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In many practical situations the variance of a set of measurements can
be attributed to several known sources of variability. For example, if several
measurements of each item of a lot are taken, one may need to deal not only
with the within-item variability, but also with item-to-item-within-lot and lot-
to-lot components of variability. In such cases conventional control charts tend
to produce an unacceptably high rate of false alarms and, in general, represent
a rather weak diagnostic tool. This paper shows how to build a control system,
based on Likelihood Ratio Tests, capable of controlling the mean and variance
components of a nested random effect model. The strong points and weaknesses
of this approach are compared to those of competing methods.

1. Introduction. One of the major aims of Statistical Process Control
(SPC) is to achieve the condition where all the parameters related to a given
manufacturing, business, ecological or similar process, conform to some pre-
scribed on-target behavior. The means by which this aim is achieved include
not only direct process adjustments, but also identification and neutralization
of so called special causes of unfavorable changes in parameters of interest.
Success in this form of control depends, to a large extent, on identification of
a suitable model for the observed process. Once this is done and a systematic
corrective action is taken to reduce variability due to predictable effects of
feed-forward and feed-back variables, process control activity concentrates on
monitoring the adequacy of the model and the levels of its parameters.

In many practical situations, the relevant model involves the mean and
various measures of variability for a given type of measurement. For example,
in situations where production is on a lot-by-lot basis and several measure-
ments are taken at random from each lot, one will usually need to monitor not
only the measure of total variance, but also its individual components. This is
important because of the following reasons. First, knowing which component
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of variance is out of control is important for diagnosing the problem, since
different components are usually affected by different special causes. Second,
the ability of screening procedures to improve the outgoing quality depends
strongly on the individual variance components: for a fixed total variance, the
higher the proportion of variance due to nested factors the more difficult it is
to screen out defective product.

In practical applications, the presence of several controllable causes of
variability is usually revealed by the phenomenon of an unusually high rate
of false alarms produced by standard X - R charts based on standard text-
book procedures (e.g. see Wells and Smith (1991)). The main reason for this is
related to the commonly made assumption that the lot-to-lot or higher compo-
nents of variance are negligibly small which, in turn, leads to too tight control
limits. The standard prescription in such situations involves increasing the
Shewhart-type control limits on the chart for the process mean and supple-
menting it with the moving range chart. Yashchin (1991) discussed monitoring
of the process mean and individual components of variance in a nested random
effect model by using the Cusum technique. Woodall and Thomas (1991) gave
a review of SPC involving several components of variability.

The strategy discussed here is based on the Likelihood Ratio Approach
(e.g. see Basseville and Benveniste (1986)), which is known to lead to optimal
procedures in several settings, including serially correlated data (eg. see Lor-
den (1971), Moustakides (1986) and Bansal and Papantoni-Kazakos (1986)).
In Section 2 the general random effect model is introduced and the basic
monitoring procedures are described. Section 3 deals with design of control
schemes for the grand process mean and the lowest component of variance. In
Sections 4 and 5 procedures for monitoring higher components of variance are
discussed. Finally, Section 6 contains some concluding remarks.

2. The Model and Monitoring Strategy. For the sake of simplicity,
the discussion in this work will be related to a specific situation arising in the
process of manufacturing integrated circuits (chips) used in computers. Chips
are typically processed as part of a wafer, which is a thin disk about 20 cm in
diameter. Each wafer contains approximately 100 square shaped chips. Only
at the final stages of processing are the wafers diced to produce individual
chips. For most of the production process (which can take months), wafers
are handled in lots. For example, when a given tool is used to perform one of
hundreds of steps required to turn a raw wafer into a set of chips, the whole
lot is processed as a single unit. Typically, a lot contains about 20 wafers. Our
discussion will focus on a specific process step which deposits a thin layer of
silicon oxide onto the surface of a wafer. To accomplish this step, the lot is
placed inside a tool and, after being processed for a specified period of time, is
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taken out for measurements and further processing by tools down the line. In
this step, it is very important to assure the correct thickness of the oxide layer
as well as its uniformity, so as to prevent electrical defects or degradation in
performance of the final product.

2.1. The Model. In the present work, the oxide thickness corresponding
to the population of diced chips will be assumed to follow a nested random
effect model,

Xim = μ + Li + Wr{i) + Eirn * = 1,2,... r = l,2,...Λ, n = 1,2,.. .N (2.1)

where Xirn is the thickness corresponding to the π-th chip on the r-th wafer of
the i-th lot, μ is the grand process mean, Li ~ N (0,σ&) is the random effect
of the z-th lot, Wr(t j ~ N (Q,σw) is the nested effect of the r-th item in the
i-th lot and E{rn ~ N (0, σ) is the random noise representing the efect of the
n-th measurement taken from the r-th item of the i-th lot. Without loss of
generality, we shall assume that R is the number of wafers randomly selected
from each lot for the purpose of monitoring, and that N represents the size of
a random sample of oxide film measurements taken from each wafer.

In the model (2.1), σ^σ^ and σ represent the lot-to-lot, wafer-to-wafer-
within-lot and within-wafer components of variability. Together with μ, these
parameters are of primary interest. Efficient monitoring procedures can be
based on the control sequence of sufficient statistics {βi,&iΦ ,cr%} , * =

1,2,..., where

R N

r=l n=l

R

r=l

- R N

σ ' ~ Λ(JV - 1) ̂  ^ ^ f > n t>#'
v ' r=l n=l

and, in accordance with the conventional notation, X{rΦ is the average of the
N measurements taken from the r-th wafer of the i-th lot.

Before proceeding with design of control schemes for monitoring the pa-
rameters of (2.1), one must perform a thorough analysis of available data, so as
to establish the relevance of the model as well as the acceptable and rejectable
levels of its parameters. One must give due attention to the possibility that
some lots may contain outliers and to the fact that historic data sets may
reflect the presence of changes associated with raw materials or corrective ac-
tions (possibly related to other characteristics of the product) and thus not
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have a fixed mean. Therefore, conventional estimation procedures developed
for designed nested experiments may turn out not to be appropriate in sit-
uations involving process control. Yashchin (1991) discusses the problem of
estimation of variance components in this environment.

The results of this article remain relevant in situations when more than
two nested components of variance are present. In such situations, monitoring
of the higher components can be completed by merely reducing the appropriate
lowest nested groups of data to their averages and behaving as if no individual
measurements within such groups ever existed. For example, the reader will
notice that, in what follows, monitoring of the highest variance component, σ&
of (2.1), is solely based on the within-item averages (which represent sufficient
statistics for this purpose) and ignores the individual measurements.

The Monitoring Strategy, Once the process has been analyzed, one should
specify the acceptable region (operating window), Ωo, and the unacceptable re-
gion, Ωi, for every monitored parameter. In this process one will generally take
into account specification limits as well as the values that other parameters
can take under normal operating conditions. This article discusses monitoring
based on the Likelihood Ratio Approach, which can be briefly summarized as
follows:

Likelihood Ratio (LR) Strategy: Trigger an out of control signal at time
T if for some I > 1

2?r^XJi-£fo>Λ» (2-3)
where h > 0 is a pre-specified signal level, L*χ is the maximum log-likelihood
of the data observed within the last / periods of time under the assumption
that the controlled parameter changed from some value in Ωo to a value within
Ωi I units of time ago and Z*o is the similar maximum log-likelihood achieved
under the assumption that the controlled parameter stays within Ωo

The above strategy leads to powerful procedures for a wide class of situa-
tions involving control of univariate and multivariate processes with or without
serial correlation (e.g. see Lorden (1971), Nikiforov (1983), Basseville (1988),
Telksnys (1986)). Its main drawback is related to the fact that one needs to
go to the very beginning of the data in order to decide whether a signal is
to be triggered at time T. This is obviously impractical and, therefore, the
scheme is usually run by choosing a value L and triggering a signal only if h
is exceeded for values 1 < / < L. In effect, it amounts to running a truncated
SPRT backwards in time. Alternatively, one could determine the depth LT
based on the previous history in the following way:

Regenerative Likelihood Ratio (LRL) Strategy: Given that at time T the
last regeneration point was registered LT units of time ago, trigger a signal if
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Df > h for some 1 < / < Lτ. If D] < 0 for every 1 < / < Z τ , declare Γ the
new regeneration point.

In the above procedure, the first regeneration point can be set to represent
the first moment of time where it is believed that the monitored parameter
is in Ωo, i.e. the point at which the control scheme is re-initiated, e.g. after
repair of the faulty tool. Actual implementation of this strategy depends on
the concrete situation and on assumptions about the nuisance parameters. For
example, in cases where nuisance parameters need to be estimated, one may
need to expand the depth of search for I in the above procedure beyond Lj.

When the sequence of statistics used to monitor a given parameter is
iid and Ωo and Ωi reduce to a single point (i.e. control scheme is designed
under the assumption that values of the parameter before and after the change
are known), the LR and RLR strategies lead to identical schemes. Indeed,
these strategies are associated with the V-mask and Page's Cusum procedures,
respectively, and thus equivalence follows from the well known result of Kemp
(1961). When the observations follow a one-dimensional distribution that
belongs to the exponential family and Ωo and Ωi represent non-overlapping
intervals on the real line, the LR and RLR strategies once again turn out
to be equivalent (the proof of this statement is non-trivial and thus will not
be given here). In more general situations, the LR and RLR strategies lead
to different schemes having a roughly comparable statistical performance. In
cases where it can be assumed that all the parameters stay at a constant level
for relatively long periods of time between changes, the LR strategy tends
to be slightly more powerful. In other cases it is advisable to use the RLR
approach.

In general, performance of control schemes is characterized by the Run
Length (RL), which represents the number of observations (in the case of the
model (2.1), the number of lots) taken before an out of control signal is trig-
gered. The problem of design of control schemes thus involves finding control
scheme parameters such that the Average Run Length (ARL) is sufficiently
large when the controlled parameter is in Ωo and sufficiently small when it is
in Ωχ In the next three sections an approach to monitoring the parameters of
the basic model (2.1) based on the LR/RLR strategy, is developed.

Control Schemes for Monitoring μ and σ. The strategy outlined
in the previous section is relatively easy to implement for two of the four
parameters of interest, μ and σ. First of all, note that fii ~ JV(μ,σ##), where

°l. = °l + °2JR, and σ2. = σ2

w + σ2/N. (3.1)

Clearly, σ\ represents the variance of the wafer sample mean. The sim-
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plest way to set up an upper scheme for detecting a change in μ upwards from

the domain μ < μ0 to μ > μi is by fixing some historically prevalent and prac-

tically acceptable value of σ2

# and designing the scheme under the assumption

that the variance of {μt } is equal to this value. In accordance with the usual

Cusum convention, define kμ = (μo + μi)/2 and let βι = ( l/0Σ/r-/+i£*

Then, it is not difficult to show that

Dΐ =

-l(μi - μ/)2/2σ;. if μi < μ0

-l(μι - μo)(fiι - kμ)/σΐ, if μ0 < μi < μ\ (3.2)

[ l{μι - μo)2/2σ2

# if μi >

Since D* < 0 when μi < kμ, the upper LR control scheme can be formulated

as follows:

Upper LR scheme for μ: Trigger an out of control signal at time T if for

some / > 1

kμ<μι< μi and l(μx - μo)(flι - kμ)/σl. > hμ or

μi > μi and l(fiι - μo)
2/2σ?# > hμ

2/2σ? > h

In a similar way, one can define a lower scheme for detecting downward changes

in μ by applying an upper scheme to reflected sequence {-fii}. A combination

of two one-sided schemes then leads to a two-sided LR control scheme for μ.

Control of the within-item standard deviation, σ, is based on the con-

trol sequence σf defined by (2.2). Denote σf = ( l / 0 Σ τ - / + i ^ Under the

assumptions of the model (2.1), the density of this estimate based on the last

/ lots is given by

where υ = R(N - 1), the number of degrees of freedom associated with a

single lot. In most practical situations the acceptable and reject able regions

for σ correspond to σ < σo and σ > σi, respectively, with σo < σi, i.e. one

is primarily interested in detecting changes upwards. In this case the score

associated with the last / lots can be represented by

Dΐ =

0.5/υ [ln(σf/σΐ) + 1 - σf/σj] if σf < σ\

O.blv [In(σ2/σα

2) + σf(σ~2 - σf2)] if σ2 < σf < σ\ (3.5)

[ 0.5/t; [In(σ2/σ2) - 1 + <τ2/σ2] if σf > σ\
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Denoting the reference value kσ by

kσ = *JψM (3.6)
σ σσ0 -στ

and taking into account that the score is positive only if σf > fcσ, the LR
scheme for monitoring σ can be formulated as follows:

Upper LR scheme for σ: Trigger an out of control signal at time T if for
some / > 1

K < °f < σ\ and 0.5/ϋ(σ^2 - σf 2){σf - kσ) > hσ or

σf > σ2 and 0.5/v [ln(σg/σ?) - 1 + σf/σl] > hσ ^

As noted in the previous section, schemes for μ and σ based on the RLR
strategy are equivalent to those obtained under the LR strategy, since the
distributions of the sequences {μz } and {σf} belong to the exponential family.
The limited scope of the present article does not enable me to discuss the
problem of computing the values hμ and hσ that assure a given low rate of
false alarms. I will only mention the fact that, analogously to the case of usual
Cusum schemes, design of two-sided LR procedures can be decomposed into
separate design of the underlying upper and lower schemes. Specifically, the
ARL and SDRL (standard deviation of run length) of a two-sided scheme can
still be well approximated in terms of its one-sided counterparts by using the
formulas (e.g. see Kemp (1961), Yashchin (1985))

1/ARL - 1/ARL+ + 1/ARL~

(SDRL/ARL)2 - (SDRL+/ARL+)2 + (SDRL~/ARL~)2 - 1 ( 3 " ^

4. Control schemes for monitoring σw. For other components of
variance, direct application of the LR or LRL strategies leads to more complex
procedures, mainly because of the effect of the nuisance parameters. When
monitoring σw, the relevant nuisance parameter is σ. For the sake of simplicity,
we shall use instead the nuisance parameter η = σ2/N (η represents the part
of the variance of the within-item average that is explained by the within-item
variability. Monitoring of σw is based on the sequence of bivariate statistics,
{σf%,σ2}. The components of this sequence are independent and distributed
as (σ£, + ?/)Vi[t;i] and 77^2^2], where vλ = R - 1 and υ2 = R(N - 1) are degrees
of freedom associated with σf% and <τf, respectively, and Vj[v] is a Chi-square
random variable with v degrees of freedom divided by v.

At time Γ, the logarithm of the likelihood function based on the last /



380 NESTED RANDOM EFFECT MODEL

lots can be represented as

Lι(σWJη\ σi%,ήi, i = T -1+ 1 , . . . , Γ )

oc C - iv.Mσl + η) + Mi/(σ2, + η)] - Iv2[ln η + M2/r/]

where C does not depend on the parameters, σ\ and 7/, and

T

= 7 Σ * ^
(4.2)

ι=Γ-/+l

Mi and M 2 are sufficient statistics related to σw and η. To form a score

corresponding to the last I lots in a control scheme for σw, one must first

find the maximal values of L corresponding to acceptable and rejectable areas,

i.e. find
L*o = max Lι(σw,η | M i , M 2 ) and

i*α = max Lι(σw,η | M i , M 2 ) .
σ>ση>0

The LR control scheme for σw is then derived in a usual way: a signal is

triggered at time T if L*λ — X*o > hw for some I > 1 and signal level hw. The

RLR procedure in this case is not equivalent to the LR procedure.

It turns out that finding Z*o and L^ is not difficult, provided one is able

to find the maximal value of Lι(σwy η) for a fixed value of σw. This, in turn, is

achieved by solving the equation

foai— , « _ „ ( 4 4 )

dη σw "I" V \σw "I" V ) V

which leads to a cubic equation in 7/,

+ V2(σw + VΫΉ ~ M\V\η2 — M 2 ϋ 2 (σ^ + τ/)2 = 0. (4.5)

It is not difficult to see that a positive root η*(σw) of (4.5) in the interval

between η\ = max(Mχ — σ^,0) and η2 = M2 always exists. If such a root

is unique in this interval (which can be checked by simply solving (4.5) using

standard formulas), it represents the maximizing value of Lι(σw,η). In these

rare cases where the other two roots are also real and belong to the interval

[%?%]? they must also be checked and η*(σw) is then selected to be the root

that globally maximizes (4.1).

Now the problem of finding L*o and X^ is reduced to the problem of

maximizing Lι{σw,η*(σw)) in the areas σw < σw0 and σw > σ^χ, respectively.
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By setting the partial derivatives of Lι(σw,η) by σ£ and η to zero, as in
(4.4), one concludes that the maximum likelihood estimators (MLE's) of these
parameters are

τ/ = M2, σ2, = max(Mi-ί),0) (4.6)

Furthermore, one can show that the function Lι(σw,η*(σw)) increases when
σw < σw, reaches its maximum at σw and decreases when σw > σw. Therefore
L*o and L*χ are determined as follows:

a) If σw < σw0 set L*l0 = Lι(σw,ή) and L]λ = Lι(σwUη*(σwl)).

b) If σ^o < °w < °wi set L*lQ = Lι(σw0,η*(σw0)) and L^ = L\(σwl,η*(σwlj).

c) If σw > σwχ set 1^ = Lι(σw,ή) and i ^ = X/ία^,?/*^^)).

Note that in the upper monitoring scheme only cases b) and c) are rele-
vant, since in case a) the score D* cannot be positive.

Table 4.1: The ARL's and standard deviations of the RL's (in parentheses)
of the LR and Markovian Cusum procedures for monitoring σw.

The acceptable and reject able regions are σw < 1 and σw > 2, respectively.

σ2/N

1

1

1

1

2

2

2

2

σ ω

1

2

3

4

1

2

3

4

Λ = 'Γ.6

LR Procedure

250

41.8
16.8
11.9

154

49.4
25.1
16.4

(270)
(40.8)
(16.1)
(10.8)

(153)
(46.5)
(24.2)
(14.9)

/i =

Mi) :

251

38.1
17.3
11.2

64.9
24.9
14.6
10.4

19.1
= 2.05

(248)
(34.6)
(14.5)

(8.9)

(62.5)
(22.7)
(12.7)

(8.7)

Now we shall compare the performance of the above procedure (applied in
terms of the LR strategy) to that of an alternative Markovian Cusum scheme
defined by computing recursively the process

Sw(0) = 0, Sw(i) = max{Sw(i - 1)
,1 1 o ( 4 J )

and triggering a signal when Sw(i) > hw.ln the above process <3f# - σ?/N, i =
1,2, are unbiased estimates of σ^ and the reference value is chosen in accor-
dance with the formula

x
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where ή is some historically prevalent value of 77. It is not difficult to see that

when σ is known, the above procedure is the LR scheme corresponding to

Ωo = {σ^o} and Ωi = {σ^i} (e.g. see Yashchin (1991)). To compare the

schemes, consider the case with R = 2, JV = 4, σ^0 = l ? σ ^ i = 4,7? = 1, and

select the signal levels of both procedures so as to obtain the same ARL=250

when σw = σwo = 1. This requirement leads to signal levels 7.6 (LR scheme)

and 19.1 (Markovian Cusum). By (4.8), the reference value of the latter is

kw(l) = 2.05. Table 4.1 contains the ARL's corresponding to cases when 77 = 1

(nominal value) and 77 = 2.

As can be seen from Table 4.1, the LR procedure is slightly less sensitive if

77 is at its nominal level. When 77 increases, however, both schemes experience

degradation in performance. The LR procedure is much more robust in terms

of the rate of false alarms. On the other hand, the Markovian Cusum is more

robust in terms of sensitivity. The choice of which procedure to use should

depend on the type of degradation that one is more willing to tolerate in a given

application. The above example indicates that a control chart for monitoring

σw should never be used alone: it should be accompanied by a control chart

for detecting changes in 77. Should a significant increase in 77 occur, this chart

is likely to pick it up before it causes a false alarm in the chart for monitoring

σw.

5.Control Schemes for Monitoring σ&. Control of σ& is based on the

bivariate sequence, {βi,<τ*m}. The stochastic behavior of this sequence depends

on a single nuisance parameter, η% = σ^/R (see (3.1)). The decision whether

to signal at time T on the basis of the information corresponding to the last I

lots depends on the pair of sufficient statistics,

= 7Γj Σ (A:- fit)2 =
τ ί + 1

= Ί Σ
i Γ /

; = τ - ί + 1

where v\ = / - 1 is the number of degrees of freedom associated with σ\> and

v2 = l(R - 1) is the number of degrees of freedom associated with η%. In this

setting, the problem of controlling σ^ becomes similar to that of controlling σw

in the sense that at each stage one is dealing with a single "lot" containing the

last / groups of R averages and σ^ can be treated as an item-to-item variance

within this artificial lot. To simplify the presentation, we shall use the letter

ζ instead of η% in what follows.
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The logarithm of the likelihood function based on the last I lots is

6, C I Mi, M2) <*C - t)i[ln(σ6

2 + ζ) + Mxl{σ\ + ζ)}

-v2[lnζ + M/ζ]

where C does not depend on the parameters. Next, one needs to find

L*o — max Lι(σb,ζ\ MX,M2) and

(5.3)
L*x = max X/(σ6,C I MUM2).

To find these values, note that to maximize Lι(σb,ζ) for a fixed value of σ w ,

one needs to solve the cubic equation in £,

h{σ2

h + ζ)ζ2 + v2(σ2 + ζ)2ζ - M^ζ2 - M2v2(σ2

b + ζ)2 = 0. (5.4)

This equation is very similar to (4.5) except that now ϋi and v2 depend on

/. Once again, a positive root C*(σ&) that maximizes (5.2) lies in the interval

between ζι = max(Mi - σ£, 0) and ζ2 = M2. Taking into account the fact that

the MLE's of ζ and σ2 are

C = M 2 , σ2

h = max(M! - £ 0), (5.5)

i* 0 and L*χ are determined in the same way as in the case of σ^, i.e.

a) If σb < σb0 set L^ = Lι(σh,ζ) and L*n = Lι{σhuζ
m{σhl)).

b) If σb0 <σb< σbl set L*l0 = Jw(σfeo,C*(^o)) and i ^ = 2//(σ6i,C*(^i))

c) If σb > σbι set L*n = Lι(σb,ζ) and if0 = X/(σ6o,C*(ί7'6o)).

Therefore, the LR control scheme for monitoring σb can be formulated as

follows: Trigger a signal at time T if X*χ - i* 0 > /&& for some / > 2 and signal

level hb. As in the case with σw, only b) and c) are relevant in the upper LR

(or RLR) procedures.

One important point should be made about procedures for monitoring

σb discussed above. These procedures can only be recommended in cases

where μ remains stable for prolonged periods of time. If μ tends to undergo

abrupt changes without entering into the respective unacceptable region, these

changes will be picked up by the scheme for σ&, leading to incorrect diagnosis.

Practical experience suggests that, since μ is frequently subject to abrupt

changes and controlled adjustments, robustness of control schemes for variance

components with respect to such events is of primary importance. Of course,

schemes for σw and σ automatically possess this property, because they are

based on control sequences that do not depend on μ. On the other hand, the
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sequence {μt } used in control of σ& does depend on μ. To obtain a robust
procedure, it is advisable to use

L (fc-ft-i)2 and v[ = 2^f (5.6)

instead^ of Mi and ί i in the above procedures. This is justified by the fact
that M{ is much more robust with respect to changes in μ and its distribution
is well approximated by that of (σ^ + t7 )Vi[6j].

6. Conclusions. When it is reasonable to assume that the data orig-
inates from the model (2.1) or a more general model of this type, one can
organize an efficient system for monitoring the underlying parameters by de-
composing the data stream into control sequences associated with the grand
process mean and individual components of variability and designing appro-
priate control schemes based on these sequences. There are several approaches
to design of a such a system, among them the Cusum approach discussed in
Yashchin (1991) and the LR/RLR methodology presented in this article. The
latter approach has two major advantages. First of all, it delivers a high sta-
tistical power while using very few scheme parameters. Second, its degree of
protection against false alarms is relatively robust with respect to possible
fluctuations in the level of nuisance parameters. On the other hand, it has
several drawbacks: design, analysis and implementation of LR/RLR strategy
is fairly complex, the form of control schemes depends on the model (unlike
the Cusum approach, which uses a standard form of a scheme) and their sen-
sitivity is highly dependent on the levels of nuisance parameters. I feel that
there are many situations, especially those involving simultaneous monitoring
of many parameters, in which one should give this approach serious consid-
eration. However, its practical success will largely depend on availability of
software that automates the implementation and presents its graphical and
statistical power to manufacturing engineers "under the hood."
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