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The broken line regression model is viewed as a special case of nonlinear
regression. Following the methodology of Knowles, Siegmund, and Zhang (1991),
we discuss procedures for constructing confidence regions. Our method involves
inversion of the likelihood ratio test. A slightly conservative bound is obtained
for the level of the test given the values of statistics which are sufficient for
the nuisance parameters when the parameters of interest are fixed. We use a
number of published data sets and simulations to compare our method with the
approximate F' method, which is based on the assumption that a formal analogue
of the F’ statistic has approximately an F’ distribution, and with the Bayesian
method of Smith and Cook (1980).

1. Introduction. The broken line regression model

i = Bo + Przi + Ba(zi — )t + ¢, (1)

where a* = max(a,0) and ¢; (i = 1,---,m) are independent N(0,0?), has
been discussed by a number of authors. Some of these consider the model (1)
as a special case of nonlinear regression (e.g., Ratkowsky (1983) p. 122 ff., and
Seber and Wild (1989) p. 447 ff.), while others have addressed it directly (e.g.,
Hinkley (1971), Feder (1975), Smith and Cook (1980)). An interesting special
case considered by Hinkley (1971) is

yi=a—-PB(z;—0) +& (i=1,---,m), (2)

where a~ = —(a — a*). In (2) the parameters § and @ have natural interpre-
tations: o is the maximum mean response produced by an input z, and @ is
the minimum input required to produce this expected response.

Direct asymptotic analysis of (1) leads to technical difficulties, due to the
lack of smoothness of the likelihood function (Hinkley (1971), Feder (1975));
and as we show by an example below, Hinkley’s asymptotic version of the
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likelihood ratio statistic can behave poorly when used in small samples. Smith
and Cook (1980) gave a non-asymptotic, Bayesian treatment which relies on
numerical integration to obtain exact posterior credible sets for the change-
point, 6. Their method does not appear to have been used for problems of
inference involving € in conjunction with other parameters, although there is in
principle no impediment, except the computational one, to such an adaptation.

In the literature which views the model (1) as a special case of nonlinear
regression, one tries to avoid the lack of smoothness of the likelihood function
by smoothing the corner of the regression function through use of an inter-
polating function governed by a smoothing parameter. See Seber and Wild
(1989, p. 447 ff.) for a discussion of several versions of this technique. For a
number of reasons this does not seem to be a completely satisfactory solution
of the problem. Although one can argue on a priori grounds that a smooth
regression function is more realistic, there are usually inadequate data near
the change-point to make a definitive choice of the smoothing technique, and
the smoothing parameter which the method introduces frequently does not
have a useful physical interpretation. Also, this method only avoids the lack
of smoothness in a certain formal sense. Since the new likelihood function may
have very large curvature near design points, where the smoothing takes place,
the use of standard inferential tools of nonlinear regression, linear approxima-
tions supplemented by curvature diagnostics, can be misleading, as an example
given below shows. Also the method does not seem to be easily adapted to
multiple regression problems, e.g., broken plane regression (cf. Siegmund and
Zhang (1993)).

The purpose of this paper is to give small sample, conservative confidence
regions for @ and conservative joint regions for # and other parameters of the
model (1), which for all practical purposes appear to be exact. We do this by
applying the method of Knowles, Siegmund, and Zhang (1991), who considered
the special class of nonlinear regression models

Yi =ﬂfi(0)+5i (1,: 1""’m)

with @ a scalar parameter. We also review two alternative methods with which
we compare our procedure.

The paper is organized as follows. Section 2 contains our basic theoretical
results. In Section 3 we give a brief description of two other methods for the
broken line regression model (1). One, the approximate F' method, is based
on the assumption that an obvious analogue of the usual F statistic of linear
regression analysis has approximately an F distribution. The other is the
Bayesian analysis of Smith and Cook (1980). In Section 4, some “real” data
are examined. To get more insights into our results, Section 5 gives the results
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of some simulations. Section 6 contains our concluding comments. Detailed
proofs of the results in Section 2 are given in an Appendix.

2. Confidence Regions. It is obvious that (1) is a special case of the
nonlinear regression model

y=Xa+pf(z,0)+e¢, 3)
where ¥y = (y1,***,Ym)’, € = (€1, *,ém)’, X is an m X r matrix of full rank
with entries depending only on the design variables z = (21, -, 2z,), a is a

vector of linear parameters and f(z,6) is a vector of nonlinear functions of
and z. For example, in (1), we have

1 =
X = .

1 z,,
a = (fo, 1),

f(fl?,O) = (05"'307$T+1—0,"',xm_0)’3

if, say, 21 < - <2, < 0 < 2,47 < -+ < . If the covariance matrix of
the errors is of the form of a product of the unknown o2 and a known matrix,
the standard technique of linear regression analysis allows us to transform the
problem to one in which the known matrix is the identity. Our methods have
nothing to say about heteroscedascity which depends in a more complicated
way on unknown parameters.

To construct a confidence region for 8 or the pair (3, 8), it is convenient to
reduce the model (3) to the case considered by Knowles, Siegmund, and Zhang
(1991), where a@ = 0. One possibility is to use a minor variant of the standard
technique for reducing a linear model to canonical form (cf. Lehmann (1986),
p. 366). Let @ be an m X (m — r) matrix having orthogonal columns which
span the orthogonal complement of the column space of X. Then Q'X = 0
and Qe is N(0,0%I). Consider the reduced model

Q'y = Q' f +Q',

where there are now m — r observations and we have eliminated r nuisance
parameters.

It is also possible to obtain joint confidence regions for # and arbitrary
combinations of the other parameters. Motivated by (2), where 6 and a have
natural physical interpretations, we shall consider joint confidence regions for
0 and a single component of a. By a similar transformation we can without
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loss of generality assume that

y=oag+Bf(0)+e, (4)

where g is a vector not depending on 8 and f(6) = f(z,9).

It is worth noting that in specific cases it is not necessary to find the
matrix ¢, and it may in fact be convenient to carry out the reduction somewhat
differently. For example, to eliminate  in (4), we consider § = y—(g,¥)g/|lgl|%
which satisfies

§=8f(0)+¢,

where f(8) = f(8) — (g, f(8))g/llg|I* and & = € — (g,€)g/||g||>. Here and in the
following the angular brackets denote the usual scalar product in Euclidean
space and the double vertical bars denote the Euclidean norm. With this
reduction we retain m observations, but the distribution of € is singular, since it
is concentrated on the m—1 dimensional orthogonal complement of g. However,
since the distribution of € is spherically symmetric, the theory developed below
applies without change.

Suppose now that we want to find a confidence region for the pair (6, @)
in the reduced model (4). Since this problem was not discussed by Knowles,
Siegmund and Zhang (1991), we indicate the relevant calculations here.

Let
y* =y — aog, 7(8) = F(O)/IIF(O)ls 74 = 9/llgl, (5)

and

_ 2(0) - (g,7(O)g/llgll*
(1 - (g,7(8))*/llglI2)

The likelihood ratio statistic for testing Hg : 0 = 6y, = ag is

7(6) (6)

A(8o, a0) = ~ 5 mlog(min 53/53) (1)
where
65 =m  (lyll® = (v, 74) — (,%(6))?), (8)
and
55 = m (lv*)1* — (y™,7(60))?). 9)

The sufficient statistics under Hy are ||y*|| and (y*, f(6o)). Our conditional
likelihood ratio confidence region is the set of all (6, ap) such that

Pog,00[A(00, @0) > b| [ly™[I, (y", f(60))] > 1 -6, (10)
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where b = {A(6o, a0)},;,- By sufficiency this conditional probability does not
depend on the unknown nuisance parameters 3 and 2. Observe that

min &3 &3
— ~mlog =2
-2 -2
G, 2 G4

£ A(8o) + A(8o, ),

A(6p, ap) = ——21—mlog

where

and

Then the left hand side of (10) is equal to

Pay aol (B0, 00) > b 1971l (4", £(80))]
+ Eeo,ao[Peo,ao {A(OO) >b- ]\(00’ aO) “y”v (y, f(BO))7 <y9 g)} (11)
x 1{A(60; a0) < 8}| I19°ll, (4", F(Bo)))-

The term A(fo, ap) is just a version of the likelihood ratio statistic for testing
a = ap in the model (4) with § = 6y, which is a linear hypothesis. Hence
A(8o, ap) is a monotonic function of |t| with m — 2 degrees of freedom, both
conditionally and unconditionally. The distribution of A(fp) is much more
complicated. However, by virtue of conditioning on ||y*||, (v*, f(60)), (¥*,9)
or equivalently on ||y||, (¥, f(6o)), (¥, g), which are sufficient for o, 8, a when
0 = 0y is known, we see that ./1(00,050) is a constant and the conditional
distribution of A(6y) does not depend on unknown parameters. A geometric
interpretation of the conditional probability in (11) is given below, and a sharp
upper bound is given in an Appendix. Here we summarize the result.

Let U™ = (uﬁ"’, .. -,usz"))' denote a generic random variable uniformly
distributed on the unit sphere $™!. Let f,_; and F,_; denote the density
and distribution functions of ugn), respectively.

THEOREM 1. Let ¢ = 1 — exp{—2b/m}.
(i) The first term in (11) is

Pllu{™™V| > ¢]. (12)
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(ii) Let |[ly*[l =, (v(60),9™) = &,

9'(I = 7(60)7'(60))y™ _
(lgll2 = (g,7(60)))Z (I = ¥(Bo)7"(B0))y*l|

and

¢ = €(llgl? - (9,7(80))%) (n? = 6%)F + ¢(g,7(60)) + eollg|*.
Then the second term in (11) is
/ P[mgmx(:/(O), U(m))2 > w? (3(6o), U(m)) =z,

léi<e (13)
(Y9, U™ = 0] frn—2(€)dE,

where
CZ g2+(1_c2 7’2_¢2
ot =1 aelolPios (14
- ¢+ (%’Y(%?)(ao = ¢/llgll®) , (15)
(1= (9,7(60))%/l9lI*)2 (n* + (2¢ — 0l|g]|*)0)?
and
b= ¢ (16)

lgll(® + (2¢ = eollgl2)eco)?
(iii) The left hand side of (10) is the sum of (12) and (13).

REMARK. The conditional probability in (13) has an interesting geometric
interpretation. Conditional on (y4,U(™) = v, U(™ has the representation
U™ = vy, + (1 - vz)%ﬁ(m‘l), where U(™~1) is uniformly distributed on the
m — 2 dimensional unit sphere in the m — 1 dimensional space orthogonal to
7vg. Since (74,%(6)) = 0 for all 4, the conditional probability in (13) equals

Plmax(3(6), U™ D) > w?/(1 - )| (3(60), TD) = 2/(1 = )} (17)

The condition in (17) specifies that U(™=1) is on a sphere of geodesic
radius cos—[z/(1 — v?)2] about §(6o); and (§(8), U(m~1)2 > w2/(1 — v2) for
some @ if and only if U(™=1) is within a tube of radius cos™'[w/(1 — '02)%]
about either 4 or —7. Hence the conditional probability (17) is the proportion
of the sphere intersected by the tubes (cf. Figure 1 of Knowles, Siegmund, and
Zhang (1991)). In the trivial case that 4 is a great circle this intersection is
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the union of two spherical caps, and (17) equals

2{1 = Frg(w? - 22)5 /(1 - v? - 22)3]}. (18)

Since there does not seem to be a direct geometric method for computing
the probability (17) in general, the following theorem uses Rice’s formula for
the expected number of upcrossings of a level to give an upper bound. Its
proof is sketched in an Appendix. Knowles, Siegmund, and Zhang (1991) give
a more detailed discussion, evidence that the method usually gives very close
to exact results, and an approximation in the form of a perturbation of (18)
reflecting the extent to which 4 fails to be a geodesic.

THEOREM 2. Let

p = (7(8),7(60)), (19)
p = p(z = wp)/(1-p?), (20)
and
72 = (I - 2/ = ) - 22 =02 = (w—p2)/(1 - p2). (21
Then

Plmax(3(6), U™) > w|(3(60), U™) = 2, (15, U™) = v]

% fmes Sy (L P .

REMARK. In order to approximate (17), (22) must be used twice: once for
4 and once for —4. In practice the curve —4 usually contributes a negligible
amount to the overall probability, but in some cases it can be important.

3. Review of Two Other Methods.

3.1. Approximate F Method. Consider the general nonlinear regression
model y = h(A) + € and suppose that the vector ) is partially specified by the
hypothesis Ho : A = Ag. Let A and Ao denote maximum likelihood estimators
without restriction and restricted by the hypothesis, respectively. In the case
of a linear function k the ratio [||y — 2(Jo)||2 = [ly — R(M)|2)/|ly — B(})||? is, up
to normalization, the familiar F statistic for testing the hypothesis Ho. The
approximate F' method is based on the assumption that this same distribution
is approximately valid even if h is nonlinear.
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For example, for the model (4) with the notation introduced in (8) and
(9), let
m-3 &5 - 63

2 crg

In a linear model this statistic F' would be distributed as F3,,_3 when 6 =
6o, a = agp. For the approximate F' method we pretend it has this same dis-
tribution under the nonlinear model. To the extent that it does, the set of
all (6o, ) for which F' < F ,_3(1 — §) is approximately a 1 — § confidence
region for (6, ).

F=

(23)

Like the conditional likelihood ratio region of Section 2 the approximate
F region is based on the likelihood ratio statistic. However, the boundaries
of the region are determined by the hypothesized unconditional distribution
of the statistic, whose true distribution cannot be used because it depends on
unknown nuisance parameters. In the case of a linear model (this is essentially
the trivial case in (18) where the curve ¥ is a great circle) the conditional
and unconditional distributions coincide, and the two methods yield the same
confidence region. It seems reasonable that the two regions should be close
to each other in cases of “small” nonlinearity. What is somewhat surprising
is that with one qualification the regions turn out to be close to one another
even if there is substantial nonlinearity.

Although the approximate F' method is highly regarded in the nonlinear
regression literature, we believe that the justification traditionally offered for
attaching a confidence level to the regions thus obtained is not as strong as one
would hope. There is a sequence of papers (Beale (1960), Johansen (1984),
Hamilton and Wiens (1987)) showing that as o tends to 0 the approximate
F statistic has in the limit the appropriate F’ distribution. This is the case
of small nonlinearity. The regression surface can be well approximated by its
tangent plane at the true parameter value, and in the limit the nonlinearity
vanishes. A consequence is that in the limit the approximate F' region agrees
with other regions, notably the Halperin (1963) region, which are known to
behave badly when the regression function is moderately nonlinear (Bates and
Watts (1988, pp. 223-9), Knowles, Siegmund, Zhang (1991), Section 5 below).
The asymptotic theory also contains local curvature corrections which allow
one to adjust for nonlinearity; but the broken line model is locally flat so
for our problem these local curvature corrections are zero, except at design
points where they do not exist. This asymptotic analysis leaves us in the
uncomfortable state that the claimed coverage probability of the approximate
F region is justified when the region is close to other regions which experience
tells us can behave quite poorly.

In addition to these asymptotic analyses, the Monte Carlo study of Don-
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aldson and Schnabel (1987) reports that the true coverage probability of the
approximate F method is in all the cases they considered close to the nominal
level. However, they consider only one case of large (intrinsic) curvature and
restricted their study to confidence regions for the entire parameter vector.

For the restricted class of models they considered, Knowles, Siegmund,
and Zhang (1991) found good agreement between the conditional likelihood
ratio and the approximate F method, even in the presence of large curva-
ture, except when the boundary of the parameter space plays a role. The
essential geometric insight provided by analysing the conditional likelihood
ratio method is this. The approximate F' method implicitly assumes that the
curve ¥ is a great circle. In this case the probability (17) is given by (18).
When the curve is not a great circle, the cap on the sphere of geodesic ra-
dius cos™!(z/(1 — v?)!/2) about (6p) cut off by the tube around 7 is itself
not spherical, so (17) and (18) are unequal, and in most cases (17) is slightly
larger. However, in some cases the curve 4 ends before exiting from the sphere.
Then the cap cut off by the tube can be very small, or not exist at all, de-
pending on the minimum distance to the sphere from the curve, and contrary
to what the curvature corrections of the small o theory suggest (17) can be
much smaller than (18). It appears to be only this second case which leads to
substantial discrepancies between the conditional likelihood ratio and approx-
imate F' methods, and then the approximate F’ method is overly conservative
(cf. Section 5).

Since the approximate F' method is more easily evaluated than our method,
it presumably would be preferred if the two methods behave similarly. Hence
a numerical comparison of the two methods provides empirical evidence for
the case of broken line regression regarding the validity of the assumed cover-
age probability of the approximate F method. We also learn when to expect
discrepancies between the actual and nominal levels of the approximate F
method. In these cases one may prefer our method to obtain a more precise
confidence region. Alternatively one might use it as a diagnostic at a few pa-
rameter values to see if the approximate F' method is performing well or to
determine what kind of adjustments to the approximate F’ region are required
to make its nominal and actual levels more consistent.

For the broken line regression models it is easy to obtain the approximate
F region numerically. For the model (4), we can in fact proceed analytically,
as follows. For fixed 8 = 6y and a = oy, the residual sum of squares is

még = (|ly*[1* = (v(60), y*)?

= (lgll* = (g,7(60))*)c (24)
—2(g, (I — 7(80)7'(60))v)ao + [l¥lI> — (y,7(60))>.
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where 7(6) and y* are defined in (5).
By (23) the boundary of the approximate F region satisfies

. 2 .
0‘3 = (m — 3F21m_3(1 - 6) + 1) 03. (25)

Since 62 is a quadratic polynomial in g, the boundary points for given 8 are

the real solutions of

a(6p)ad — 2b(8o)ap + c(6p) = 0, (26)
where
a(8o) = llgli* - (9,7(60))?, (27)
b(6o) = (9, (Z — 7(60)7'(60))y), (28)
and
e(60) = 311> ~ (1 7(00))? ~ (s Fams(1 — ) + 1)5%.  (29)

Hinkley (1971) considered the model (2), for which he pointed out that
the approximate F region for (#,a) can be obtained by solving a quadratic
equation like (26). However, some other aspects of his procedure, which is
based on asymptotic considerations, seem to have undesirable consequences
for small sample sizes. See the discussion in Section 4 and Figure 1.

3.2. Bayesian Method. Smith and Cook (1980) gave a Bayesian analysis
of the broken line regression model (1). One crucial assumption concerns
the prior distribution for o, namely, vA/o? ~ x2%(v), for some choices of v,
the degrees of freedom, and A, a constant. They used A = 0, which can be
understood as A — 0, and v = 0 or —4. For the smaller the value of v the
confidence interval is more conservative. We shall also use these choices in our
examples.

4. Examples. In this section, three data sets are considered. Model
(1) seems reasonable for all of them. The conditional likelihood ratio (CLR)
method, the approximate F' (AF) method and the Bayesian method are used
to find approximate confidence intervals for the change-point 6. The results
are compared for different confidence levels. For Data 1, model (2) is also
considered. Confidence intervals for the change-point 6 and joint confidence
regions for the change-point # and the maximum response a are derived by the
CLR and AF methods, and compared with Hinkley’s (1971) results. Smith
and Cook’s (1980) analysis concerns only the change-point 6, and we do not
attempt to adapt their method to obtain joint regions for  and a. For Data
2, we only make inferences on the change-point, which is the parameter of
interest in that case.
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ExampLE 1. In this example, we study Hinkley’s (1971) data from Pool
and Borchgreving (1964). First, we consider model (1). Table 1 gives the
0.95 and 0.99 confidence intervals for 6 obtained from different methods. The
numbers in AF are given by Hinkley (1971).

Table 1: Confidence Intervals for Hinkley’s Data: Model 1

method v 0.95 0.99

CLR (4.044, 5.238) (3.689, 5.502)
AF (4.068, 5.202) (3.641, 5.441)
Bayesian 0 (4.179, 5.134) (4.061, 5.299)
Bayesian -4 (4.117, 5.204) (4.007, 5.390)

Model (2) seems adequate for these data (cf. Hinkley (1971)), under which
we also computed confidence intervals for 8, see Table 2.

Table 2: Confidence Intervals for Hinkley’s Data:

Model 2
method 0.95 0.99
CLR (4.441, 5.418) (4.245, 5.700)
AF (4.450, 5.389) (4.253, 5.655)

As shown in the tables, the results obtained by the CLR and AF methods
are fairly close although the conditional likelihood ratio method gives slightly
more conservative intervals than the approximate F does. However, even if
we use the conservative prior of v = —4, the Bayesian intervals appear to be
slightly narrower than those of the CLR and AF methods.

Now we turn to the joint confidence region for (8, a). Figure 1 shows the
0.95 confidence regions under model (2). The shaded area is obtained from
Hinkley’s (1971) original argument (after correcting what we believe are minor
typographical errors in the expressions for S;(y, w), where Z7 should be w, for
H(y), where Z; should have an asterisk, and for K!(y), where Bo; should not
be squared). The dotted line is from the approximate F' method described in
Section 3.1; and the solid line is from the conditional likelihood ratio method
given in Section 2. As one can see from the figure, the region from Hinkley’s
(1971) method looks peculiar. But the other two regions are more or less
elliptic, which is what we should expect since these data are well behaved.

ExAMPLE 2. Since the original data are not available, the numerical values
in Table 3 are inferred from Figure 1 of Smith and Cook (1980). In this



D. O. SIEGMUND and H. ZHANG 303

13 o

1.2 o

(@)

100 o

0.98

0.96 -

094 -

0.92 -+

0.90

4.0 45 5.0 55 6.0

(o)

Figure 1: 0.95 confidence region for Hinkley’s (1971) data. In (a), the shaded
area is from Hinkley’s (1971) method, the coincident solid and dashed lines
are the conditional likelihood ratio region and the approximate F' rgion. The
latter are plotted in (b) again. The plus sign is the location of MLE of (8, a).



304 CONFIDENCE REGIONS IN BROKEN LINE REGRESSION

application, model (1) seems reasonable. The change-point 8 corresponds to
the time at which a rejection occurs after a patient has received a kidney
transplant. See Smith and Cook (1980) for more details.

Table 3: Renal Transplant Data
(Smith and Cook, 1980)

Patient A Patient B

X y

1 47.5 36.0
2 57.0 45.5
3 61.0 50.0
4 71.0 60.0
5 67.2 73.3
6 54.4 71.0
7 48.3 66.7
8 43.2 60.0
9 30.5
10 18.3

Again we computed conditional likelihood ratio, approximate F, and two
Bayesian intervals for 6. The results are given in Table 4. The less conservative
Bayesian intervals are somewhat shorter than other three, which are reasonably
consistent with one another.

Table 4: 95% Interval for Renal Transplant Data

method v Patient A Patient B
CLR (3.649, 4.655) (5.550, 6.984)
AF (3.609, 4.691) (5.547, 7.319)

Bayesian 0  (3.748,4.531)  (6.069, 6.892)
Bayesian -4  (3.502,4.731)  (5.747, 7.156)

ExaMPLE 3. We now consider Data Set 3 in Table 6.18 of Ratkowsky
(1983). In contrast to the two previous examples which have been modeled in
the literature as broken line regressions, in analyzing these and similar data,
Ratkowsky suggests models which allow for a smooth transition between linear
regimes. The specific model he discusses is the “bent hyperbola” model,

y = Bo+ Pre + Ba(z — 0)% + 6]% +¢, (30)
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proposed by Griffiths and Miller (1973). Other possibilities are discussed by
Seber and Wild (1989, pp. 465-480). The broken line regression model (1) is
the special case of (30) with é = 0. Although the data are well behaved and
seem to be well described by this model, the evidence that § is different from
zero is weak (Ratkowsky, 1983, p. 125). Moreover, the notion of a smooth
transition between linear regimes, while intuitively appealing, does not seem
to help us understand these data, where the transition occurs over a very short
part of the range of the independent variable. We have used the model (1).
Table 5 contains the four interval estimates we have discussed above for the
change-point, 8. Figure 2 contains conditional likelihood ratio and approximate
F confidence regions for (6, 3;). All methods are in close agreement.

Table 5: Confidence Interval for Ratkowsky’s Data

method v 0.90 0.99
CLR (17.582, 18.631) (17.268, 18.901)
AF (17.602, 18.615) (17.283, 18.897)

Bayesian 0 (17.670, 18.575) (17.384, 18.818)
Bayesian -4 (17.630, 18.609)  (17.318, 18.862)

We were originally attracted to these data by Ratkowsky’s (1983, p. 125)
report of a large value for the Bates-Watts (1980) intrinsic curvature diagnos-
tic. Since the conventional interpretation of a large intrinsic curvature is that
the coverage probability of the approximate F method may not be consistent
with the nominal value, these data seemed like an interesting test case for our
methods. The satisfactory performance of the approximate F' method seen in
Table 5 and Figure 2 seems to provide support for the hypothesis of Knowles,
Siegmund, and Zhang (1991) that its coverage probability is close to the nomi-
nal value even if there is large curvature, unless the confidence region contains
values of @ close to the ends of the curve 4(6) defined in (6) (cf. Section 5).

However, a closer look makes one dubious of the usefulness of the usual
intrinsic curvature diagnostic for the model (30) when § is close to 0. For the
limiting case of broken line regression, where 6 = 0, the regression function
is linear between design points, but has a discontinuous derivative at design
points. Hence the intrinsic curvature for that model equals zero, except at
the design points, where it is undefined. It seems plausible that the intrinsic
curvature diagnostic may be quite misleading for the model (30) when it is
close to the broken line model (1).
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Figure 2: 0.95 joint confidence region for Ratkowsky’s data. The solid line is

the conditional likelihood ratio region, and the dashed line is the approximate
F region.
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Table 6: Smooth Model for Ratkowsky’s Data

6(6) method 0.90 0.99
0.1 AF (17.602, 18.615) (17.283, 18.897)
(18.144) CLR (17.586, 18.627) (17.272, 18.900)
curvature 0 0
0.5 AF (17.608, 18.618) (17.270, 18.990)
(18.124) CLR (17.604, 18.622) (17.263, 18.993)
curvature 1.251 1.865
3.4362 AF (17.903, 19.167) (17.499, 19.581)
(18.522) CLR (17.901, 19.168) (17.497, 19.583)
curvature 0.424 0.631

To test this last hypothesis we considered a related model suggested by
Tishler and Zang (1981), which has some advantages for our purposes. The
response y is given by

y = Bo+ Bz + P2gs(z — 0) +¢. (31)
where 0 if 2 < -6,
gs(2) = { (z+6)2/46 if =6 <2< 6, (32)
z if 2> 6.

This model is similar to (30) in the sense of providing a smooth transition be-
tween linear regimes and being equal to (1) in the limit when § = 0. Moreover,
the smoothing parameter é has a clear interpretation: outside an interval of
length 26 centered at @ the regression function is exactly linear and hence is
easily compared with (1). In Table 6 we consider three different values of é.
Since Tishler and Zang (1981) regard 6 as a convenient technical device to
facilitate numerical computation of the maximum likelihood estimators of the
other parameters and suggest arbitrary small values which can be perturbed
without substantially changing those estimators, we use § = 0.1 and 6 = 0.5.
The third value is § = 3.4362, which is the maximum likelihood estimator
and would presumably be used by someone who finds the smooth model (31)
preferable to (1). As measured by an F ratio, the maximum likelihood value
gives a marginally better fit (p = 0.038) than § = 0. We have regarded these
values of § as fixed in computing the entries in Table 6. Since the independent
variable ranges from z = 1 to z = 27, the differences in the estimated values
of 0 seem insignificant. However the variability in the Bates-Watts (1980) cur-
vature diagnostic, computed from an appropriate modification of display (28)
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of Knowles, Siegmund and Zhang (1991), is quite substantial. The coverage
probability of the approximate F' method appears to be quite close to the
nominal value in all cases.

5. Simulations. In this section we compare the performance of the
conditional likelihood ratio and approximate F' methods on simulated data.
For simplicity we consider the model (1) with o = §; = 0 and put B, = S.
In the preceding examples the data were well behaved, and there was close
agreement between the two methods. Here we shall be particularly interested
in problematic data. It is clear that a small value of 8 makes it difficult
to estimate § accurately. Difficulties also arise if the change-point 6 is near
to the end of the range of the independent variable. According to Knowles,
Siegmund, and Zhang (1991) the conditional likelihood ratio and approximate
F methods should give essentially the same intervals in the first case, which is
more or less a case of large curvature, although as indicated above the concept
of curvature is itself problematic for the model (1). However, the two methods
may disagree in the second case.

Table 7: A Random Sample from N(0,1)

-0.56340998 1.32382202  -0.87364787  -1.70070076  -1.42179060
0.79639786  -0.24871901 -0.82794911  0.74958265  1.09769726
-2.23353744 0.06592534  -0.31559977  -1.24223769 -0.96793693

For our experiments we put z; = 7 for ¢ = 1,2,---,15 and generated a
single sample of size fifteen from the standard normal distribution to serve as
a common set of residuals for different values of # and (. See Table 7 for the
simulated sample. Table 8 contains some basic results. The column headed
w gives the observed value of (14). Table 9 contains 0.90 and 0.95 confidence
intervals for @ obtained by the conditional likelihood ratio and approximate
F methods. To indicate the disagreement between these methods, we also
report the ratios (a; —a)/(b— a) and (b —b,)/(b — a), where (a,b) and (a1,b;)
are the conditional likelihood ratio and approximate F' confidence intervals,
respectively. In cases marked by an asterisk, at least one of the confidence
intervals included the endpoint of the parameter space, so the ratio does not
have a simple interpretation.
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Table 8: Key Parameters in Simulated Models
9 B é B w
7.5 1.0 7.318 0.847 0.9444
7.5 0.5 7.056 0.347 0.7768
3.5 0.5 4.000 0.464 0.9359

10.5 1.5 11.00 1.478 0.9064
12.5 2.0 12.711 1.674 0.7404

Table 9: Confidence Intervals for Simulated Data

6 8  method 0.90 0.95

7.5 1.0 CLR (5.5496, 8.6864) (5.0568, 8.9476)
AF (5.3212,8.6279)  (4.7922, 8.8742)
difference -7.28%, 1.86% -6.801%, 1.89%

7.5 0.5 CLR (3.0040, 10.9989)  (1.7623, 11.5662)
AF (2.6959, 10.4185)  (1.3335, 11.4637)
difference -3.85%, 7.26% -4.37%, 1.05%

35 0.5 CLR (2.5207, 5.6039) (1.7715, 5.9547)
AF (2.0473,5.6644)  (1.1234, 6.0301)
difference  -15.35%, -1.96% -21.02%, -2.45%

105 15 CLR (9.7707, 11.7838)  (7.6834, 12.6443)
AF (10.0243,11.7204)  (7.5714, 12.5662)
difference  14.87%, 3.19% 2.24%, 1.56%

125 20 CLR (10.5596, 13.9837) (10.1110, 15.0000)
AF (10.6332, 15.0000) (10.1234, 15.0000)

2.15%, -29.68%* 0.25%, 0.00%*

As expected, the two methods are in fairly good agreement even when 3
is small and hence the confidence interval is large, except when the interval
includes points near the end of the parameter set. In that case the disagree-
ment can be substantial, and the usually slightly longer conditional likelihood
ratio interval can be substantially shorter.

For the data of the third row of Table 9 we have also computed the in-
tervals suggested by Halperin (1963). Although, as indicated above, these
intervals have been severely criticized, the facts that they have exactly the
claimed coverage probability and in the linear case agree with intervals ob-
tained from the F statistic give them an intuitive appeal. The 0.90 and 0.95
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intervals are (1.0,6.09) and (1.0,7.1), respectively. They are much longer than
both the AF and CLR intervals.

It is also interesting to evaluate the conditional coverage probability of
the approximate F intervals. For the data in the first row of Table 9, at the end
points of the 0.95 AF intervals, our conditional evaluation (upper bound) of the
nominally 0.05 probabilities are 0.035 and 0.061 at the left and right endpoints
respectively. Thus although there is a relatively minor discrepancy between
the AF and CLR intervals, the discrepancy as measured by the differences in
tail probabilities seems comparatively large. The positive discrepancy at the
right hand end point is a curvature effect, whereas the negative one at the left
hand end point must be a boundary effect (cf. the geometric comparison of
the AF and CLR probability evaluations in Sections 2 and 3). The size of the
boundary effect is surprising, since the left end point does not seem especially
close to the boundary of the parameter set.

Other sample sizes and parameter values gave similar results.

6. Discussion. We have shown that the conditional likelihood ratio
method of Knowles, Siegmund, and Zhang (1991) can be implemented to pro-
vide confidence regions in an important class of nonlinear regression models
having a substantial literature of their own — the broken line models. Since
this method is more complicated numerically than the approximate F' method,
we have also attempted to provide empirical support for the conjecture of
Knowles, Siegmund, and Zhang (1991) that the simpler method yields close
to the same confidence regions, even in cases of large curvature, provided the
confidence region does not involve values of 6 near the ends of the curve 5(6).
We have also reviewed the Bayesian method of Smith and Cook (1980), which
does not seem to offer any particular advantages unless one wants a Bayesian
method. Since one presumably would prefer to use the simpler approximate
F method unless the accuracy of its coverage probability is in doubt, a possi-
ble use of our method is as a diagnostic, which would be substituted for the
approximate F' method only in those cases where there appears to be a sub-
stantial discrepancy between the nominal and actual coverage probabilities of
that method.

It is tempting to extrapolate these findings to more general nonlinear
regression models and conjecture that the approximate F' regions will essen-
tially always have about the nominal coverage probability, except when the
boundary of the parameter space is involved. However, it should be kept in
mind that our method and the accompanying geometric intuition apply only
to cases where all nonlinear parameters are included in the confidence region
so by appropriate conditioning one can in principle obtain an exact region.
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Appendix: Proof of the Theorems.
Proof of Theorem 1.

(i) Note that A(g, ap) is the log likelihood ratio statistic under the hy-
pothesis Hj : @ = o for the model

y=oag+pBf(6)+e.

Let T'o = I — 4(60)7'(6o) be projection to the orthogonal complement of
v(6o). It follows from linear regression theory that

. ) I\ g y*)2
m(62 — %) = _{Log,")"
(%% 0= " raglt

and hence )
Peo,ao[A(oo’ ao) >b ”y*”7 (7(00)’ y*>]

(Fog, y*>2

= Py 0ol et—= > c?| ||Toy*
bl TEaglioyye ~ < 1oVl
= P[lu{™Y| > ¢].
(ii) We want to evaluate
Py a0 [A(80) > b = A(do, a0)| 19", (7(60), ¥7), (6o, c0))-  (33)
For convenience, consider the specific values
* * (Fog, y*)
vl =mn (7(60),¥™) = ¢, 7= = & 34
Under the conditions in (34), we have
&g =m™(n’ - ¢°), (35)
1 L
(9,9) = E(llgll® = (9,7(60))*)7 (n* - 6*)7 + &{g,7(60)) + cwllg|®  (36)
=¥ (37)
and .
lyll = (n* + (2€ = aollgl*)eo)?. (38)

Some manipulation shows that
A(8o) > b — A(Bo, o)
if and only if

max (7(9),y)* > [l9lI* = (9,9)*/llgll” - (1 - )m&3. (39)
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For 6 = 6y, ||ly*|l, (7(60),y*) and A(8, ap) are the sufficient statistics for
a, § and o. Hence to find (33), we can assume y ~ N(0,I), and it follows
from (35)—(39), that

(30) = Plmax (7(8), U™)? > w]| (3(60)), U™ = 2, {x,, U™) = o],  (40)

where w, z and v defined in (14), (15), and (16).

Proor oF THEOREM 2. Qur proof is an application of Rice’s formula in
the form of the inequality

t1
— 7+ —_
Pl max Z > u] = /t E(ZF |2 = w)giw) d, (41)

where g¢; is the probability density function of Z;, h = dh/dt, and Z is
restricted to be less than w. See Knowles, Siegmund, and Zhang (1991) for
a more complete discussion. We apply (41) to Zs = (5(8), U(™) conditional
on ((6o),U™) = z, (y,,U™) = v, and we consider only values § > 6.
Theorem 2 also involves 6 < 8y which can be treated similarly.

Recall p(6) defined in (19) and define orthonormal vectors

€] = ‘7(00), (42)
e2= (3(0) - p(O)i(0) /(1 ~ PP), (43)
es = (7 = per + ppea/V/(1 = p))[VAINI® = 52 /v(1 = pP)}.  (44)

Since 7, is orthogonal to 4(6) for all # and hence orthogonal to 5(6), let
e = 7, Let u(™ = (e;, U™) (i = 1,---,4). Then by (42)—(44)

(3(8), U™y = pu{™ + /(1 - p?)ul™, (45)
(3(8), U™) = p(z — pw)//(1 = p2) + VAIKIIZ = 52 /(1 = pP)}ui™. (46)

Conditional on (¥(fo), U™) = z and (v, U™) = v, namely, u{™ = z, u{™ =
v, the density of u{™ is

fm-a(2/ /(1= 22 = v2))[y/(1 = 2% - 0?) (47)

and hence by (45)

P[(5(8), U™) = w | (7(80), U™) = 2, (75, U™)) = 0]
w— pz

- 1 fmes . @
T A=) -2 =) M A - p)(1 - 22 - )}
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Now, given (7(60), U™) = z, (75, U™) = v and (7(6),U™) = w, u{™ is
the first coordinate of a point uniformly distributed on an m — 4 dimensional
sphere of radius

w— pz 2
Vi{l— 22— v?— (1—_’;5)—}. (49)

Hence by (46) and (49) the conditional density of (¥(8), U(™) is given by

-1 S o
T fm—4( r )’
where p and 7 are given in (20) and (21). By calculation we get
E[ (‘7(9)’ U(m)>+ (7(6o), U(m)) = 2, {7y U(m)) = v,(%(9), U(m)) = w]
H -1 K (50)
= BFm-a(7) +(m = 3)77 fua(2).

Theorem 2 now follows by substitution of (48) and (50) into (41).
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