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The spaces Fnχk and S% consisting of rectangular and positive def-
inite matrices are developed as partially ordered sets having lower and
upper bounds. Under Loewner (1934) ordering, spectral lower and upper
bounds are constructed for pairs A,B € (S£,^L) and are shown to be
tight. Similar bounds are given for pairs in (i*nxfc)£l) in terms of singu-
lar decompositions under an induced ordering. Applications pertaining to
(S£,hL) include stochastic bounds for distributions of quadratic forms,
minimal dispersion bounds in certain regular ensembles, and bounds on
the peakedness of certain weighted vector sums. Applications to (Fnxjb,X)
support the uniform improvement of any pair of first-order experimental
designs.

1. Introduction

Extremal problems persist throughout applied probability and statistics.
Their solutions often shed new light on structural aspects of the system at
hand.

To fix ideas, we reexamine the concentration properties of measures
μ( p) induced by weighted sums Σ^iPiXi of iid random scalars

{XL, . . . ,Xn} having a symmetric log-concave density. Here p = [pi,... ,pn]

satisfies {0 < pi < l,pι + V pn = 1}, and we let F(t\p) = μ{[-t,t];p)

with t > 0. Proschan (1965) has shown for each t > 0 that F(t;p) is order-

reversing under majorization, i.e., if p majorizes q, then F(t;q) > F(t;p)

and thus μ( ; q) is more peaked than μ( ; p) in the sense of Birnbaum (1948).

Since linear functions arise in a variety of contexts not entailing ordered

weights, we pose the further question: If neither p majorizes q nor q ma-

jorizes p, what then may be said regarding the concentration properties

of μ( p) and μ( q)? One answer follows immediately on observing that

the ordered simplex supporting majorization is a lattice with greatest lower
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134 D. R. Jensen

bound (gib) and least upper bound (lub) given respectively by p Λ q and
p V q. Proschan's (1965) result immediately gives the bounds

(1.1) F(t; p V q) < {F{t; p), F(t; q)} < F(t; p Λ q)

for each / > 0. Accordingly, we may refer to F(t',p V q) as the stochas-
tic minorant, and to F(t; p Λ q) as the stochastic majorant, of measures
{μ( ; p),μ( ;q)} when evaluated over symmetric sets [—t}t]. We return to
this topic later.

In this paper we extend the foregoing concepts to include other spaces
and other orderings. It is seen that lattice properties need not carry forward.
Nonetheless, these spaces are developed as partially ordered sets having lower
and upper bounds, and these bounds are shown to be tight. An outline of
the paper follows.

Preliminary developments occupy Section 2. Our main results are set
forth in Section 3, first with regard to an ordering for symmetric matrices
due to Loewner (1934), then with regard to an induced ordering on the
space of real rectangular matrices. Applications are developed in Section
4. For the positive semidefinite ordering these include stochastic bounds
for distributions of quadratic forms, minimal dispersion bounds on vector
estimators in certain regular ensembles, and bounds on the peakedness of
certain weighted vector sums. Applications to rectangular matrices support
the uniform improvement of any pair of first-order experimental designs.

2. Preliminaries

We establish conventions for notation and review basic properties of some

ordered spaces and functions monotone on them.

2.1. Notation

Symbols include ]Rn as Euclidean π-space, FnXk as the real (n X k)

matrices with n > fc, Sjς as the real symmetric (k x k) matrices, and S®, S^

and Dk as their positive semidefinite, positive definite, and diagonal varieties,

respectively. The simplex Rn{c) in IRn is given by Rn{c) = {xG Etn : x\ >

••• > xn,%ι-\ Vx n = c}, and the transpose of x G lRn is x' = [x\y... ,xn].
Special arrays include the unit vector l n = [ 1 , . . . , 1]' E Etn, the unit matrix
I n , and a typical diagonal matrix Όa = Diag(αi,... ,α^) G Djς. Groups of
transformations on R n include the general linear group Gl(n) and the real
orthogonal group O(n).

The spectral decomposition A = Σf = 1 Oiiqiq[ of A G Sjjj" yields its sym-

metric root A 1/ 2 = Σi-ι θi{ qt*qj. The singular decomposition of X G FnXk
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is X = Σ?=i&Pi<lί = P D ξ Q ' in which P = [pi , . . . ,p*] is semiorthogonal
containing the left singular vectors, Q = [qi,...,qjk] is orthonormal con-
taining the right singular vectors, and D^ = Diag(fi, ...,£*.) contains the
ordered singular values of X.

Standard usage refers to independent, identically distributed (iid) vari-
ates and their cumulative distribution function (cdf). £(X) denotes the
distribution of X, with iVfc(μ,Σ) as the Gaussian law on IR* having some
mean μ and dispersion matrix Σ.

2.2. Ordered Spaces

A set Ή, together with a binary relation >:o is said to be linearly ordered
if the relation is reflexive, transitive, antisymmetric and complete. A partial
ordering is reflexive, transitive and antisymmetric, and a preordering is re-
flexive and transitive. A partially ordered set (H, y0) is a lower semi-lattice
if for any two elements x, y in 7ί, there is a greatest lower bound x A y in Ή\
an upper semi-lattice if there is a least upper bound x V y in 7ί; and a lattice
if it is both a lower and upper semi-lattice.

Ordered spaces of note include (R*, >*), with x >* y in IR* if and only if
{a?ί > yt ; 1 < i < &}, and the simplex (i?n(c),>:M) ordered by majorization
(cf. Marshall and Olkin (1979)). The space (S^, >ZL) is ordered as in Loewner
(1934) such that A yL B if and only if A - B G S£, with A yL B whenever
A — B G S£. The space (FnXki h) has an induced ordering in which X y Z
if and only if X'X >:L Z ;Z; see Jensen (1984). This ordering is invariant in
the sense that X t Z if and only if P X B >: QZB for any P , Q G 0(n) and
B G Gl(k), and antisymmetry holds up to equivalence under O(n) acting
from the left.

Spaces with lower and upper bounds are germane to our studies. Clearly
(IRΛ >fc) is a lattice with a Λ b = [αi Λ 6i, . . . ,α£ Λ b^]1 and a V b = [a\ V
&i,..., ak V ft*;]7? where {αt Λ &; = min(αt , b{) and α; V δz = max(αz , 6t ); 1 <
i < k}; see Vulikh (1967), for example. On working backwards from

v\ = xi Λ ί/i

^1+^2 = (^1 + 22) Λ (ί/i + ϊ/2)

(2.1)

υi + -- + Vk = («i + + Xk) Λ (2/1 + + yk) = c

then from

wi = xi V 2/1

^1 + ^2 = O&i + a?2) V (ϊ/i + 2/2)

(2.2)

til + + uk = (xi + + xk) V (2/1 + + yk) = c,
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we conclude that (Rk(c)j hM) is a lattice with xΛy = v and xVy = u. The

space (Sky >:L) is not a lattice (cf. Halmos (1958, p. 142)), nor can (FnXk, h)

inherit lattice properties through its induced ordering. Nonetheless, both

(S*",>:L) and (FnXk,h) are shown subsequently to have lower and upper

bounds that are tight.

2.3. Monotone Functions

A real-valued function /(•) on (W,bo) is said to be order-preserving
if x ho 2/ on W implies f(x) > f(y) on R 1 , and to be order-reversing if
x ho V on H implies f(x) < f(y) on R 1 . Denote by Φ(W,ho) the class of
order-preserving functions, and by Φ"~(Ή, ho) the order-reversing functions,
on (7ΐ, XQ) Specifically, Φ(]RA,>fc) consists of functions /(a?i,... ,£jt) non-
decreasing in each argument, and functions in Φ(i2jfc(c),hlΛf) comprise the
Schur convex functions (cf. Marshall and Olkin (1979)). The class Φ(5fc, hz,)
is characterized in Marshall, Walkup and Wets (1967), and Φ(FnXk, y) may
be characterized through compositions as

(2.3) Φ(FnXk, t) = {φ(X) = φ(X'X): φ G Φ(5fc, yL)};

for further details see Jensen (1984).

3. Matrix Extremes in S% and FnXk

Our principal findings are developed here. We first characterize the sets

of lower and upper bounds for pairs of matrices in (S"£, ^

3.1. Bounds i

Given (A,B) in (SJJ\>:L) we study first the lower bounds HL(A,T5) =

{S e S% : S <L A and S <L B}, and then the upper bounds H(/(A,B) =

{T G S~£ : T yL A and T yL B}. The ordering L <L {A,B} <L U always

holds with L = 0 and U = A + B, and if A <L B, then L = A and U = B.

Since A yL S if and only if GAG' yL GSG ; for any G G GZ(fc), it suf-

fices to consider a canonical form in which (A,B) —• ( B " 1 / 2 A B ~ 1 ^ 2 , I A ; ) —>

(GAG',GBG ; ) -f (D 7 , I Λ ) , where B ^ ^ A B " 1 / 2 = E? = 1 7, q, q{ is its spec-

tral decomposition and D 7 = Diag(7i,.. .,7A?) contains the ordered roots of

|A - 7B| = 0. We thus seek E = GLG' and F = GUG' such that E <L

{D7,Ifc} <L F or, equivalently, the classes H L ( D 7 , I A ; ) and HC/(D 7 ,IA;).

First note that A yL B on S% if and only if {71 > > ηk > 1}. If

neither A y_L B nor B hL A, then at least one of two integers (r, s) can be
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found such that

(3.1) {71 > ••• > 7 r

> 7r+ s+i > > ηfk > 0}.

Now let ί = fc - r - 3, and let {eι > > e^ > 0} be the ordered eigen-
values of E 6 S£. Essential properties of the lower bounds H£,(D7,Ij.) are
summarized in the following lemma.

LEMMA 1 Let E = [ey] have eigenvalues {eι > > €*. > 0}, and consider
the class Hz,(D7,Ifc) with D 7 fixed. In order that E G H L ( D 7 , I ^ ) zϊ is
necessary that

fa) {eti < 1; 1 < i < r + s} and {en < 7;; r + s + 1 < i < k}.

Moreover, if {en] 1 < i < k} are assigned their maximal values, a necessary
and sufficient condition that E 6 HL(D11IJC) is that E should take the form

(Hi) E M = Diag(I r , I 5 ,7 r + 5 + 1 , . . . ,7 A . ) .

P R O O F The equivalence of Ijt y^ E and 1̂  hz, Diag(ei,...,€*) gives
conclusion (i). Conclusion (ii) follows on noting that the diagonal elements
of the positive semidefinite matrices D 7 - E and I*. - E are necessarily
nonnegative. To see necessity in conclusion (iii), assume first that D 7 — E £
Sfc, so that E when assigned its maximal diagonal elements takes the form
Eo = D i a g ( H , I β , 7 r + β + i , . . . ,7*) such that H = [Λy] with {ha = 1; 1 < i <
r}, and Diag(7i,... ,7 r ) - H G S®. Other off-diagonal elements vanish since
D 7 - E G S® and the corresponding diagonal elements vanish. Now invoking
the assumption I*; — Eo G S® stipulates further that Ir — H G 5^, hence
the off-diagonal elements of H must vanish also, giving E M as in conclusion
(iii). Sufficiency of the form (iii) follows since the diagonals of E M take their
maximal values, and both D 7 - E M and I*. - E M are positive semidefinite
by construction. •

Turning to upper bounds for the pair (D 7,I*.), and thereby for (A,B),
let {771 > > ηjς > 0} be the ordered eigenvalues of F G 5^". Without
further proof, essential properties of Hc/(D7,Ijt) are as summarized in the
following.

LEMMA 2 Let F = [fa] have eigenvalues {η\ > > 77*. > 0}, and consider
the class H[/(D7,Ifc) with D 7 fixed. In order that F G Hc/(D 7,I^) it is
necessary that

(i) {1 < ηi < 00; 1 < i < k}, and that
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(ϋ) {fa >7i'A<i< r} and {fa > l r + 1 < i < k}.

Moreover, if {fa; I < i < k} are assigned their minimal values, a necessary

and sufficient condition that F G H[/(D7,Ifc) is that F should take the form

(Hi) F m = Diag(7i,...,7 r,I s,I t) witht = k-r-s.

All lower and upper bounds for (A,B) in (S£,>:L) follow on map-
ping back to the original space. Since A = B 1/ 2QD 7Q /B 1/ 2 and B =

^ / , we conclude that L G HL(A,B) if and only if L =
for some E G H L (D 7 , I*) . Similarly, U G Hc/(A,B) if

and only if U = B ^ Q F Q ' B 1 / 2 for some F G Ht/(D7,I*).

3.2. Spectral Bounds in (Sjf ,>:L)

If we require that lower and upper bounds for diagonal matrices should be
diagonal, then (Dk, y^) is seen to be a lattice on imbedding it in (IRA, >*.).
Then the gib and lub of (D 7 ,I*) are D 7 Λ IΛ = E M and D 7 V lit = F m ,
precisely as defined in Lemmas 1 and 2. This in turn prompts the following.

DEFINITION 1 The matrices given by A Λ B = B 1 / 2 Q(D 7 Λ I f c)Q /B1/2 and
A V B = B 1 / 2 Q(D 7 V I f c)Q'B1/2 are called the spectral gib and the spectral
/uδfor(A,B)in(S+,>:L).

Properties of these spectral extremes are studied next. The main is-

sues include the possible interchangeability of A and B, and whether the

spectral bounds are tight. Both are answered affirmatively in developments

culminating in Theorem 1.

With regard to the reduction (A,B) -* (D 7 ,I^), we may take instead

(A,B) -> (I f c,A-1/2BA-1/2) -> (IjbDfl). Here D<? is the diagonal matrix

D# = Diag(0χ,...,0fc) with {0 < θ\ < ••• < θk) as the reverse-ordered

roots of |B - 0A| = 0, where A" 1 / 2 BA~ 1 / 2 = Σ Li ^ p φ is the spectral

decomposition with P = [pi,...,Pfc] G O(k). Proceeding as before, define

B Λ A = A ^ P ί l * Λ ΌΘ)P/A1/2 and B V A = A1/2P(I J k V Όθ)PfA^2.

To investigate whether the spectral bounds are invariant with regard to

decomposition, i.e., whether A Λ B = B Λ A and A V B = B V A, we first

note several duality relations. These are D# = D 7

X , I* Λ D# = ( D 7 V I*) " 1 ,

I*VD, = (D 7 Λl f c )- 1 , (D 7 ΛI Λ ) (D 7 Vljb) = D 7 , and B ^ Q = A X / 2 P D ; 1 / 2

and A"" 1 / 2 PD 7 = B" 1/ 2Q. The latter expressions follow on establishing

relationships between the normalized eigenvectors of {B"*1/2AB~1/2qt =

T q l < i < k} and {A'^BA^^pi = 0t p t ; 1 < i < k}. Our principal

findings with regard to the lower and upper spectral bounds are as follow.

THEOREM 1 £e*{AΛB,AVB} and {BΛ A,B V A} be spectral gib's and
lub's as defined. Then for any (A,B) in (S
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(it) φ(AAB)< {φ(A),φ(B)} < φ(AVB) for eaehφ£Φ(S£,yL), and

(Hi) A Λ B = B Λ A and A V B = B V A.

Moreover, the bounds are tight in the sense that

(iυ) if {A,B} <L T and T <L A V B, then.T = A V B, and

(υ) if {A, B} yL S and S ^ A Λ B , then S = A Λ B.

PROOF Conclusion (i) follows from Lemmas 1 and 2, and this implies (ii)

in view of the monotonicity of Φ(5jf, ^ L ) TO see conclusion (iii), note that

if A <L B,then AΛB = A = BΛAand AVB = B = BVA. Otherwise let

BJ = Bα/2Q and β'2 = A ^ P D ^ 1 / 2 ; observe that A Λ B = B i(D 7 Λ I*)Bi;
and recall that B Λ A = A1/2P(IA : Λ D^P'A 1 / 2 . From the duality relations

cited earlier it follows that I* Λ Όθ = (D 7 V I*)" 1 = (D 7 Λ I J O D " 1 , SO that

BΛA = A 1 / 2 PD 7

1 / 2 (D 7 Λl j f c )D 7

1 / 2 P / A 1 / 2 = B'2(D7Λlfc)B2. But another
duality asserts that B[ = B 2 , so that A Λ B = B Λ A a s claimed. The
assertion A V B = B V A follows similarly. To establish (iv), first suppose
that {A,B} <L T and T -<L A V B. Then since D 7 = Q / B - 1 / 2 A B - I / 2 Q

and D 7 V lk = Q'B~1/2(A V B)B" 1/ 2Q, the ordering A <L T <L A V B

implies

(3.2) D7 <L Q'B-^TB-^Q <L D7 V lk

whereas B ^ T ^ A V B gives

(3.3) lk <L Q / B" 1 / 2 TB" 1 / 2 Q <L D 7 V Ifc.

Letting c\ = [0,..., 0,1,0,..., 0] have unity in the ith coordinate and zeros
elsewhere, we infer from (3.2) and (3.3) that

(3.4) 7, < c<Q /B-1/2TB-1/2Qc ί < 7 f , 1 < i < r

(3.5) 1 < c;Q'B- 1 / 2 TB- 1 / 2 Qc; < 1, r + 1 < i < k.

Combining these and letting W = [(D7 V I*) - Q ' β - ^ T B - ^ Q ] we find

that cJ Wci = 0, so that the diagonal elements of W are zero. But since

W yL 0, this implies that W = 0 and thus T = B 1 / 2 Q(D 7 V I^)Q/B1/2 =

A V B as claimed in conclusion (iv). The proof for (v) proceeds similarly, to

complete our proof. •

3.3. Bounds on (Fnxk,>i)

We seek lower and upper bounds on (FnxJbb)? now requiring that ma-
trices in FnXk should be of full rank k < n. We proceed constructively as
follows, starting with (X,Z) in (Fnxk,y).
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First transform (X,Z) -> [X(Z /Z)-1/2,Z(Z /Z)"1/2], observing that H =
Z(Z/Z)""1/2 is semiorthogonal such that H Ή = I*, and H H ' is idempotent
of rank k. We next undertake the singular decompositions X(Z'Z)" 1/ 2 =
Σ*=i λ«Ptqί = P D Λ Q ; and Z(Z'Z)-1/2 = ΣΪ=i *i<ύ = UI*Q' such that
DA = Diag(λi9...,λfc), and P and U are semiorthogonal, whereas Q G
O(k). It is essential to note that X and Z may be recovered as X =
PDλQ'(Z'Z) 1/2 and Z = UIjfeQ'(Z'Z)1/2. Corresponding to earlier usage we
now define provisional lower and upper bounds, to be verified subsequently,
as

(3.6) X Λ Z = P ( D λ Λ

(3.7) X V Z = P(D Λ V

Subject to later justification we set forth the following.

DEFINITION 2 The matrix X Λ Z in (3.6) is called a singular lower bound
for (X, Z) in (FnXk, h)> and X V Z in (3.7) is called a singular upper bound.

Basic properties of the singular bounds are given in the following.

THEOREM 2 Consider matrices XΛ Z and XVZ as constructed from (X, Z)

in(Fnxk,h). Then

(i) XΛZ^ {X,Z}^XVZ;

(it) φ(X Λ Z) < {φ(X), φ(Z)} < φ(X V Z) for each φ G Φ(Fnxk, £); and

(in) X Λ Z and X V Z are determined up to equivalence under 0{n) acting

from the left. Moreover, the bounds are tight in the sense that

(iv) if {X, Z} < T and T < X V Z, then T is equivalent toXVZ, and

(v) if {X, Z} t S and S ^ X Λ Z, tfien S is equivalent ί o X Λ Z .

PROOF The conclusions follow from Theorem 1 since the orderings "X y Y
on (Fnxk, t)79 and "X ;X t L Y'Y on (5jf, >rz,)" are equivalent. In particular,
with X'X = A, Z'Z = B and D 7 = D^, conclusion (i) follows from its coun-
terpart in Theorem 1. Conclusion (ii) follows from (i) and the monotonicity
of Φ(Fn X£, y). Conclusion (iii) is apparent since X y Y and PX >̂  UY are
equivalent for any P , U in O(n). Conclusions (iv) and (v) follow from their
counterparts in Theorem 1 together with the foregoing conclusion (iii). •

In view of Theorem 2 we now see that there are equivalence classes of
singular lower and upper bounds for (X,Z) in (FnXk^ h). Thus X Λ Z and
X V Z in (3.6) and (3.7) may be replaced by their equivalents

(3.8) {XΛZ} = {R(D λ Λ I OQ'(Z'Z)1/2; R G O(n)}

(3.9) {XVZ} = {R(D λ V W i Z ' Z ) 1 / 2 ; R G O(n)}.
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4. Some Applications

We illustrate stochastic bounds arising from Theorems 1 and 2.

4.1. Distributions of Quadratic Forms

Quadratic forms in Gaussian variates arise in a variety of settings, of-
ten under one of several alternative models. Specifically, with A E ££, let
GA(t', Σ) be the cdfoί V = XΆX under £(X) = Nk(0, Σ). Standard results
include the following, (i) £(XΆX) = C (Σ?=i7t^.?)i w h e r e {Zu...,Zk}
are iid iVi(0,1) and {71,... ,7*} are the roots of |A - 7Σ""1! = 0; see John-
son and Kotz (1970), including series expansions for GA(t;Σ). (ϋ) For fixed
A E S% and t > 0, it is clear that GA(t,Σ) E Φ~(S£, >:L) when considered
as a function on Sjjj", as may be seen on applying a result of Anderson (1955).
Given two models, Nfc(0,Σ) and 7V (̂0,Ω), our earlier developments support
the bounds

(4.1) GA(t; Σ V Ω) < {GA(t; Σ), GA(t; Ω)} < GA(t; Σ Λ Ω)

for each t > 0. As / varies, this provides an envelope bounding the two
cdf's GA(t,Σ) and GA(t;Ω). Moreover, these bounds may be evaluated
numerically in particular cases using known series expansions; see Johnson
and Kotz (1970).

To continue, consider an ensemble {iV^(0,Ξ);Ξ E -Ko}? for which KQ C
S£ contains a minimal element Ξm and a maximal element ΈM under the
ordering >:χ,. Corresponding to (4.1) we have stochastic bounds given by

(4.2) GA{t ΊΞM) < {GA(t;Ξ);Ξ E Ko} < GΛ(t;Ξm)

for each / > 0. For fixed A, this gives an envelope of curves for all such cdf's
as / varies over [0,oo).

4.2. Minimal Dispersion Bounds

We consider the regular estimation of vector parameters. Specifically,
consider a family of dominated probability measures having density functions
{/(X;0);0 E Θ} with Θ C R r ; let G(0) = [gι(θ)9... ,gk{θ)]' be estimable
functions on Θ having the partial derivatives Δ(0) = [^j(^)] = [dgi(θ)/dθj]
for all θ E Θ; and let G(X) = |£i(X),...,&(X)J ; be any unbiased esti-
mator for G(θ) having some dispersion matrix V(G(X)). Under regularity
conditions 7£, given as (i)-(vi) on page 194 of Zacks (1971), for example,
a standard result is a minimal dispersion bound given by F(G(X)) >ZL
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Δ/(β), where X(0) = [Iij(θ)] is the Fisher information matrix.

Moreover, this bound holds for every unbiased estimator G(X).
If two such regular families have information matrices 1\{Θ) and X2(#),

then our earlier construction applies directly. The resulting bound, namely,

(4.3) V(G(X)) yL Δ(Θ)[M°) V Uθ)]-1^)

applies to any unbiased estimator for G(θ) taken from either model.
These developments extend to any regular ensemble {/T(X;θ)]θ G Θ,r G

Γ} for which there is a maximal Fisher information matrix 2^/(0) Corre-
sponding to (4.3) we now have the bound

(4.4) V(G(X)) yL AWilMiθ^AXθ)

uniformly for every unbiased estimator G(X) for G(θ) taken from any family
in the ensemble.

4.3. Peakedness of Vector Sums

Consider the measures μ( ; p) on IR* induced by weighted sums ΣΓ=i JPt'Xt
of iidrandom vectors {Xi,...,Xn} having a symmetric log-concave density.
Let CQ be the class of all compact convex subsets of IR^ symmetric under
reflection through 0 G 1R*, i.e. x G A implies - x G A for each A G CQ. It
is known for each A G CQ that μ( A; p) is order-reversing when considered
as a function on (Rn(c),ϊlM)i * e., μ(A p) G Φ""(iZn(c), >ZM)] see Olkin and
Tong (1988) and Chan, Park and Proschan (1989). Thus if p yM q, then
μ( q) is more peaked about 0 G IRfc than μ( p) in the sense of Sherman
(1955). Corresponding to (1.1) we therefore have the bounds

(4.5) μ( A; P V q ) < {μ( A; p), μ( A; q)} < μ{ A; pΛq)

for each A G CQ. Accordingly, we may refer to /i( p V q ) as the stochas-
tic minorant, and to μ( ;P Λ q) as the stochastic majorant, of measures
{μ( ;p),μ( ;q)} when evaluated over sets in CQ.

To continue, we consider a possibly contaminated Gaussian sample as fol-
lows. Let {Yi,..., Yn} be iid Nk(O,Σ) and let {Zu..., Zn} be iid Nk(O,tt).
Now consider a possibly contaminated sample {Xi,..., Xn} in which {X, =
δiYi + (1 - δi)Zi]l < i < n} with {«,- G {0,1}; 1 < i < n}. Further let
μ( ;p,Σ) be the measure induced by Σ^iPiYi- A basic result of Ander-
son (1955) shows that for each fixed A G Cj and p G Rn(c), the measure
μ(A;p,Σ) is order-reversing when considered as a function on ( 5 ^ " , ^ L )

On combining the foregoing developments with Theorem 1, we now have
the following bounds on the measure μχ( p) induced by Y%=iPiXi in a
possibly contaminated sample, as

(4.6) μ(A;p V q; Σ V Ω) < {μχ(A;p),μχ(A;q)} < μ(A;pΛ q,Σ Λ Ω)
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for each A G C Q , where the brackets in the center encompass all 2n possible
choices for {#1,... , #n} in the contaminated model. Equality is achieved on
the left when p >ZM <1 and Σ y^ Ω at δι = = 6n = 1, and on the right at

With regard to the peakedness of vector sums, the results of Olkin and
Tong (1988) and of Chan, Park and Proschan (1989) have been extended
by Eaton (1988) to include concentration properties in Gauss-Markov esti-
mation. Our developments here, applied in Eaton's setting, would appear
to provide lower and upper bounds for concentration probabilities in two or
more linear models having dispersion parameters not ordered in (S^hz, )•
Earlier work by the author (Jensen (1979)) complements Eaton's work in
demonstrating that Gauss-Markov estimators are most peaked among median-
unbiased linear estimators, even without first or second moments as assumed
by Eaton (1988).

4.4. First-Order Experimental Designs

Consider models Y = ot\ln + X/J + e and Y = o^ln + Zβ + e hav-
ing design matrices X,Z £ FnXk *n centered form as deviations from their
column means. We are concerned with inferences regarding the elements
of β = [/?i,... ,/?&]' in the two models, based on the Gauss-Markov esti-
mators β(X) = ( X ' X ^ X Ύ , and similarly β(Z) = ( Z ' Z ^ Z Ύ , when
£(e) = JVn(O,σ2In). The directed Fisher efficiency of design Z relative to X
in estimating a!β is given by

(4.7) EF(Z, X; a) = a/(X/X)-1a/a/(Z/Z)~1a.

The Pitman efficiency of Z relative to X, in normal-theory tests for H :
Aβ = 6Q against K : A/? φ δo is given by

(4.8) £P(Z,X I A) - (Aβ _ ί o ) / [ A ( χ / χ ) . l A ( ] . 1 ( A / j _ δoy

It is clear that design Z is more efficient than X, uniformly for all a G ΊR,k

under Fisher efficiency, and for all {A E FrXk',l < r < k} under Pitman
efficiency, if and only if Z y X on (FnXk, y).

If neither Z y X nor X y Z, then Theorem 2 supports the construction
of a new design dominating both X and Z in efficiency. This is precisely the
design X V Z given in expression (3.7), or any equivalent design from expres-
sion (3.9). In summary, given any specified pair of first-order experimental
designs in FnXk, we may construct numerically a new design dominating
both designs in its efficiency for inferences regarding β.
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