional Invariance. The fact that a natural sample
space for compositional data is the unit simplex 5 d , not the whole of real space

Rd, should have been sufficient to warn against the use in compositional data
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analysis of "standard" multivariate methodology designed for the statistical
analysis of unconstrained vectors. Although the difficulty of interpreting cor-
relations of crude components has been well documented (Chayes 1948, 1960;
Mosimann 1963; Sarmanov and Vistelius 1959) and usually expressed in terms
of negative bias, much effort has been diverted into describing in great detail
the pathological effects of standard methods applications rather than finding
a methodology suitable to simplex sample spaces.

One of the principles of compositional data analysis must be a form of
sub compositional coherence between scientists. Suppose that scientist A can
measure all the parts of a D-part composition (MI, , ^ D ) but scientist B
has facilities only for measuring the first C parts. Thus scientist B has avail-
able a sub composition (s\, ,5c) related to the full jD-part composition by
(θi, , sc) — (^i? ? V>C)/(VΊ + + v>c) A requirement of any sensible
methodology is surely that any statements about the parts 1, , C made by
A and B must be consistent. A simple illustrative example shows the folly
of the use of product-moment correlation of the crude components, namely
corr (^1,^2) f°Γ A and corr (51,52) for B, as a means of communication. For
example, for the 4-part compositions (0.1, 0.2, 0.1, 0.6), (0.2, 0.1, 0.1, 0.6),
(0.3, 0.3, 0.2, 0.2) and the 3-part sub compositions formed from parts 1, 2,
3, namely (0.25, 0.50, 0.25), (0.50, 0.25, 0.25), (0.375, 0.375, 0.25), we have
corr (1*1,̂ 2) = 0.5 and corr (51,52) = — 1.

Our knowledge that any meaningful function of a composition must be
expressible in terms of ratios of components and the obvious fact that ra-
tios are unaltered in the process of forming sub compositions (si/sj = U{/uj)
lead us inevitably to consideration of some form of covariance structure for
compositions based upon ratios of components. It should be noted here that
subcompositions play a central role in compositional data analysis, replacing
the concept of marginals in unconstrained multivariate data analysis.

3. A Covariance Structure for Compositions, A natural step to-
wards defining some dependence structure for compositions would now seem to
be the introduction of such characteristics as var (ui/uj) and cov (ui/uj, Uk/uι).
This, however, has the drawback that there is no simple relationship be-
tween, for example, var (ui/uj) and va,τ(uj/ui), so that a large number of
these characteristics would be required for a full description at this second
moment level. This difficulty disappears if we consider logratios such as
log (ui/uj) instead of ratios, for which we have simple relationships such as
var{log(ui/uj)} =var{ log(uj/ui)}. Indeed it is easy to see that in a spec-
ification of such a logratio covariance structure only the d(d + l)/2 logra-
tio variances rt j =var{ \og(ui/uj)} (i < j) are required, since the general
logratio covariance is determined through the relationship cov{ log(ui/uj),

Iθg(uk/Ul)} = \{τu + Tjk - Tik - Tji).
If we wish for a compositional data set something equivalent to the mean
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vector and the covariance matrix for a data set of unconstrained vectors then
we can do no better than set out in a D x D variation array the obvious sample
estimates of E{log(ui/uj)} below the diagonal and the sample estimates of
var { log (ui/uj)} above the leading diagonal of the array.

4. Parametric Classes of Distributions on the Simplex. The
well-known Dirichlet class of distributions on the simplex with typical density
function proportional to uai - 1 •• wQίD~1 is incapable of describing the vast
majority of compositional variability. The main reason for this is that the
Dirichlet distribution has the maximum degree of independence available to
compositions. For example, every subcomposition is independent of any other
non-overlapping subcomposition. To describe real variability, and to allow the
investigation of hypotheses of independence, some parametric class richer in
dependence structure is required. An answer to this is to be found in the old
idea (McAlister, 1879) of inducing a distribution (the lognormal distribution)
on an awkward space (the positive real line) from one (the normal distribution)
on a more familiar space (the real line) by way of transformations (the expo-
nential and logarithmic) between the two spaces. Our situation with awkward
space Sd and familiar space Rd and its multivariate normal class is hardly
more difficult than this early use of the transformation technique. Probably
the simplest transformation from y G Rd to u G Sd is the 'additive' logistic
transformation u = alg(y), defined by

Ui = eyi/(eyi + - + eyd + 1 ) i = I , - - - , d ,

uD = l/(eyi + ... + e

yd + l)

with inverse transformation from Sd to Rd the logratio transformation y =
alr(u), defined by

yi = log (ui/uD), i = 1, , d.

There are, of course, many other possible such transformations which may
be of relevance to certain aspects of compositional data analysis (Aitchison
(1986a, Chapter 6)) but we shall confine attention here to the above.

5. A Methodology for Compositional Data Analysis. The con-
siderations of Sections 3 and 4 suggest a simple methodology for compositional
data analysis.
Transform each composition (^i, , up) to it logratio vector y = (log {u\/u£>,

• , Ud/u£>)}, after reformulating your problem about compositions in terms
of the corresponding logratio vectors, then apply the appropriate, standard
multivariate procedures to the logratio vectors.

Since any meaningful function of a composition must always be expressible in
terms of ratios, and therefore logratios, of components, the required reformu-
lation can always be achieved. The fact that the final component is used as
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divisor raises the question of whether the choice of another divisor might lead

to different conclusions. It can readily be established (Aitchison 1986a, Chap-

ter 6) that standard multivariate statistical procedures are invariant under the

group of permutations of the parts 1, , D of the composition, in particular

with respect to a common divisor Xj different from xp.

Note that in the use of the logratio vector y above the covariance structure

is being defined in terms of the covariance matrix of y with typical elements

σij =cov{log(ui/uD,v>j/uD} (ij = 1, ,d). The relationship of the σ^ to

the basic logratio variances ry is simply obtained as T J = σa + σjj - 2σ^. It

is indeed possible to treat all the components symmetrically through the use

of the centered logratio transformation z = [log {ui/g(u)},

with D X D covariance matrix with typical element 7^ = ( )

log{uj/g(u)}], where g(u) = (u\ ur>)ιlD is the geometric mean of the com-

ponents of w, with a trade-off of semipositive definiteness of the covariance

matrix for the symmetry achieved. The alternative specifications Tij,σij,ηij

allow a convenient flexibility in the statistical analysis of compositional data.

For example, some of the interesting definitions of forms of independence as-

sociated with compositional variability are more readily expressed in terms on

one specification rather than another. Complete subcompositional indepen-

dence, defined as the independence of every set of non-overlapping subcompo-

sitions, is characterized by T{j taking the additive form α* + α^, whereas the

characterization in terms of ηij is flyα^ - D~1(ai + otj - a.), where δij is the

Kronecker delta and a. is the arithmetic mean of a\ (i = 1, , D).

For details of problems special to compositions and a wide variety of

applications see Aitchison (1986a). For an effective graphical display of com-

position of data along the lines of the familiar biplot for unconstrained data

see Aitchison (1990b).

6 Perturbation : the Fundamental Operation in the Simplex.
The basic operations of translation in RD and rotation on the sphere and the

role of the corresponding groups are well known in the statistical analysis of

unconstrained multivariate vectors and directional data. The answers to the

questions of whether there is an analogous basic operation in the simplex and

whether it can be used to characterize the difference between two compositions

are less familiar, but are fundamental for an understanding of compositional

data analysis. The answers are to be found in the basic operation of pertur-

bation (Aitchison, 1986a), which may be motivated in relation to the wider

notions of compositional classes as described in Section 1.

For any two equivalent compositions x and X, in the same composi-

tional class, there is a scale relationship (Xi, ,XD) = (α^i? ,α#£>) for

some a > 0, where each component of x is scaled by the same factor a

to obtain the corresponding component of X. For any two compositions x

and X in different compositional classes c and C a similar, but differential,
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scaling relationship (-X"i, ,XD) = (pixi,-' IPΌ^D) can always be found,

simply by taking pi = Xi/xi(i = 1, ,D). Denoting the operation be-

tween the positive perturbing vector p = (pi, , P D ) &nd the composition

x by o we have p o x = (pi#i, ,PD%D) and X = p o x. Such a per-

turbation operator is then easily adapted to the simplex simply by defining

p o u = (pitti, ,PDUD)/(PIVΊ + h PDUD) Note that the roles of p and

^ are interchangeable in this definition and we can conveniently restrict p to

lie in the simplex Sd. Perturbations thus defined form a group, with p " 1 , the

inverse of p, defined as (pf1, ->P^)I{P\1 H ("PD*)
 a n ( ^ *^ e identity per-

turbation as (1/D, - , 1/D). Moreover, for any two compositions Ή, {/ there

is a unique perturbation p £ Sd such that U = p o u and w = p " 1 o {/, where

p = U o u"1. Thus the perturbation £/" o u " 1 , or equivalently X o x~λ charac-

terizes the change from c to C; the change from X to a: is simply the inverse

perturbation ^ o C/"1. The question of whether the group of perturbations is

unique in this role of describing compositional change has been addressed by

Aitchison (1992b) who shows that under some simple requirements the answer

is in the affirmative.

When we recall the importance of the logratio vectors in compositional

data analysis, perturbation is seen to be the natural operation within the

simplex, since the logratio vectors j/, Y corresponding to w, U are related in

Rd by the translation operation Y = r + y, where r is the logratio vector of

p = U o u"1. The fact that translation is used in the statistical modeling of

error or imprecision in Rd directs attention to its use for such purposes for

compositional modeling. For example, when the purpose of experimentation

is to combine measurements of some 'true' composition υ the natural measure-

ment model relating an observed composition u to v is u = v o p, where p is

the imprecision perturbation. Similarly if we wish to relate the variability of

a composition u to a covariate vector υ in a manner analogous to generalized

linear modeling we can express the relationship asw = alg(βτ υ)op where the

random perturbation p plays the role of the error and the 'link function' is the

additive logistic function alg.

7. Some Further Principles of Compositional Data Analysis.
We can now turn our attention to the role of the group of perturbations

in determining principles for compositional data analysis. Aitchison (1992b)

has discussed in detail the rationale for defining a sensible scalar measure of

difference between two compositions u and U. We confine attention here to

the part of the argument involving perturbations. From the above discussion

the full difference between u and U is U o u~λ. Now if u and U are both

subjected to the same perturbation p to produce new compositions u* = pou

and U* = p o U the difference between w* and U* is also U o u~ι since U* =

J7* o u * " 1 o u* = (p o U) o ( p " 1 o u~λ) o u* = (U o u~λ) o u*. Thus we would

require any function purporting to be a scalar measure of difference /(w, U)
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between u and U to be perturbation invariant in the sense that

f(p o u,p o U) = /(w, £7) for every p, w, U £ 5*.

A maximal perturbation invariant function is U ou~τ so that any perturbation
invariant function must be a function of the ratios (uχ/Uι, , up/Up). This
together with the requirement of scale invariance limits the functions available
as scalar measure of difference to functions of the ratios of ratios of the form
(ui/uj)/(Ui/Uj). With some other simple requirements Aitchison (1992b)
derives

-I 1/2

as the simplest and most tractable measure of difference or distance between
two compositions. If for a compositional data set a total measure of variability
is taken as the sum of squares of the distances between also possible pairs of
compositions it is easy to see that this is in conformity with total measures
of variability based on covariance structure, for example the sum of sample
estimates of all possible logratio variances Tij.

Argument concerning the suitability of arithmetic, geometric or other
means as a measure of central location can be traced far back into statis-
tical history. The tradition in compositional data analysis seems to be the
arithmetic mean, but some simple considerations suggest that it is an unreli-
able tradition. Consider what properties are desirable in such a measure, say
cen(u). If we imagine the distribution of compositions perturbed by a constant
perturbation p then surely a minimum requirement is that the centers of the
original and the perturbed distributions should be related by the perturbation;
in other words, cen(p o u) = p o cen{u). This is clearly not satisfied by the
arithmetic mean. On the other hand, the natural consequence of modeling the
imprecision process in the form u = v op and the use of logratio analysis leads
to the identification of υ with alg{alr(E(y)}. If we use G(u) =exp {£"(log u)}
to denote the geometric means vector then the central measure is simply the
geometric mean vector scaled to form a unit-sum composition. In practical
terms, for a compositional data set, we simply compute the geometric means
gι of each component and then take (ffi, , #D)/(<7I + h <7D) as a center
of the data set. We may finally remark that many compositional data sets
are curved or concave in the naive geometry of the simplex and it is possible
for the arithmetic mean to fall outside the data set and indeed be quite an
atypical composition; see Aitchison (1989) for such a situation.

8. Discussion. Is the initial claim of this paper that compositional
data analysis is easy justified ? The computational aspect of converting compo-
sitions to logratio vectors and applying standard multivariate techniques could
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hardly be simpler, and a software package (Aitchison, 1986b) is available for
the special forms of problem that arise in compositional data analysis. Nev-
ertheless there appears to be some reluctance to change from the bad habits
and meaningless consequences of ignoring the special nature of compositional
data. In the unconstrained world the concept of product-moment correlation
is so ingrained into statistical argument as a useful and straightforward tool
for the description of dependence that it is difficult to conceive of other ways
of describing dependence. For example, within logratio analysis the simplest
construct of two components is the logratio variance r^ = var{log(uifuj)}
and this can range over all non-negative values. The value zero, in which case
Ui and Uj are in constant proportion, replaces the concept of 'perfect positive
correlation' whereas large values, corresponding to the components departing
substantially from constant proportionality, replaces the concept of 'negative
correlation'.
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