
Change-Point Problems
IMS Lecture Notes - Monograph Series (Volume 23, 1994)

ON ALMOST SURE BEHAVIOR
OF CHANGE-POINT ESTIMATORS

BY YI-CHING YAO, DAWEI HUANG, AND RICHARD DAVIS

Colorado State University, Queensland University of Technology,
and Colorado State University

We propose a natural setting for the simple change-point problem which

is particularly useful for studying almost sure convergence properties of change-

point estimators. It is shown that each member of a class of nonparametric

estimators is within 0 ( 1 ) of the true change-point almost surely if the smaller

of the pre-change and post-change sample sizes is greater than a constant times

log 71 where n is the total sample size. This improves upon the known result

on nonparametric estimators which gives 0{na) almost sure rate of convergence

with a > 1/2 under the restrictive assumption that the pre-change and post-

change sample sizes are of the same order of magnitude. We also consider the

simple normal mean shift model and show that the finite-sample maximum like-

lihood estimator converges almost surely to the infinite-sample counterpart if the

smaller of the pre-change and post-change sample sizes is greater than a constant

times log n. It is found that the best possible constant equals 2δ~ O where 6

is the amount of change in mean and G is the common variance.

1. Introduction. Let P and Q be two different unknown probability
distributions on a measurable space E and consider the following array of
random variables. For n = 2,3,..., let Xi,n, X2}m ? Xn,n be independent
random variables such that X ί?n has distribution P or Q according to whether
* < τn or i > τn where r n ( l < τn < ή) is the unknown time point (change-
point) at which the distribution of the random variables changes from P to Q.
In a parametric setting, Hinkley (1970) showed that the maximum likelihood
estimator (mle) fn of τn satisfies tn — τn = 0p(l). Carlstein (1988) proposed
a class of nonparametric estimators of τn (denoted by r*) and established
(without specifying the probabilistic relation between the rows of the array)
that τ* - τn = 0(na) a.s. for any a > 1/2, assuming that rn/n —• θ £ (0,1).
Recently, Dumbgen (1991) considered a more general framework and proposed
a class of nonparametric estimators (including Carlstein's estimators as special
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cases) and showed that r* - τn = 0 p ( l ) , again assuming τn/n -» θ G (0,1).

(Dϋmbgen also obtained weak convergence results for the case that P = Pn

and Q = Qn depend on the sample size n and approach a common distribution

asn-> oo.)

By embedding naturally the rows of the array into an infinite sequence

of independent random variables, we show in this note that r* - τn = 0(1)

a.s. as long as liminfn_HX>[rn Λ (n - rn)]/logn > K ( for some large con-

stant K) where a Λ b := min{α, 6}, and r* is any one of Dύmbgen's estimators.

Specifically, consider a two-sided infinite sequence of independent random vari-

ables {... ,X_i,Xo?^i? •} such that X{ has distribution P or Q according

as i < 0 or i > 0. For each pair of positive integers (fc, m), consider the sample

X-k+ii' ")Xm (but the values of k and m are not known). This sample is

equivalent to the sample Xi,n? ? Xn,n with n = k + m and τn = fc. In other

words, the rows {-XΊ,n> -. -, Xn,n}i n = 2,3,. . . are embedded into the infinite

sequence {.. .,X-i,Xo?^i? •} by aligning the rows with respect to the se-

quence of reference points {rn}. For convenience, we shall treat k and m as

functions of the sample size n, i.e. k = fe(n), m = m(n) and n = k + m.

THEOREM 1. There exists a K > 0 (depending only on CQ and V given

below) such that if

liminf(fcΛra)/logn > iί, (1.1)
Π—*ΌO

then r* = 0(1) a.s. where r* = arg max {Nn(Dn) : —k < j < m} and

Nn is a seminorm satisfying condition (A) below and defined on the space

M of all finite signed measures on E and D3

n := ^\k(n) m(n)) : = w(ti +

k)/n)(QΪ - Pi) with w(x) = [x(l - xψ^Pί := ^i=^χJ{j + k) and

Qn := Y^j^δxjim — j) (empirical distributions).

Condition (A): (i) There is a Vapnik-Cervonenkis class V of measurable

subsets of E such that

Nn(u) < \\u\\ := sup{|i/(jD)| :DeV} for all v e M. (1.2)

(ii) There is a constant Co > 0 such that

liminf Nn(Q - P) > Co a.s. (1.3)
71—KX>

The reader may consult Pollard (1984) for the definition and properties

of a Vapnik-Cervonenkis class. Note that if Nn = || || with || || as defined

in (i), then (ii) is automatically satisfied. We refer the reader to Dϋmbgen

(1991) for more details concerning this class of nonparametric estimators and

various special cases including Carlstein's (1988) and Darkhovskhi's (1976)

estimators.
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The proof of Theorem 1 is given in Section 3. In Section 2, a similar result
is given for the mle of the change-point in the normal mean shift model. More
precisely, it is shown that the mle converges a.s. to a random variable which
is the mle based on the entire (infinite) sample if liminfn_oo(A; Λ m)/logn >
2δ~2σ2 where σ2 is the (common) variance and δ is the amount of change in
mean (See Theorem 2 below). Finally, some concluding remarks are contained
in Section 4.

2. The Normal Mean Shift Model. In this section, we prove the
following theorem concerning the behavior of the mle fn of the change-point
(which is 0) based on the sample Xt , i = —k(n) + 1,..., m(n) under the as-
sumption that P = N(μ, σ2) and Q = N(μ + #, σ2) with μ and δ φ 0 unknown
but σ2 known.

THEOREM 2. If there exist an e > 0 and an increasing subsequence {n(l) :
/ = 1,2,...} such that l imsup^^ k(n(l))/log n(l) < 2(l-e)δ-2σ2 and n(l +
1) - n(l) = 0({n(l)Y) as I -• oo, then fn φ 0(1) a.s. If liminf„_>«>(* Λ
ra)/logn > 2δ~2σ2, then fn —• f^ a.s. where t^ is the mle of the change-
point based on the entire (infinite) sample with μ and δ known. In particular,
fn = 0(1) a.s.

Since we may rescale the X{ to have variance 1, we shall assume, without
loss of generality, that σ2 = 1 . For -k < j < m, let

Ln(j) := - [ Σ U * + i ( * . " * - * j ) 2 + E £ i + i ( * - Xj,m)2]

+ [Σ?=_JH-i(* - X-k,o)2 + ΣT=i(Xi - Xo,m)2)

where Xid := X ^ := (Xi+1 + ••• + Xj)/(i - i) for i < j . Then fn =
arg max{Zn(j) : -k < j < m}. Define Zt = X{ - μ - δ for all i, and
et = Xi-μfor i<0 and et = X{-μ-δ for i > 0. Then the et are iid 7V(0,1)
and Zt = ez - #l{t <o} where I5 denotes the indicator of the set S. Now we
have

Ln(j) = (k + j)Zlkά + (m - j )Z? m - kZ2_kβ - mZlm

= (k + JT^ke-kfi + jeoj - (k + Γ)δ]2 + (m - j)-\meOym - jeo,j + Γ&

- ke2_kfi - me\m + 2kδe.k<0 - k82 (2.1)

where x~ := xl{x<oy. So,

Ln(j) = -kj(k + j)~\δ2 + elkfl - 2ίe_fc)0 + 2ίβoj - 2e_Jt,oeoj) (2.2)

+ j\k + i)~le2j + (m - j)ej,m ~ meo,m for J > °>

I n ( j ) = jm(m - j)-\S2 + egiTO + 2δeo,m - 2δejβ - 2eo,roei,o) (2.3)

+ j\rn-JΓ1ήo + (k + j)e\j-ke2_kfi for j < 0.
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LEMMA 1. For fixed e > 0, with probability 1,

max (n - i)e2

n < (2 + e) log n for large n.
0<i<n '

PROOF. Using a boundary crossing argument for standard Brownian mo-
tion {Wt} along the lines of the proof of Lemma 3.1 of Venkatraman (1992),
it can be shown that for b > 0,

Pr( max Wt/t1'2 > b) < 2(1 - Φ(6)) + (π/2)^2φ(b) + 2-1bφ(b)logn (2.4)
l<ί<n

where Φ and φ denote the standard normal distribution and density, respec-
tively. It follows that Pr(maxo<i<n(ft - ϊ)e\n > (2 + e)\ogn) is bounded by
twice the right hand side of (2.4) with b = [(2 + e)logn]1/2, which along with
the Borel-Cantelli Lemma yields the desired result.

LEMMA 2. if there exist an e > 0 and an increasing subsequence {n(l) :
/ = 1,2,...} such that limsup/_ooA:(n(/))/logn(/) < 2(1 - e)δ~2 and n(l +
1) - n(l) = 0({n(l)}€) as I -> oo, then tn φ 0(1) a.s.

PROOF. We first assume that k(n(l)) —• oo as / —> oo. Choose e\ > €2 > €
and 63 > 0 such that

k(n(l)) < 2(1 - e!)<Γ2logn(/) for large /

and

-2(1 - C l )( l + £3)/(l - €2) + 2 - e3 > 0.

By (2.2), w.p.l, for large n,

Ln(m - 1) > -k(l + e3)δ2 + e2

m- 0(loglog n).

For each r = 1,2,..., let l(r) := max{/ : n(/) < r 1^ 1" 1*)}. Then for large r,
n(l(r + 1)) - n(l(r)) > (n(l(r + 1)))£. To see this, note that

n(l(r + 1)) < (r + l) 1 ^ 1 " 6 2 ) < n(l(r + 1) + 1),

and so for large r,

n(l(r + 1)) - n(l(r)) > {(r +
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where C > 0 is a constant. Since k + m = n and k(n(l)) < 2(l-6i)£~2logn(/)
(for large /), ra(n(/(r))) must be all distinct for large r. Write rai(r) =
n(/(r)), kι(r) = k(nι(r)) and rriι(r) = m(ni(r)). By the Borel-Cantelli Lemma
and a simple bound on the standard normal tail probability, it follows that
P r ( e ^ r | > (2 - 63) log r i.o.) = 1. Fix a sample path for which e2

m ,v >
(2 - €3)logr i.o. Suppose fn = 0(1). Choose a C\ > 0 so that |fn| < C\.
Then maxj Ln(j) = m a x ^ ^ Ln(j) is bounded from above. But the following
inequalities occur infinitely often:

Lni(mi - 1) > -h(l + €3)6
2 + (2 - 63)logr -

> -2(1 - € l)(l + 63)logr1^1-^ + (2 - 63)logr - O(loglogr)

= {-2(1 - € l)(l + €3)/(l - €2) + 2 - e3}logr - O(loglogr)

> €4 log r

for some €4 > 0. This contradiction completes the proof for the case that
limj-.oo k(n(l)) = 00. In case k is bounded on some sub-subsequence, it is easy
to show that along this sub-subsequence, fn φ 0(1) a.s., completing the proof
of Lemma 2.

REMARK. It might be tempting to conjecture that fn φ 0(1) a.s. whenever
liminfn_oo(A; Λ ra)/logn < 2δ~2 (assuming σ2 — 1). This is not true as the
following example shows. Fix 0 < £χ < e < 1 and set e2 = e/(l — e). Consider
the subsequence n{l) = [/1+e2] and k{n{l)) = [2(1 - 6i)<$-2logn(/)]. Note that
„(/ + 1) _ n{l) = 0((n(/))e). By (2.4),

Σ ^ P r ^ i m (m - j)ή,m > 2(1 - €3)logm(/)} < 00

for any 63 < e. By the Borel-Cantelli Lemma, w.p.l, for large /

(m - j)e\m < 2(1 - 63)logm(/).

With this fact, it can be shown, along the lines of the proof of Lemma 3 below,
that fn(/\ = 0(1) a.s.

LEMMA 3. If liminfn_oo(fc Λ ra)/logn > 2δ~2, then fn = 0(1) a.s.

PROOF. Since we may consider separately the two subsequences {n'} and
{nμ} with k{n!) < nf/2 and k{n") > n"/2, we shall assume without loss of
generality that k{n) < n/2 for all n.

Choose 0 < e < 1 in such a way that k > (2 + e)6~2 log n for large n.
Since Ln(0) = 0, it suffices to show that w.p.l there exists a positive integer d
(depending on the sample path) such that for large n Ln(j) < 0 for all j with
—k < j < m and | j | > d. We break up the proof into several cases.
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Case 1: C2logra <j<m with C 2 = c " 1 * " 2 ^ + e)(2 + 6/2). By (2.2) and the
law of the iterated logarithm, w.p.l for C 2 logn < j < m and for large n,

LnU) = ~kΛk + i ) " 1 ^ 2 + oC1)) + O(loglog n) + (ro - j)e\m + O(loglog n).

By Lemma 1, w.p.l (m - j)e]iTn < (2 + 6/5) log n for C2 log n < j < m and for
large n. But,

kj(k + j)"τδ2 >kC2logn(k + C^logn)-1^2

J 6(4 + 6)-1C2(log n)δ2, \ίk> 4~1eC2 log n,

"" 1 4(4 + 6 ) " 1 H 2 , if jfc < 4- 1 6C 2 logn.

In either case, we get kj(k + JYλδ2 > (2 + 6/4) logn. This proves that w.p.l

LnU) < 0 f°Γ C*2log^ < j < m and for large n.

Case 2: 0 < j < C 2 logn. Note that k(k + j)~ι > C3 for large n where
C3 = δ~2{2 + €)/{δ~2(2 + e) + C2}. By (2.2), w.p.l there exists dλ > 0
(depending on the sample path) such that for large n for d\ < j < C2 log n,

LnU) < ~C3jδ
2/2 + m(e? m - e 2

? m ) .

But,

< jC3δ
2/A

for j > d2 for some (sample-path-dependent) d2. So, Ln(j) < 0 for d\ V d2 <

j < C 2 log w for large n.

Case 3: -k < j < -C 4 log n where C 4 = 3(2 + e)δ~2. By Lemma 1 and (2.3),
w.p.l, for large n, for —k < j < -

nU) < i*2/3 + (2 + €) log n < 0.

Case 4: - C 4 l o g n < j < - C 5 l o g n where C5 = (2 + e/2)δ'2. By Lemma
1 (applied to (A; + j)e2_kjj in (2.3)), w.p.l for large n, for - C 4 l o g n < j <

- C 5 l o g n ,

LnU) < J ( l - ^/8)^2 + (2 + 6/8) log n < 0.

Case 5: -<75logrc < j < 0. We have k + j > 2"16<5"2logn. By (2.3), w.p.l
there exists d3 > 0 such that



Y.-C. YAO, D. HUANG, and R. DAVIS 365

for — C$ log n < j < -^3 for large n. But,

i)"α(e-fc,j + e_fc,o)(e_jt,o - ejfi)

< -μ-W

for j < -d± for large n (for some sample-path-dependent d± > 0). This
completes Case 5 and completes the proof.

PROOF OF THEOREM 2. By Lemmas 2 and 3, it remains to show that fn —>
foo a.s. if Uminfn-^oo(fcΛra)/logn > 26~2. Note that t^ = arg maxίXoo^'):
—oo < j < oo} where

^ ^ - i J T i - / ! ) 8 ] , forj>0,

j i - μf - (Xi -μ- δ)% for j < 0.

Since for each j , £ n ( i) -*• ̂ oo(i) as n - ^ oo a.s. and since fn = 0(1) a.s., it
follows that τn -> foo a.s.

REMARK. The mle based on the infinite sample has a simple minimax
property with respect to the 0—1 loss. Suppose that Xi,— oo < i < oo are
independent and X{ has distribution P oτ Q according to whether i < τ or
i > T where P and Q are known and the change-point r is unknown. Let f
denote the mle. Then maxτ Pr τ (r ' φ r) > maxτ Pr τ(f φ τ) for any estimator
r7. Note that Prτ(f 7̂  r) is independent of r (an equalizer rule). However,
the mle based on a finite sample is not minimax in general since it is not an
equalizer rule.

3. Proof of Theorem 1. The following notation is adopted in this
section: C(X) denotes the distribution of X; For r < s define

S(r,s) := -S(s,r) := ΣU

and set

t := t(j, n) := <(j, k(n), m(n)) := (j + k)/n

θn := f(0, k, m) = k/n

pn{t) := {(1 - θn)[t/(l - ΐ)]1/2} Λ {θ

A{ := pn(t(j, n))(Q - P) (note that D3

n estimates Δ£)

) - [(1 -

Note that (1.1) implies

0 n Λ(l -θn) > Klogn/n for large n. (3.1)
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LEMMA 4. There exists a Ki > 0 (depending only on V) such that w.p.l

sup ||n~15'(0, j)\\ < Kι(loglog n/n)1/2 for large n;

\\B°\\ < i^loglogn/ra)1/2 for large n;

sup ||(m - j)~1/2S(j, m)\\ < ^ ( log n)1'2 for large n;
j

sup ||(i + k)"^2S(-kJ)\\ < Kλ(\ognγ'2 for large n.
kj

This lemma can be easily established along the lines of the proof of

Lemma 2 of Dύmbgen (1991).

PROOF OF THEOREM 1. Without loss of generality, we assume that θn <

1/2. The first part of the proof follows closely that of Proposition 1 of

Dϋmbgen (1991). By (1.2) and Lemma 4, w.p.l for large n,

\Nn(D°n) - w(θn)Nn(Q - P)\ < \\B°n\\ < ϋΊOoglogn/n) 1 / 2 .

Since by (1.3) and (3.1), w.p.l there is a sample-path-dependent e > 0 such

that for large n, w(θn)Nn(Q - P) > 2-1f2θ1

n

/2(C0 + e) > (loglogn/n) 1/2, we

have

Nn(D°) > 2-1l2Coθ]J2 for large n a.s. (3.2)

Next, we show that w.p.l for large n for all —k<j< m,

Nn(Dί) - Nn(D°n) < \\Bi - B°n\\ - Co[pn(θn) - Pn(t)}. (3.3)

Since

= Nn(Bi -B°n + [pn(θn) - Pn

< \\Bi -B°J + [Pn(θn) - Pn

we have w.p.l for large n for all — k < j < m

Nn(Dί) - Nn(D°n)

< \\Bί - B°J - [pn(θn) - toWMΘJ-iNnW) - wiθnΓ'WBΪW]

< \\Bi - B°J - [pn(θn) - pn(t)][Nn(Q -P)- 2w(θn)-1\\B°n\\].

Now, (3.3) Mows from (1.3) and the fact that ||.0°||/u;(0n) = o(l) a.s. (by
(1.1) and Lemma 4).
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By (3.3), the theorem will be proved if we can show that w.p.l there

exists a d > 0 such that for large n for all j with —k < j < m and \j\ > d,

\\Bi-BO

n\\<CO[Pn(θn)-Pn(t)]. (3.4)

For t > θn (i.e. j > 0),

Pn(θn) ~ Pn(t) = θn{[(l - θn)/θnγl2 - [(1 - t)/t]^2} (3.5)

= θ]J\ι - θn

θ]l\t - θn)/t.

For t<θn< 1/2,

Pn(θn) ~ Pn(t) = ( Γ - ̂ n){[^n/(l - θn)]^ - [t/(l - t)]1'*} (3.6)

We now prove (3.4) under the assumption that 3" 1 < θn < 2" 1 . For | ί - 2 ~ x | >

4" 1, pn(θn) — Pn(t) > C& for some constant Ce > 0. But by Lemma 4,

\\Bi\\ < 2ίf1(logn/n)1/2 for large n a.s. So, \\Bί - 5° | | « pn(θn) - pn(t) for

all \t - 2 - 1 | > 4" 1 for large n a.s. For 1/4 < t < 3/4, write

, m) (3.7)

{[(1 " ^n)/^n]1 / 2 " [(1 " /

M i ) " 1 - t ι ;(β n )- 1 ]n 1

Clearly, there exists a constant C7 > 0 such that the norm of the sum of the

first three terms on the right hand side of (3.7) is bounded by

*, 0)|| + \\S(j,

for all 1/4 < t < 3/4 for large n a.s. The norm of the last term is bounded for

some constant C% > 0 by

C8|t - θn\ IIΓ^O O)!! < C8\t - Θ^K^loglogJlJ)1'2 (3.8)

for all \j\ > d\ (for some sample-path-dependent d\ > 0) for large n a.s.

The right hand side of (3.8) is bounded by 2-1CQ{ρn{θn) - pn(t)) if dλ is
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chosen sufficiently large. This completes the proof of (3.4) for the case that

1/3 < θn < 1/2 for all n.

Therefore, it suffices to consider the case that θn < 1/3 for all n. We

consider the following cases separately.

Case 1: t > 1/2. We have

Bi - B°n =[ί/(l - tψ*n^S{j, m) - [(1 - t)lt\^n^S{-k,j)

- [θn/(l - 0n)]
1/2n-1S(O,m) + [(1 - θn)lθn]

ιl2n^S{-k^).

By Lemma 4, w.p.l for large n for all t > 1/2,

<2ϋΓ1(loglogn/rι)1/2,

^ϋΓi (log log n/n

KK^logn/n)1'2.

But by (3.5),

P»(β») " Pn(t) > 2-Άl2{K\ognlnγl\t - θn) >

Thus, if K is sufficiently large, then (3.4) holds for all / > 1/2 for large n a.s.

Case 2: θn < t < 1/2. Write

1 / 2 1 m ) (3.9)

+ {[(l - θn)iθnγi2 - [(i -

Since 0 < [</(l - ί)] 1 / 2 - [</(l - θn)]1/2 < C9t^
2{t - θn) for some constant

CQ > 0, we have

- θn)

^ ' \ - θn)

for some Cw > 0. Thus, w.p.l for large n for θn < t < 1/2, the norm of the

first term on the right hand side of (3.9) is bounded by

(3.10)
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The ratio of (3.10) to the right-most side of (3.5) is bounded by a constant
times

(</βn)
1/2(loglogn/n)1/3 = [(j + kyk^loglogn/n)1'2 = o(l).

Next, since

γ" - [(i - ί)/ί] 1 / 2 |

- ί ) 1 / 2 - (i - <y

for some C\\ > 0, the norm of the second term on the right hand side of (3.9)
is bounded by

cn(t-θn)θ1j2r1\\k-1s(-k,o)\\

which is much smaller than the right-most side of (3.5) when n (and hence k)
is large. The norm of the last term on the right hand side of (3.9) equals

- θn)ΓιS(0,j)\\ < Cl2t-V\t - 0n)(loglog Jlj)1'2 (3.11)

for j > d<ι (for some sample-path-dependent d<ι) for large n a.s. where C\2 is a
constant. For j > ĉ ? the ratio of the right hand side of (3.11) to that of (3.5)
is bounded by a constant times

(t/θn)^2(logϊog Jljf'2 = [(k + i)/fc]1/2(loglog j/j

which can be made arbitrarily small by choosing a sufficiently large cfo. This
completes Case 2.

Case 3: logn/n < t < θn. Again, we bound each of the three terms on the
right hand side of (3.9). The norm of the first term is bounded by a constant
times

It-flnlr^lln-^CO,^ (3.12)

for log n/n <t<θn for large n a.s. The ratio of the right hand side of (3.12)
to that of (3.6) is o(l) since {θnlt)

ιl2 = O((n/logn)1/2). The norm of the
second term is bounded by a constant times

(θn - *)
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which is again dominated by the right hand side of (3.6), since

(0n/ί)1/2(loglogfc/fc)1/2 = (loglogA:/(nί))1/2 = o(l).

The norm of the last term is bounded by a constant times

1 / 2 (3.13)

for j < -ds (for some d3 > 0) for large n a.s. Noting that \j\ = n(θn - t) and
considering the two cases t < θn/2 (implying that \j\ > nθn/2) and t > 0n/2,
it can be shown that for j < -c?3, the ratio of the right hand side of (3.13) to
that of (3.6) can be made arbitrarily small by choosing a large d%. Therefore
it follows that (3.4) holds for all t with logn/n < t < θn and j < — e/3, for
large n a.s.

Case 4: t < logn/n. We assume that K > 2 so that t < θn/2. By (3.6),

Pn(θn) - pn(t) > 8

for large n. The norm of the first term on the right hand side of (3.9) is
bounded by a constant times θn' \\n~1S(0^m)\\ = o(θj ) for large n. The
sum of the last two terms equals

[(1 " ίnVίnfV^Mj+Mr
- ((1 - ί)/*)172]"1^^) it^^SikJ)

The norm of the first term of (3.14) is bounded by βi / 2 | |^-^(-fc, 0)|| = o(0*/2)
for large n. The norm of the second term is bounded by a constant times
^ H n - ^ - M ) ! ! = o(θl/2) for large n a.s. The norm of the last term is
bounded by a constant times n-ιl2\\(j + k)^2S(-kJ)\\ < ϋ ί i n - ^ l o g n ) 1 / 2

for large n a.s. So if K is sufficiently large, (3.4) holds for all t < logn/n for
large n a.s. The proof is complete.

4. Some Concluding Remarks. We have proved that r* = 0(1) a.s.
if liminfn_oo(fc Λ m)/logn > K for a large constant K (depending only on
Co and V in Condition (A)) where r* is an estimator of Dύmbgen's (1991).
It would be interesting to characterize the best possible K as we did for the
mle in the normal case. It would also be interesting to know whether r*
actually converges a.s. to a random variable (which may be regarded as an
infinite-sample estimator of the change-point). Dϋmbgen (1991) obtained the
limiting distribution of r* for some particular seminorms with E = R (the
real line). It seems that the almost sure limit of r* can be obtained in these
cases (perhaps under a stronger condition than liminfn_,oo(fcΛm)/logn > K).
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Another interesting question is to find a necessary and sufficient condition on
the growth rate of k A m as n —• oo under which there exists a nonparametric
estimator which is within 0(1) of the change-point a.s.

Dύmbgen also studied Bayes estimators (for the case E = R only) and
obtained their limiting distributions. While we have not investigated their
behavior, it appears that these estimators should have essentially the same
almost sure convergence properties as those considered in Theorem 1.

Finally, we mention a recent result of Ferger and Stute (1992), who proved
(without specifying the probabilistic relation between the rows of the array of
random variables) that fn - τn = O(logn) almost surely where τn = [nθ]
for some 0 < θ < 1 and fn belongs to a class of variants of Darkhovskhi's
(1976) estimator. Clearly, 0(logn) can be improved to 0(1) by embedding
the rows of the array into an infinite sequence of independent random variables
as discussed in Section 1.
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