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This paper concerns results on comparisons of stopping values, and
prophet inequalities for dependent random variables. We describe general
results for negatively dependent random variables, and some examples for
the case of positive dependence.

1. Introduction

Let Z = ( Z i , . . . , Z n ) be a finite sequence of random variables, having
a known distribution, and such that E\Z{\ < oo. As usual, a random vari-
able t taking values in {1,2,. . .} is said to be a stopping rule for Z if the
event {/ = i} is determined by Z i , . . . , Z t , i = 1,2,..., and P(t < n) = 1.
(Infinite sequences and unbounded stopping rules have been studied by the
methods described below, with minor technical modifications. For simplicity
we consider only finite sequences in this paper.) The optimal stopping value
corresponding to Z is defined by V(Z) = sup, EZt, where the supremum is
taken over all stopping rules for Z. V{Z) can be regarded as the best ex-
pected value attainable by a statistician who is restricted to stopping on the
basis of observations which have already been taken. On the other hand, if
one could decide when to stop on the basis of complete information about
the whole sequence, including future observations, the relevant value would
be EZ*, where Z* =max(Zi , . . . , Zn). The quantity EZ* is thus the value
for a prophet who can foresee future observations. Clearly V(Z) < EZ*.
Inequalities of the type
(1) EZ* < cV(Z),

for Z in some collection of finite sequences, with constant c depending only
on this subclass, are called ratio prophet inequalities. For a recent survey on
such inequalities, with history and bibliography, see Hill and Kertz (1992).

We shall be interested mainly in two problems:
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1. Determine sequences X and Y of dependent random variables for
which the optimal stopping values comparison

(2) V(X) < V(Y)

is valid.

2. Obtain prophet inequalities for collections of dependent sequences.

Qualitatively, if the Y's tend to be larger than the X's then one may
expect (2) to hold. However, this is not obvious in the presence of depen-
dence, where the possibility of prediction of future values aids in obtaining
a high optimal stopping value for the statistician. Thus, X <si Y (meaning
Eh(X) < Eh(Y) for any nondecreasing function h defined on R n ) does not
necessarily imply V(X) < V(Y). For example consider

(K /v v ^ ί (2,10) w.p. 1/2
1 ; l A i ^ 2 J I (0,-10) w.p. 1/2

and (Yi, Y2) independent with P(Yτ = 2) = 1, P(Y2 = 10) = P{Y2 = -10) =
1/2. Then X <st Y, but V(X) = (l/2) 10+(l/2) 0 = 5, whereas V(Y) = 2.
While dependence may work to increase the value through prediction, it also
affects the value (both for the statistician and the prophet) directly. For
example, for the prophet value, it is well known that EZ* for independent
Z's would be smaller than EZ* for the same marginal Z's satisfying suitable
negative dependence conditions. As we shall show, this also applies to the
optimal stopping value. Thus it is natural to expect (2) to hold, for example,
when the Y's are in some sense more negatively dependent than the X's.

A good portion of this paper contains a survey and reorganization of pre-
vious work of the authors on value comparisons and prophet inequalities for
dependent random variables. In the next section we shall bring results from
Rinott and Samuel-Cahn (1987) on value comparisons for negatively depen-
dent random variables. In Section 3 we discuss examples of such comparisons
under positive dependence. It should be clear from the above discussion that
in this case one should anticipate difficulties, because, while the dependence
tends to increase the value through prediction, the positive nature of the de-
pendence works to decrease the prophet's value or the statistician's optimal
stopping value. Section 5 concerns random replacement schemes. We discuss
some results and a conjecture which appeared in Rinott and Samuel-Cahn
(1991) and some further partial results on the conjecture. Finally, in Sec-
tion 5, we reorganize and unify results from our aforementioned two papers,
on prophet inequalities for certain classes of dependent random variables.
Prophet inequalities for other classes are given in Hill and Kertz (1992).
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2. Value Comparisons Under Negative Dependence

DEFINITION The random variables Z i , . . . , Z n are said to be Negatively
lower orthant dependent in sequence (NLODS) if

(4) P(Zi < OilZt < α i , . . . , Z - i < α t_i) < P(Z f < αf )

for i = 2,3,...,n, and all constants α i , . . . , α n for which the conditional
probability in (4) is defined.

It is easy to see that condition (4) is weaker than most of the well known
conditions of negative dependence. Thus if Z i , . . . , Z n are Negatively as-
sociated (NA), i.e., cov{/i(Zt ,i e Aι),f2(ZjJ E A2)} < 0, for any pair
of disjoint subsets Aι,A2 of {l,. . .,n} and any nondecreasing functions
/i,/2, then they are also NLODS. Likewise, if Z i , . . . , Z n are Negatively
dependent in sequence (NDS), meaning that Z i , . . . , Z t _ i |Z t = αt is decreas-
ing stochastically in α;, or if Z i , . . . , Zn are Conditionally decreasing in se-
quence (CDS), i.e., Z{\Zι = α i , . . . , Z t _i = αt _i is decreasing stochastically
in α i , . . . , α t _ i , for i = 2,3, . . . , n, then they are NLODS. On the other hand
it is easy to see that (4) implies Negative lower orthant dependence, that is,
P(Zi <au...9Zn<an)< ΠΓ=i P(Z{ < a{).

Examples of distributions satisfying (4) include the multinomial, mul-

tivariate normal with negative correlations, and permutation distributions,

including sampling without replacement, all of which are NA. See Joag-Dev

and Proschan (1983) for further details.

THEOREM 2.1 (Rinott and Samuel-Cahn (1987)) Let Yu...9Ynbe NLODS

random variables, and let X\,..., Xn be independent random variables such

that for each i, Xi and Yi have the same marginal distribution, i = 1,... ,n.

Then V(X) < V(Ύ).

PROOF Given a sequence of random variables Z = ( Z i , . . . , Z n ) , and a

vector c = (ci, . . . ,c n ), with cn = -oo, and possibly C{ = — oo for some

i < n, define the stopping rule t(c) =min{i < n : Z{ > ct }. Since cn = -oo,

we have t(c) < n. Then for i > 1,

(5) Zm = Cl + [Zx - cx}+ + Σ{ci - c . ! + [Zi - ct]
+} I(t(c) > i - 1),

where {ct - c ^ x + [Zi - Ci]+} = Zi - ct _i if c, = -oo.

Recall (or see, e.g., Chow, Robbins and Siegmund (1971, Theorem 3.2))

that for independent Xi, . . . ,Xn> the optimal stopping rule is of the form

t(c*), with
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One can see directly, or from (5), that

(7) V(X) = EXt{c.) = c\ + E[XX - c\γ.

The constants of (6), which are optimal for the sequence Xi,. . . ,Xn> need
not be optimal for the sequence Y\,..., Yn, and therefore

(8) V(Y) > EYt{c.y

Next note that for Y\,... ,Yn which are NLODS, see (4), we have

E{h(Yi) • I{YX < alt... ,y,_x < a;.!)} >

E{h(Yi)}

for any nondecreasing function h. In particular, since I(t(c) > i — 1) =
J(Yi < ci , . . . ,Yi_i < c,_i), we have

(9) E{(* - c t_x + [Yi - «]+) • J(ί(c) > t - 1)} >

(c, - c,. ! + E[Yi - a]+) • EI(t(c) > i - 1).

To prove the theorem combine (8) with (5) applied to Yχ,...,Yn, and
(9), to obtain

(10) V(Y) > cί + E[YX - cί]+

) > i - 1).
i=2

Because Xi and Yi have the same marginal distributions, we can replace

E\Y{ - ĉ ]+ by E[Xi - cf]+ Then, by (6), the r.h.s. of (10) reduces to

c\ + E[X\ - cί] + = ^(X), the last equality following from (7), and the proof

is complete. •
Theorem 2.1 generalizes the next result due to O'Brien (1983). Our

attempts to generalize this result in a different direction axe described in
Section 4 on random replacement schemes.

COROLLARY 2.1 Let (Iu..., In) and ( J 1 ? . . . , Jn) denote random sampling

with and without replacement, respectively, from {1,...,JV}, n < N. Let

Xk = Tkίh) a n d γk = rk(Jk), where for all k = 1,.. . ,n, rk(i) < rk(j) if

l<i<j<N. Then V(X) < V(Y).

PROOF This follows from the fact that Xi,. . . ,Xn are independent, while

Yi,...,Yn are NA, hence NLODS, and Theorem 2.1 applies. •

In Rinott and Samuel-Cahn (1991), we consider (among other things)

the following problem. Given independent Z i , . . . , Znj let
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denote the optimal stopping value with respect to observations having the
conditional distribution of Z given Y%=1 Z{ = s. In trying to understand
the interaction between dependence and stochastic ordering, and how they
affect optimal stopping values, it is natural to seek conditions under which
V(s) increases as a function of s. We found that if each of the Z, 's has a
log-concave density, or probability function, then indeed V(s) is increasing.
In this case the observations are also NA, see Joag-Dev and Proschan (1983).

3. Value Comparisons Under Positive Dependence

In view of Theorem 2.1 and previous discussions, it appears natural to
look for structures of positively dependent random variables (-XΊ,... ,Xn),
such that for independent (Yi,...,Yn) with X{ and Y{ having the same
marginal distribution for each i = 1,..., n, we have,

(11) V(X) < V(Y).

Association in the sense of Esary, Proschan and Walkup (1967) is an exam-
ple of a well-known strong condition of positive dependence. The variables
Xi,. . . ,X n are said to be associated if cov(/i(Xi,... ,Xn),/2(Xι,... ,Xn)) >
0 for any pair of nondecreasing functions f\ and /2 While in Theorem 2.1,
a suitable (and rather weak) notion of negative dependence was sufficient
for the value comparison, this is not the case for comparisons under positive
dependence. For example, the variables (Xχ,X2) of (3) are easily shown to
be associated. However, if we set Y{ to be independent having the same
marginal distribution as JC, , i = 1,2, then V(Y) = 1 < ^(X) = 5.

With the lack, so far, of general results of comparisons of the type (11)
under positive dependence, we shall settle for a few examples. In the first
three examples it is easy to see that the Xys are associated.

EXAMPLE 3.1 Let Z{ be independent random variables, and let 0 < α; < 1

be constants. Set X\ = Z\ and X{ = a{Xi-\ + (1 - o:t )Z t , i = 2 , . . . ,n .

Let (Yi,...,Yn) be independent random variables with Y{ having the same

marginal distribution as X{, i = 1,. . ., n. Then

V(X) < V(Y).

In the special case that ct{ = (i-l)/i, we obtain the averages X{ — 1 Σ j = i ^j

PROOF The proof is by induction on n. For n = 2, set a = EZ2. We have

V(XUX2) = E{XX V [a2Xi + (1 - a2)EZ2]}
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I{XX > a)} + α2£{XiI(Xi < a)}

+(1 - a2)aP{X1 < a)

< E{X!l(Xi > a)} + a2EXi P(Xi < a)

+(1 - a2)aP(X1 < a)

= E{X1I(X1 > a)} + EX2 • P(Xi < a)

< suP6{ E{XxI{Xλ > b)} + EX2 • P{Xt < b) }

= E{XX V EX2} = E{YΎ V EY2} = V(Y1,Y2).

Now set V(n-ιXX!) = sup2<t<n ^(XtlXα), and ^ "

sup2<t<n E(Yt\Y\), which actually does not depend on Y\. Note that the

Markov structure of the X's implies EV^n~ι\Xι) = V(X2,... ,Xn), and

clearly EV^-^iYi) = V(Y2,...,Yn). The induction hypothesis can be ex-

pressed in the form

j B y ( n - i ) ( χ 1 ) = y ( χ 2 ? . . . , χ n ) < V(Y2,...,Yn) = EV^XYx).

Note that V^"" 1 ^^) is a nondecreasing function of X\. From the struc-

ture of the sequence (ΛΊ,..., Xn) with 0 < α» < 1, it is not hard to see that

there exists a value — oo < c < oo such that X\ > V^^^Xi) if and only if

X\ > c. We obtain

V{Xu...,Xn) =

> c)} + E{V^n-1\X1)I(X1 < c)}

> c)} + E F ^ - 1 ) ^ ) P(Xi < c)

> c)} + ̂ ^-^(Yi) P(Xi < c)

< suP6{ E{X1I(X1 > b)} + EV^XYx) • P(Xi < 6)}

= E{X1 V ̂ ^ ^ ( y i ) } = E{YX V

where the first inequality follows from the monotonicity of V^n"'1\X\\ the

second inequality follows from the induction hypothesis, and the last equality

follows by the independence of the Yί's. π

The next example generalizes Example 3.1. Note that a real valued

Markov chain can always be represented in the form X\ = Zi, Xi =

fi(Xi-ι,Zi) with independent Z's. Note also that if the functions fi(x,z)

are increasing in #, then the sequence Xι,..., Xn is Conditionally Increasing

in Sequence, i.e., P(X{+ι > x\X\ = xi,...,X t = xt) is nondecreasing in

#i,. ..,#», for all x and i = 1,... ,n — 1. This implies that Xi,... ,Xn are

associated. For details see Barlow and Proschan (1975, Theorem 4.7).
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EXAMPLE 3.2 Let Zi be independent random variables, and let Xι,... ,Xn

have the Markov structure Xλ = Z\, X{ = /i(Xt _i,Z t ), where Z{ are inde-
pendent, and fi(x,z) are functions satisfying 0 < §£ < 1, i = 2,... ,n (or
0 < fi(x', z) - fi(x, z) < x1 - x for any x' > x in the nondifferentiable case).
Let (Yi,...,Yn) be independent random variables with Y{ having the same
marginal distribution as Xi, i = 1,..., n. Then

V(X) < V(Y).

PROOF AS in the proof of Example 3.1 it suffices to show that

1. V^n~1\Xι) =suj>2<t<nE(Xi\Xi), is nondecreasing in AΊ,

2. there exists a value — oo < c < oo such that X\ > F(n~1^(Xi) if and
only if X\ > c.

1. is readily shown by induction using the monotonicity of /t in x. We
prove 2. by showing that for X[ > Xu V^-^Xfi - V^n"ι\Xι) < X[ -
X L For n = 2, this follows readily from F ^ X i ) = E[f2(Xu Z2) \Xι] =
f f2(Xi,z)dF(z), and ^ < 1, where F denotes the distribution of Z2.

The proof now requires induction; we prefer to demonstrate the case
n = 3, and leave the details of the induction to the reader. For n = 3 we
have W2)(XX) = E{[f2(Xί,Z2) V £(/ 3(X 2, Z3)\X2)] |Xχ}, and /3(X2, Z3) =
f3(f2(Xi,Z2),Z3). We have E{h{X2,Zz)\X2) = h(X2), say, where (by ar-
guments as above), X2 > X2 implies h(X2) — h(X2) < X2 — X2. Define
g(Xu Z2) = h(X2) = h(f2(XuZ2)). Then, replacing f2 by / for brevity, we
have VW(Xi) = /[/(Xi, z) V g{Xλ, zψF(z) where F denotes the cdf of Z2,
0 < | f < 1, and if g is differentiable | | < 1 (by the chain rule), and in any

{case X[ > Xι implies g(X[,z) - g(Xi,z) <X[-Xχ. Note that f(X{,z) V
g(X[,z) - f(Xltz) Vg(Xuz) < [f(X[,z) - f(Xuz)) V \g{X'uz)-g(Xuz)],
so that for X[ > X\

f(X[,z)Vg(X[,z)-f(X1,z)Vg(Xuz)<X'1-X1,

and substituting Z2 for z, and taking expectations, we obtain for n = 3,
<X[- Xι. •

EXAMPLE 3.3 Let Z§,Z\,...,Zn be independent random variables and let
X{ = Zo + Zi, i = 1,... ,n. Lei Yi,..., Yn ie independent random variables
with Yi having the same marginal distribution as Xi, i = 1,..., n. Then

V(X) < V(Y).

PROOF It is not hard to verify the relations

V(X) < EZo + V(ZU..., Zn) < V(Y).
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The first inequality above is left to the reader. In order to prove the second,

set Y{ = Zoi+Zi, where all the Z's are independent, and ZQI is distributed like

Zo, i = l , . . . ,n . We then have V(Y) = Ef(Z0U... ,Z<>n-i,Zi,... ,Zn_i)

where / is a convex function (which depends on the constant £(Zo + Zn)).

For example, for n = 3 we have V(Y) = E{(ZOi + Zλ) V £[(Z02 + Z2) V

E(Zos + Z3)]}. By Jensen's inequality and the independence of the Z% we

obtain a lower bound to the latter expression by replacing the variables ZQI

by their expectation EZQ. The lower bound thus obtained is readily seen to

equal £Z 0 + V(Zi,...,Zn). •

EXAMPLE 3.4 Let X i , . . . , X n be a martingale, and let Yχ,...,Yn be inde-
pendent random variables with Y{ having the same marginal distribution as
Xi, i = l , . . . , n . Then

V(X) < V(Y).

PROOF Simply note that V(X) = £XX = £Yi < V(Y). •

Note that being a martingale, ΛΊ,... ,Xn are nonnegatively correlated,
but need not be associated.

4. Value Comparisons for Random Replacement Schemes

Random replacement schemes were introduced by Karlin (1974). Con-

sider sampling from a finite population, say λί = {1,... ,N}; when the ith

observation is taken, it is returned to the population with some probability,

say τrt , independently of observation values, and removed with probability

1 — τrt . The observations are taken at each step at random, that is, with

equal probability for every number present in the population. Clearly sam-

pling with and without replacement are special cases, and one might look

for a hierarchy of comparisons, or ordering, generalizing the comparison in

Corollary 2.1.

We now define random replacement schemes more formally. Set π =

(πi,...,7rn_i) with 0 < τrt < 1, and let Ui be independent Bernoulli vari-

ables, P(Ui = 1) = TΓ;, i = 1,..., n — 1. Consider an urn (or population) con-

taining the values {1,..., N}. Select a value J\ at random from the urn; re-

turn it if 27i = 1, and remove it from the urn if U\ = 0. Now select J2 at ran-

dom from the resulting urn, and return it if and only if ί/2 = l Continue in

this manner until a sample (J i , . . . , Jn) is obtained. Now define Xk = ^(Λ)?

where the real valued functions r^(z'), i G {1,..., N}, k = 1,..., n are mono-

tone nondecreasing in i for each k. This monotonicity will always be assumed

in the sequel. Other conditions on r^(i) will appear later. The functions r^(i)

may be seen as the reward for drawing the value i at step fc, and at each
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step the rewards increase with the value drawn. Define the optimal stopping
value to be

K ( n ) = suptEXt,

where the supremum is taken over stopping rules with respect to the fields
fk(Jii • • J Λ J ^ I J J Uk)- This means that the content of the urn at the
time of the (possible) next draw is always known.

In these terms, Corollary 2.1 can be recast in the form:

(12) Vin) < Vin\

where 1 (0) denotes the n - 1-vector of Γs (O's).

The following generalization of (12) holds.

THEOREM 4.1 (Rinott and Samuel-Cahn (1991)). For any π and all n< N,

(13) V^ < F 0

( n ) .

We shall review the proof of this theorem at the end of this section.

One may conjecture that (12) can also be generalized to:

(14) V±n) < VW.

However this is not true in general. For N = n = 3, r ^ ) = 0, r 2 ( l ) =

0, r2(2) = r2(3) = 3, r 3 ( l ) = r3(2) = 0, r3(3) = 4, we have, vfi] = 22/9 >

Vof = 21/9. It is possible that (14) holds if the functions rjfe(i) do not

depend on &, or perhaps also when they are decreasing in &, for each i, i.e.,

values are discounted in time of observation.

Note that in general the sequence X obtained in random replacement

schemes is not NLODS, even when Γfc(i) does not depend on k. For example,

if n = N = 3, and rjb(t) = i, i,fc = 1,2,3, and πi = 0,π2 = 1, then it is

easily seen that P(X3 < 3\X2 < 3) = 3/4 > P(X3 < 3) = 2/3. Thus, (14)

cannot be derived from Theorem 2.1. For n = 2, (14) is easy:

LEMMA 4.1 For n = 2, (14) holds.

NOTATION Define Vri1^..f7rfc-1(Ai) to be the optimal stopping value when

initially the urn contains the elements of an ordered set Ai where \Λ41 > fc, at

most k draws are allowed, and the replacement probabilities are TΓI, . . . , TΓ^-I.

The functions r& are suppressed in this notation. We may use Vπ1;...,πk__1(M)

with r l 9 . . . , rjb, and also with r 2 , . . . , rk+1. We shall comment on this point

when the latter case occurs, although the notation should be clear from the

context.
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PROOF OF LEMMA 4.1 For n = 2, we have

V « = V«(Λ0 = τιE{X1 V

(15) =

where the final inequality follows from V̂  (Λί) < VQ (Λ/*), which is a simple
case of (12). Here, V^ was used with respect to the function Γ2 Π

For n > 3, we are unable to prove (14) even in the seemingly simple case
of rfc(t) not depending on k. However, if it is true, then the following lemma
could be a step in the right direction. It simplifies (14), which involves
a random replacement scheme on the r.h.s., to a comparison between two
deterministic schemes: complete replacement, and removal of the first draw
followed by complete replacement. The case of n = 3 of (14), with some
restrictions on r^, will be derived from this lemma later.

LEMMA 4.2 Fix m > 3. V1

(n) < vj n ) for all 3 < n < m and N satisfying
n < N, if and only if

(16) V & < V$.. f l >

holds for all 3 < n < m and n < N.

PROOF Clearly, (16) is necessary. To prove sufficiency, we shall make use
of the following straightforward generalization of (15):

(17) Vfrl^ fcj
+(1 - π1)E{Xι V

Assuming (16) holds, we now prove Vj < Fπ by induction on n. In
the present notation the latter inequality is expressed as

(18) V^WKV^l^iλf),

which we consider for all n,N such that n < N = \Λf\. The induction
hypothesis, see (18), for n - 1 is

It holds for n — 3 (n - 1 = 2) by Lemma 4.1. Applying the induction
hypothesis to the r.h.s. of (17) twice, the second time with the population
being λί — {J\} instead of Λί we obtain the first inequality below:

(19)
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where the equality follows from E{Xλ V v}"~}\λf)} = V^^λf), and

EiXxVV^-piλf-iJx})} = VoαLiM* and the last inequality follows from

(16). In this proof, yί*1"1) was always used with respect to r 2 , . . . , rn. •

We cannot prove (16) even for r^(i) not depending on A;, but it appears

like a more tractable conjecture than (14). A computer search with a variety

of functions rk(i) (not depending on A;), and N < 15, did not produce a

counterexample to (16). In the case n = 2, (14) is already established in

Lemma 4.1. For n = 3we have

PROPOSITION 4.1 Let n = 3, N > 3 and n(i) > r2(i), for i = l,...,iV.
Then

y < v
M,l ^ M)fl

Clearly, our assumption holds if for all i, r^(i) is decreasing in k. This

is a natural assumption which says that the earlier you observe a certain

element i, the higher its value. In other words, there is a cost for time, or

for taking more observations. By Lemma 4.2 we conclude that under the

conditions of Proposition 4.1, (14) holds for n = 3, i.e.,

PROOF OF PROPOSITION 4.1 Define f* = jfΣjLirk(j) and

1 N

j:t#=l

Let A(i) = ^ E j L i W i ) V r3[i]}, and 5(i) = 3^7 Σ2jί»^i=i{r2(j) V i
Note that if for some i, A(i) > 2?(i)> then it is readily seen that r2(i) > rs[i]
and r2(i) > A(t) ( > B(i)). Since rχ(i) > r2(i), we conclude that A(i) > B(i)
implies rι(i) > A(i) > B(i). It is now easy to see that

(20) 1 Σinii) v B(i)} > i £){n(<) v A(i)}
t = l * = 1

Note that the l.h.s. of (20) equals VQI . In order to proceed we now need

a simple lemma whose proof is given in Rinott and Samuel-Cahn (1991,

Lemma 3.3).

LEMMA 4.3 Let h(x),g(x),x e Ht, be an increasing and a decreasing func-

tion, respectively. If X is a random variable such that the expectations below

exist, then

(21) E{h(X) V g(X)} > E{h(X) V Eg(X)}.
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By Lemma 4.3, the r.h.s. of (20) is > than

(22)

Finally, it suffices to show that the r.h.s. of (22) is > than V^ . We have,

1 1 £ 1(23) Σ A(i) = £
i=l j=l i=l

Applying Lemma 4.3, or simple convexity, to the inner sum in the r.h.s. of
(23) and noting the relation JJ ΣiLi fz[i] = 3̂ we conclude that the r.h.s. of
(23) is > T^EjLiWi) V f3}. Denote the latter quantity by C. Thus the

r.h.s. of (22) is > jf Σf=Λn(j)v C}> which is exactly V$ and the proof of
Proposition 4.1 is complete. D

For the proof of Theorem 4.1 we shall need a simple lemma whose proof
can be found in Rinott and Samuel-Cahn (1991).

LEMMA 4.4 Let J be a random element of ΛΓ. Then for any m < N — 1,

In words, removing a random (known) element from the population before
sampling, increases the average stopping value for sampling without replace-
ment.

Perhaps this lemma is best explained by an example. For ΛΓ = 3, m = 2,
and rfc(i) = i, we have yQ

(2)({l,2,3}) = (l/3) (2+3)/2+(l/3) 2 + (l/3) 3 =
5/2, corresponding to the first sampled item being 1,2, or 3, respectively. If
prior to sampling, a random element J is removed from λί = {1,2,3}, we
hmeEVlf\{l,2,3}-{J}) = (l/3) 3+(l/3) 3+(l/3) 2 = 8/3, corresponding
to the removed element J being 1,2, or 3, respectively.

PROOF OF THEOREM 4.1 It is easy to see that arguments similar to those

given for Lemma 4.2 imply also that in order to prove Vπ < VQ it suffices

to prove Vi o|## 0 ^ ô,n.:,o I n OΓ(ier to prove the latter inequality, note that

VQ (λί - {Jι}) is decreasing in Ji, while X\ = rχ(Ji) is increasing in J\.

Applying Lemma 4.3 and then Lemma 4.4 to obtain the inequalities below,

we have

>
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and the proof is complete. In this proof, y( n~ 1) was used with respect to
r 2 , . . . , r n . D

5. Prophet Inequalities

In this section we review certain prophet inequalities for some of the
models discussed above. We start with simple technical lemmas.

LEMMA 5.1 Let (-XΊ,... jXn) be either NLODS random variables (including
independent random variables)^ or observations arising under any random
replacement scheme of the type described in Section 4f with rk{i) > rk+ι(i)
for all i, k. Then for any constant c,

E{[Xk - c]+ | X α V ••• V X j t - x <c}> E\Xk - c ] + , k = 2 , . . . , n .

P R O O F For independent random variables the result is obvious (with equal-
ity), and the inequality follows easily from the definition of NLODS variables.
For random replacement schemes the result follows from the fact that con-
ditionally on any values of X\ < c, . . . Xk-\ < c, and any replacement indi-
cators £/i,..., J7n, Xk is distributed as rk(J), where J is drawn from an urn
from which some elements / with rk(I) < c have been removed. Here the
monotonicity of rk(i) in k was used. •

Henceforth we shall consider only nonnegative random variables, and
exclude (without further mention) the trivial case that they are all identically
zero. For such a sequence ( X ι , . . . , X n ) , and b > 0, let t(b) denote the
stopping time: t(b) =inf{k : Xk > b} Λ n.

LEMMA 5.2 Let (X i , . . . ,X n ) be nonnegative random variables. Let b > 0

be the unique constant satisfying Σ£=i E[Xk - δ]+ = b. Suppose

Then

(25) b < EXt(b).

PROOF

EXm > E{xt(b)i(x1y-^xn>b)}

V . . . V Xk-! < b)}
A : = l
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Σ E[Xk - 6]+P(Xχ V V Xk.λ < b)

+P (Xx V V Xn < 6) f > [X* - 6] + = 6

here the first inequality holds because X{ > 0, the second inequality follows
from (24), and the last inequality from P(X1 V V l M < b) > P(XX V V
Xn < 6), with strict inequality for the first A; such that P(Xk > b) > 0. •

LEMMA 5.3 Let (Yi,...,Yn) be any nonnegative random variables, and let
b > 0 be the unique constant satisfying γ%=1 E[Yk - f>]+ = b. Then E{YX V
•• VYn}<26.

PROOF Simply take expectations on both sides of the simple relation:
-b)+. •

THEOREM 5.1 Let (-XΊ,... ,-Xn) be nonnegative random variables which are
either NLODS (including independent random variables), or observations
arising under any random replacement scheme of the type described in Sec-
tion 4, with rk(i) > rk+ι(i) for all i,k, or any other random variables which
satisfy for every constant c,

Then the prophet inequality

(26) E{X1V --VXn}<2V(X)

holds. Moreover, z/(Yχ,.. .,Yn) are any nonnegative random variables such
that for each i, X{ andY{ have the same (marginal) distribution, i = 1,... ,n,
then

E{YX V" VYn} <2V(X).

PROOF It clearly suffices to prove the second part of the theorem. Not-
ing that the quantity b defined in Lemmas 5.2 - 5.3 depends on marginal
distributions only, and applying Lemmas 5.1 - 5.3 we have,

(27) ±E{Yi V V Yn) < b < EXt(b) < V(X). Π

For independent random variables the inequality (26) was obtained by
Krengel and Sucheston (1978). This latter article provided the inspiration to
a large body of results on prophet inequalities. For independent 0 < Xk < 1,
Hill (1983) sharpened the result to

E{Xλ V.. V l n } < 2V(X) - V(X)2 .
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The negative dependence condition of Theorem 5.2 below, which generalizes
Hill's result, is stronger than the NLODS condition; however it is weaker
than CDS (see Section 2).

THEOREM 5.2 (Samuel-Cahn (1991)) Let 0 < Xk < 1, k = 1,... ,n, and
suppose that X\,..., Xn are negatively dependent in the sense that P(Xk <
a>k\X\ < QΊ, ,Xk-\ < βfc-i) is nondecreasing in α i , . . . ,«A:-i; for all k =
2,...,n. Then

E{XX V V l n } < 2V(X) - V(X)2 .

For positively dependent random variables we quote a result for averages
(recall Example 3.1).

THEOREM 5.3 (Hill (1986)) Let Z{ be independent nonnegatiυe random vari-

ables, and consider the averages X{ = 1 Σj=i 2j, i = 1,..., n. Then

E{X1V -VXn}<2V(X).
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