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We consider a multivariate extension of the change-point problem where

one has to estimate a change curve (or surface). Three versions of this problem

are considered

1) the regression-type model of image segmentation,

2) the estimation of a discontinuity curve in an unknown density, and

3) the estimation of the edge of Poission forest.

For these problems we give two approaches to the construction of estimators,

study the rates of convergence of the proposed estimators, and show their opti-

mality.

1. Introduction. Multidimensional change-point problems are the
problems of estimating boundaries of regions of certain homogeneity in images.
The first example of such a problem arises in image reconstruction: considering
an image as a regression function with jump discontinuity between an object
and the background, and given the noisy observations of the image, estimate
the discontinuity curve. In image analysis this curve is called edge, and the
problem is called edge estimation. In most of applications one cannot assume
a parametric structure of the edge curve. However, it is often possible to pos-
tulate some general nonparametric features of the curve, such as continuity,
smoothness, convexity, etc. Thus, a nonparametric estimation of edge curves
is interesting. This problem was studied recently by Tsybakov (1989, 1991),
Korostelev (1991), Korostelev and Tsybakov1 (1991, 1992a,b 1993), Rudemo,
Skovgaard and Stryhn (1990), Rudemo and Stryhn (1991), Carlstein and Kr-
ishnamoorthy (1992), Mammen and Tsybakov2 (1992), Muller and Song (1992
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a,b), Qiu (1992).

The second multidimensional change-point problem is estimation of sup-
port of a multivariate probability density, given a sample from this density.
The change-point character of this problem appears if the density is greater
than some positive constant on its support, and thus it has a discontinuity at
the boundary. This problem has various applications in reliability theory (De-
vroye and Wise (1981)), cluster analysis (Hartigan (1987)), and econometrics
(Deprins, Simar and Tulkens (1984)). The study of density support estima-
tion was started by Geffroy (1964) and Renyi and Sulanke (1964) (see also
Chevalier (1976), Devroye and Wise (1981), KT (1992c), MT (1992)).

The third problem that we consider here is estimation of the edge of
Poisson forest. This problem, posed by D. Kendall and first studied by Ripley
and Rasson (1977) is the following: given a realization of a multidimensional
Poisson point process with an unknown positive intensity function in some
compact set G, and zero intensity outside, estimate G. Again, this is a change-
point problem if the intensity function has a discontinuity at the boundary of
its support G (e.g. the intensity is constant on G, which is the case considered
by Ripley and Rasson (1977)). For further results on Poisson forest problem
and its generalizations see Jacob and Abbar (1989).

In this paper the three above mentioned multidimensional change-point
problems are considered together since the methods of estimation and the re-
sults are quite similar for them. Two possible approaches to boundary estima-
tion are discussed, and the convergence rates of the estimators are found. The
minimax lower bounds are obtained which show that the proposed estimators
have optimal convergence rates.

2. Statistical Models. Assume that one wants to estimate the bound-
ary dG of a closed subset G of the TV-dimensional cube [0,1]^, using the
observations generated by one of the following models.

Model 1. (Edge estimation) One observes (Jf1? YΊ),..., (Xn,Yn) where
Xi e [0,1]N, and

Here / : [0,1]^ —• [0,1] is an unknown function, satisfying f(x) > α > 0, &
are independent zero-mean random variables, such that

supsupE^exp/^ | Xi = x) < c
x t>l

for some tf, c > 0, and X{ are independent random points in [0,1]^ such that
one of the following assumptions holds.
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(2.1) n = n^ where n\ is an integer, and X{ is uniformly distributed in a pixel
Δ t , where the pixels Δ i , . . . , Δ n are cubes with the side of length 1/wi,
such that U^=1 Δ, = [0,1]N,

(2.2) Xi are i.i.d. random points, distributed with the density μ(x) on [0,1]^,
such that 0 < μ\ < μ(x) < μ2 < oo, x £ [0,1]^.

If (2.1) holds, then Model 1 is the typical noisy image model. The values
Yi are interpreted as image grey levels at pixels Δ, . The set G is the image
domain, or object, and its complement, G = [0,1]^ \ G is the background.

If (2.2) holds, then we have a different model, where the concentration
of points Xi may be higher in some regions and lower in other regions. This
model is interesting e.g. in forestry, where Xt 's are interpreted as the locations
of trees, and Y^s as their heights.

Model 2. (Density support estimation) One observes Xi,..., Xn, the i.i.d.
random points, where X{ is distributed with the unknown Lebesgue density
μ(x) = μβ{x) such that

Q(x)l{x € O)
=

where Q(x) is a continuous function strictly positive on [0,1]^.

Model 3. (Estimation of the edge ofPoisson forest) One observes X\,...,
Xvπi a realization of a Poisson point process with an unknown intensity func-
tion nλ(x) such that

λ(x) = λG(x) = Q(x)I{x e G}

(where Q(x) is as in Model 2). Here vn is a random variable having the Pois-
son distribution with mean n j G \(x)dx, and conditional upon vn the random
points Xi,..., XVn are i.i.d., with distribution density μ(x) = λ(x)/(JG X(x)dx).

3. Assumptions on the Set G. Consider two types of assumptions on
the set G.

Special case: boundary fragments. A boundary fragment is a set of the
form

G = {x = (a?!,..., xN) e [0, l]N : 0 < xN < g(xu . . . , xN-i)}

where g: [0, l ] ^ " 1 -^[0,l]

For 7 , i > 0 and integer k denote by Σ^(7,i) the class of all functions
g : [0,1]* -> [0,1] having continuous partial derivatives up to the order ί = [TJ
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(i.e. I is the maximal integer satisfying ί < 7), and such that absolute value of

the difference between g(z) and the Taylor polynomial of g of order ί at point

x G [0,1]* does not exceed L\z - x\Ί for all z G [0, l]k.

For 0 < h < 1/2 let

Σ*(7, L9 h) = Σ*(7, L) Π {g(x): h < g(x) < 1 - Λ, x G [0,1]*}.

Denote by £0,7 = ^0,7(^9 i? Λ) the set of all boundary fragments G, such
that g G Σw_i(7,Z,/λ).

General case: compact classes of sets. In general we suppose that G is

an element of some compact (in a metric d) class Q — {G} of closed subsets of

[0,1]^. Denote by Ή,(ε,G,d) the ε-entropy of Q with respect to the metric d.

We consider two examples of d: the Lebesgue measure of symmetric difference,

and the Hausdorff metric:

doo{G,G') =
y£G'

where p(x,G) is the Euclidean distance between x and the set G. We always

assume that Q is such that for G G Q the metric c?oo is stronger than d\.

The important examples of compact classes Q are:

1. Finite classes, with card Q — M, l < M < o o (these are e.g. the

"classes of candidates" considered by Carlstein and Krishnamoorthy (1992)).

For such classes ^ ( ε , ^ , ^ ) < logM.

2. Parametric classes Q = QΘ, where θ is a parameter from a compact

subset Θ of ffiΛ. For such classes one usually has

Ή(ε,£,doo) < const | logε|. (3.1)

3. Vapnik-Cervonenkis classes. These are (possibly, nonparametric)

classes of sets Q satisfying (3.1).

4. Dudley's classes QΊ, or classes of sets with smooth boundaries (see

Dudley (1974)). They are generalizations of boundary fragment classes ί/0,7?

in particular, 7 > 1 is the smoothness parameter of the boundary. As shown

in Dudley (1974)

const ί - J (3.2)
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5. Classes of sets with monotonicity or convexity restrictions. Let Gmon
be the class of all boundary fragments G such that the function g is monotone
in every coordinate. Clearly, {/mon is compact, and

W(ε, £mon, di) < const - ^ p (3.3)

The class of all convex subset of [0, l]N:

£conv = {GC [0,1]* : G is convex }

is also compact and, as shown in Dudley (1974),

const
/λ\{N-i)l2

(-J (3.4)

4 The Estimators and Their Convergence Rates (the Case of
Fragments). It will be more convenient for us to deal with the more general
problem of estimating the set G instead of estimating the boundary dG. The
following two approaches to this problem will be considered:

1. Extraction of boundary fragments from the original picture and estima-
tion of functions g in each fragment by some smoothing procedure.

2. Maximum likelihood estimation on ε-nets.

Let us describe the first of these approaches. For the extraction of bound-
ary fragments procedure we refer to KT (1991, 1992a, 1993) where Model 1
was considered. Here we only give the details of the boundary estimation
procedure, assuming that the fragments are already given. It is sufficient to
describe the procedure for one fragment, i.e. to assume that G 6 £0,7 Consider
a partition of [0, l ] ^ " 1 into the disjoint cubes Q$, j = 1,..., M, M = m^" 1 ,
with edges of length 1/ra, where m is an integer. Define the slices:

Aj = {x = (xu ...,xN)£ [0,1]N : (* i , . . . ,SΛΓ-I) € Q,}.

Let p(xi,..., XN-I) be a polynomial of order ί = [7]. The set of polynomials
Vtj = {p : h < p(xu...,xN-ι) < 1 - Λ, (xu.. .,z;v-i) G Qj} is compact
for every j . Denote by Vm,ι,j a finite subset of Vij which consists of polyno-
mials with discretized coefficients, the discretization step being m~Ί for every
coefficient. Define the "set under p":

Bj{p) = {x e Aj :xN <P(XI,...,XN-I)}.

The estimator g of the function g is defined as piecewise-polynomial func-
tion with respect to the partition {Qj}- First consider Model 1. Then g in
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each Qj is defined as a polynomial which is a solution of the minimization
problem

min ^ ( ^ - / { ^ e f i i ί p ) } ) 2 , (4.1)

where Y( = I{Y{ > αi} and a\ is some number between a and 0 (it is assumed
that either a or a\ are known).

For Models 2,3 the estimator g in Qj is defined as a polynomial solving

the problem

mes (Bj(p)) (4.2)

where mes (Bj) is the Lebesgue measure of Bj.

The estimator G* of the set G is then defined as the closure of the set

{(si, ...,xN)€ [0, if : 0 < xN < g(xu.. .,&ΛΓ-I)}.

THEOREM 1. For Models 1,2 and 3 we have

sup E(<F(G*n,G))=O(ift), V 7 , 9 > 0 , (4.3)

as n —> oo, where d = d\ or d = doo, and

(i) φn — n-Ί/(Ί-\-N-i) ft fi = ^ a π c j ^r* -ιs fae estimator defined so that

in (4.1), (4.2) m = [nV^+N-i)].

(ϋ; ^ n = (n/logn)-^/^-^^-1) if d = doo and G* is the estimator defined

so tiat in (4.1), (4.2) m = [(n

This theorem generalizes other known results on estimation of boundary

fragments. For Model 1 under various types of assumptions the result of

Theorem 1 was shown by Korostelev (1991), Tsybakov (1991), KT (1991,

1992a,b,c, 1993). For Model 2 in case 0 < 7 < 1, JV = 2 a result close

to Theorem 1 (i) was shown by Geffroy (1964). For Model 2 with uniform

density μ(x) = I{x G G}/(mes G) Theorem 1 is proved in KT (1992c, 1993).

In general, the proof techniques for Model 1 carry over to Models 2 and 3.

For Model 3 the results on convergence rates seem not to be available in the

literature.

5. The Estimators for General Classes of Sets and Their Conver-
gence Rates. For general classes of sets we apply the second approach, i.e. the

maximum likelihood estimation on ε-nets. Let Q be a compact class of subsets

of [0,1]^, and denote by λίε a minimal ε-net on Q with respect to the metric d\.
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Let PG(ZΠ) be the joint density of observations Zn = {X\,.. . ,X n , Yί,..., Yn}

in Model 1, or Zn = {Xχ9.. . ,X n } in Model 2, or Z n = {i/n, AΊ, . . .,XUn} in

Model 3 when the underlying set is G. Define the maximum likelihood esti-

mator on λίε:

For Model 1 we assume in this section that f(x) is a known function, and for

Models 2, 3 we assume that μ(x) and λ(x) are uniform densities on G. This,

ensures that G ^ L E can be calculated, given the data.

Denote

φn(c) = inf{ε > 0 : Ή,(ε,G,d\) < cnε},

Ή(ε, G-, d\) = log (card λίε).

THEOREM 2. Assume that either

(i) Model 1 holds, where ξi are iλ.d. random variables with density p,

and there exist Δχ,Δ2 > 0 such that

/ \/p(y)p(y ~~ u)dy 5: 1 — Δi for \u\ > α, (5.1)

-dy < Δ 2 for \u\ < 1. (5.2)

or

(ii) Model 2 or Model 3 holds, with μ(x) = (mes ( G ) ) " 1 , x G G, or

X(x) = λ = const , x G Gr, respectively, and inf^G^ wies (G) > mo > 0.

Let

liminf^n(c)^/(logn) > 0, V c > 0 . (5.3)
n

Then for every q > 0 there exists a constant cq > 0 such that

, as n-> oo, (5.4)

where ^n = Ψn(cq), and G ^ L E is MLE on λfφn.

REMARKS.

1) Since W(ε, G,d\) is monotone nonincreasing in ε, and positive for ε small

enough, the value ψn(c) is well-defined.
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2) For the case (ii) of Theorem 2 (Models 2,3) the estimators have a simple
form

G™LE= argmin mes (G).
G£λίe:

GD{Xlt...,Xn}

3) Condition (5.3) was introduced only to guarantee the convergence of mo-
ments (5.4). If (5.3) is omitted we get, however, the convergence in
probability:

lim lim sup sup P{c?i(G^LE, G) > φnt} = 0. (5.5)
*->OO n _ O ζ ) G e g

PROOF OF THEOREM 2. Consider Model 1 first, and apply Lemma A.I
from MT(1992). It suffices to verify the condition (A3) of this lemma, with
d = di, a = 1, which, in turn, is implied by

sup ί PG(Zn)JPG'^dZn < exp(-cnεt), (5.6)

for t > 0 large and some c > 0. Let (2.2) be satisfied. To prove (5.6) note that
the integral in (5.6) is the n-product of the integrals

where pG(y\x) = Pi(y\x)I{x € G} + p2(y\x)I{x <£ G}, pι(y \ x) = p(y - f(x)),
Pi(y\x) = p(y) Direct calculations show that

J= mes(GuGϋG')+(ίPlJ^μ-

+ ( / P i ^ μ - l) mes (ό\(GU G'))

+ (J VPΪPlt* ~ l) [mes ((Gn G) \ G') + mes ((3' \ ( G U G ) ) ] .

We have also mes ((G Π G') \ G) , mes (G\(GU G'f) < dx (G, G)<ε,

|mes {{G n G ) \ G') - mes (G \ G')\ < dx(G, G) < ε |mes (G' \ ( G ϋ (?)) -

mes {G' \ G)\ < dχ{G,G) < ε. Using these inequalities, (5.1), (5.2), and the
fact that a < f(x) < 1, we get

J < 1 + 2Δ2ε - A^d^G, G') - 2ε) < 1 - ε(t - 2Δα - 2Δ2).
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This entails that Jn does not exceed the RHS of (5.6) for t > 0 large, and
proves the theorem for Model 1 under (2.2). The case (2.1) of Model 1 is
treated similarly. For Model 2 and Q = QΊ the theorem is proved in Theorem
4.1 of MT(1992), and its extension to general Q is straightforward in view of
Lemma A.I of MT (1992). The proof for Model 3 follows the same lines as for
Model 2 since XL, .. . ,Xvn for fixed vn are uniformly distributed in G.

Examples. 1). Let Q = Qθ be a parametric class of subsets of [0,1]^.
Using Theorem 2 and (3.1) we have that the rate of convergence of GjfLE
is φn = O((logn)/n). The same conclusion holds for G^LE on Vapnik-
Cervonenkis classes Q.

2). For finite classes of sets one gets the rate φn = O(l/n) if M is
fixed. This φn does not satisfy (5.3), so we can claim only (5.5), not (5.4).
If M = Mn —• oo as n —• oo, then ψn = O((logMn)/n). In particular, for
polynomially increasing Mn one gets the rate φn = (9((logra)/n), and for the
case Mn = (y/n)^ considered by Carlstein and Krishnamoorthy (1992) one
gets φn = O((logn)/y/n) which gives an improvement of their result.

3). For Dudley's classes QΊ in view of (3.2) one gets φn = O ί n " ^ ^ - 1 j ,

(cf. MT (1992)), which coincides with the rate of convergence for boundary
fragments as given in Theorem 1.

4). For the class of monotone fragments ί/mon a^d for the class of convex
sets ί/conv we use (3.3) and (3.4), which leads to φn = Ό(n~"λlN), and φn =

) respectively (see also MT (1992), KT (1993)).

6. Optimality of the Estimators. The proposed estimators have
optimal rates of convergence in the examples considered above. This means
that

liminf inf sup E(dq(Gn,G))φ-q > 0, V q > 0, (6.1)
n ^ ° ° GGQ

where inf^ denotes the infinum over all estimators, φn = φn,G *s the same
sequence as in the appropriate upper bounds (4.3) or (5.4), and d = d\ or
doo.The sequence φn£ depends on the class Q and on the metric d. In partic-
ular, the rates φn given in Theorem 1 are optimal for QQIΊ with d = d\ and
d = doo respectively, and the rates given in Examples 3), 4) of Section 5 are
optimal for Q = ί/7, ί/mon and ί/conv , with d = d\. For Examples 1), 2)
of Section 5 one can use the trivial lower bound (6.1) with φn = 1/ra. This
gives the optimality in parametric case (Q = Qθ) up to the log-factor only.
However, the log-factor in the upper bound (5.4) for Q — Qθ can be eliminated
by modifying the proof of Lemma A.I in MT (1992) (use the chaining argu-
ment there). For the conditions guaranteeing (6.1) in Model 1 we refer to KT
(1991, 1992a, 1993). For }Jίoάύ 2 (6.1) holds without additional conditions
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(see KT (1992c, 1993), MT (1992)). Note that it is sufficient to prove (6.1) for
the simplest case of uniform density μ (or constant intensity λ). The proof of
(6.1) for Model 3 follows that for Model 2, and also does not require additional
conditions.

7. Concluding Remarks.

1. For Model 1 we did not consider the case where Xi,.. .,X n are on
the regular grid. Mathematically, a rather full treatment of this case can be
found in Tsybakov (1989). However, the regular grid design has the follow-
ing defect: it rules out the possibility of estimating with optimal rates if the
boundary is smooth enough, namely if 7 > 1 (KT (1991, 1992a, 1993)). Also
the assumption (2.1) on X{ seems to be more natural from the statistical view-
point, since in applications one is never sure that the measured image values
correspond exactly to the centers of pixels Δz , but rather to some (possibly
random) points within the pixels.

2. The results of this paper are valid for the modifications of Models 1-3
with non-zero background. For example, in Model 1 this modification is:

Yi = h(Xi)I{Xi GG} + f2(Xi)I{Xi i G} + fc,

where fι(x) > α > 0, and f2(x) < α everywhere on [0,1]N (see Tsybakov
(1989, 1991), KT (1991, 1992a, 1993)). Similarly, one can modify Models 2
and 3.

3. Another extension is related to models with varying jump size. There
are two interesting options here. First, the jump between the object and the
background tends to 0 with some rate αn (e.g. for Model 1 with fι(x) =
const , f2(x) = fι - αn), so that the change-point character of the model
is asymptotically eliminated. Then one can show that the convergence of
G*,G^ L E to G still occurs if nα^ —> 00 as n —» 00. The rate of convergence
differs from those in the case of constant step in that n should be replaced by
nα\ (e.g. for βΊ,β0,Ί the rate is φn = (nα^-Vίϊ+tf-i), see MT (1992), and
for "almost parametric" classes Q the rate is (nα^)" 1, see Miiller and Song
(1992b)). The second option is related to contamined data, with f2 = αn -» 0,
/1 > A > 0. It can be shown that the contamination does not affect the rate
of convergence.

4. Carlstein and Krishnamoorthy (1992), Rudemo, Skovgaard and Stryhn
(1990) consider the model which is more general than Model 1 with constant
/ in the sense that the distribution of Y{ for fixed X{ is not necessarily of
shift type. They assume that Y{ are independent for fixed X 1 ? . . . , Xn and
Pθ{y\x) = Pi(y)I{x € G} +p2(y)I{x i G} where pτ(y) and p2(y) are some
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different densities. If we call the Model 1 with this modification Model 4 then
the following result is obtained exactly as Theorem 2:

THEOREM 3. Assume that Model 4 holds, and

J
Tien under (5.3) for every q > 0 there exists such cq > 0 that (5.4) holds.

Thus, the estimator G ^ L E has optimal rates of convergence also in this
general situation, in contrast to the estimator of Carlstein and Krishnamoorthy
(1992) which has slower rate since its is based on y/n-convergent rather than n-
convergent statistics. However, the estimator of Carlstein and Krishnamoorthy
(1992) has an important advantage of being distribution-free.

5. Some other examples of possible sets G may be considered. Note the
two of them: star-shaped sets (see Rudemo, Skovgaard and Stryhn (1990)),
and the sets G such that both G and [0,1]^ \ G satisfy the "cone condition"
which is equivalent to piecewise Lipschitz boundary assumption (Tsybakov
(1989, 1991), KT (1991, 1992a, 1993), M ller and Song (1992a)). The star-
shaped sets can be reduced to boundary fragments, and the theory for frag-
ments applied with some modifications. For the cone-condition sets one can
construct very simple estimators converging with the rate φn = O{y/{\ogn)ln)
(see e.g. KT (1991, 1992a, 1993)).
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