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EXTREME ORDER STATISTICS FOR A SEQUENCE
OF DEPENDENT RANDOM VARIABLES1
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University of Connecticut

Let X\,..., Xn be a sequence of dependent random variables from
a continuous density function. Denote by X^ = min(ΛΊ,... ,Xn) and
X(n) = max(Xi,.. .,Xn) the extreme order statistics. In this article
Bonferroni-type inequalities and product-type approximations of order
k > 1 are derived for the distribution and the moments of extreme order
statistics for a sequence of stationary random variables. These results are
particularized to m-spacings from a uniform distribution and moving sums
of size m for independent normal random variables. These inequalities and
approximations are compared with approximations and asymptotic results
that have been previously derived.

From the numerical results it is evident that there is merit in study-
ing higher order Bonferroni-type inequalities and product-type approxi-
mations. The product-type approximations appear to be the most accu-
rate approximations for the distribution and the moments of extreme order
statistics.

1. Introduction

Let Xij. ..,Xn be a sequence of dependent random variables from a

continuous density function. Denote the extreme order statistics by

X ( 1) = mm(Xly...jXn) and X ( n ) = max(Xi,. . . ,X n ) .

The distribution and the moments of extreme order statistics have been
studied extensively in the iid case (David (1981) and Leadbetter, Lindgren
and Rootzen (1983)). A major part of these studies focuses on the elegant
asymptotic theory that has been developed for the iid case or in the de-
pendent case for stationary sequences of random variables that satisfy the
strong mixing condition, including the stationary m-dependent sequences
(Leadbetter, Lindgren and Rootzen (1983) and Reiss (1989)).

1 Work supported in part by the Research Foundation of the University of Connecticut.
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Order Statistics of Dependent Random Variables 101

As the asymptotic results are not always accurate, the problem of approx-
imating the distribution and the mean of extreme order statistics for depen-
dent random variables has attracted many researchers. Arnold (1980, 1985),
Arnold and Groeneveld (1979), Aven (1985), Gravey (1985) and Hoover
(1989) have derived general bounds for the mean of the extreme order statis-
tics. The use of the Boole-Bonferroni inequality and the Sidak inequality
is outlined in David (1981, Section 5.3). Tong (1982, 1990, Chapter 6) has
used the Sidak inequality to approximate the distribution and the mean of
extreme order statistics for dependent normal random variables.

The methods that have been used in the articles listed above, only lightly
utilize the dependence structure inherent in the distribution of Xi,... ,Xn.
In this article I will consider only stationary sequences of dependent ran-
dom variables. For this case, Bonferroni-type inequalities and product-type
approximations of order k > 1 will be discussed in Section 2. The perfor-
mance of Bonferroni-type and product-type inequalities for positively and
negatively dependent random variables is being investigated in Glaz, Kuo
and Yiannoutsos (1991).

In Section 3 these inequalities and approximations are applied to the
distribution and the mean of the smallest m-spacing from a uniform dis-
tribution. A comparison with approximations and asymptotic results that
have been previously derived will be presented in Tables 1 and 2 in Section
3.

In Section 4 the distribution of the maximum of a moving sum of m inde-
pendent and identically distributed normal random variables is considered.
Bonferroni-type inequalities and product-type approximations are derived
and compared in Tables 3 and 4 with the Poisson approximation using the
Chen-Stein method.

2. Product-Type and Bonferroni-Type Approximations and
Inequalities

The first occurrence of using a product-type inequality to approximate a
multivariate cumulative distribution function is recorded in Kimball's (1951)
article. The following result is proved there:

THEOREM 2.1 Let Y be a random variable with the density function f(y)
and let gi(y), i = 1,... ,n be nonnegatiυe monotone functions of the same
type. Then,

(2.1) [

An immediate consequence of this result is the following:
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COROLLARY 2.2 Let Y be a random variable with the density function f(y)
and X{ = gi(Y), where gι{y) are nonnegative monotone functions of the
same type, i = l , . . . , n . Then for any sequence of nonnegative constants

(2.2) P[XX < C l , . . . ,Xn < cn] > ή P[Xi < a]
t = l

and

(2.3) P[XX > ci,... 9Xn > cn] > f[ P[Xi > a].
t = l

To extend the product-type inequalities (2.2)-(2.3) to a larger class of
distributions, Esary, Proschan and Walkup (1967) introduced the following
concept of positive dependence.

DEFINITION 2.1 The random vector X = (Xu ... ,Xn)' is associated if for
all coordinatewise nondecreasing functions / and g

Cov[/(X),ff(X)] = E[f(X)g(X)} - E[f(X)]E[g(X)} > 0.

If X is associated we will say that the random variables X i , . . . , X n are
associated.

THEOREM 2.3 (Esary, Proschan and Walkup (1967)). //X = (Xu... ,Xn)'
is associated then for all c i , . . . , c n inequalities (2.2) and (2.3) hold.

REMARK Inequalities (2.2) and (2.3) are often called, in the context of
simultaneous confidence intervals, Sidak inequalities (Sidak (1967, 1971)).

Inequalities (2.2)-(2.3) are referred to as first order product-type inequal-
ities, since only one dimensional marginal distributions have been used. We
say that an approximation or an inequality for the probability of an inter-
section or union of n events is of order fc, if j dimensional marginal dis-
tributions are used in computing it, where j < k. While the first order
product-type approximations and inequalities have the advantage of ease of
computation, they are often quite inaccurate (Glaz and Johnson (1984)), the
reason being that the dependence structure inherent in the random process
is exploited only to a minimal degree. Therefore, Glaz and Johnson (1984,
1986) proposed to study product-type inequalities and approximations of
degree k > 2. The following representation has motivated the study of these
inequalities and approximations.

Let Aj = (Xj e /j), j = 1,..., n. Then for k > 2,

(2.4)
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If one is able to evaluate marginal probabilities up to dimension fc, then it
is of interest to study when

(2.5) f)
\ / j=k+l

is an accurate (upper or lower) bound or an accurate approximation.
If the Xj's are stationary and Ij = I then the above equation simplifies

to:

(2.6)

A thorough discussion of the higher order product-type inequalities, con-
ditions for their validity and the applications to various areas in probability
and statistics are presented in Block, Costigan and Sampson (1988a, 1988b)
and Glaz (1990a, 1991b).

In some applications (Glaz (1983, 1989), Glaz and Johnson (1986), Glaz
and Naus (1991), Kenyon (1990) and Ravishanker, Wu and Glaz (1991)) the
dependence structure of the distribution does not support the product-type
inequalities for k > 1. Instead one can sometimes assert that

(2.7) lim P{Xj e Ij I Xi G /,; i = 1,..., j - 1) = θ,
J-+00

where 0 < θ < 1 (Glaz (1989) and Glaz and Johnson (1986)), a property

referred to in the statistical literature as quasi-stationarity (Darroch and

Seneta (1965) and Tweedie (1974)). In this case, if Xj are stationary and

Ij = /, one can use ηk given in equation (2.6) as an approximation for

In Sections 3 and 4 the performance of product-type approximations
will be evaluated for the distribution of extreme order statistics of two sta-
tionary sequences of random variables. In both cases the concept of quasi-
stationarity will be utilized to support the use of these approximations.

The classical Bonferroni inequalities for the probability of a union of
n events have been introduced in Bonferroni (1937). Let Ai,...,An be a
sequence of events and define the event A = |JΓ=i A{. Then for 2 < k < n,

ir1*; < P(A) <

where k is an even integer and for j = 1,..., n

(2-8) 5 , =
\m=l
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The first order Bonferroni upper bound is referred to as Boole's inequality
and was introduced earlier in Boole (1854). Boole's inequality has been
used in approximating the tail distribution of extreme order statistics (David
(1981, Section 5.3)).

The classical Bonferroni inequalities for order k > 1 are computationally
complex and can be quite inaccurate (Prekopa (1988)). Therefore, attempts
have been made to improve them. The improved inequalities are referred to
as Bonferroni-type. In this article I will concentrate mainly on one special
class of Bonferroni-type inequalities proposed by Hunter (1976) and Worsley
(1982). Let Aj = (Xj G I3 ), j = 1,..., n. The basic idea of this approach is
to express

(2.9) A = A1 U (A2nAc

ι)U(A3nAc

2nAc

ι)

u •• u ( A n n A ° _ 1 n nA$)

and obtain the following inequality

(2.10) P(A) <

3=1 3=2

which is a special case of a more general second order inequality discussed
in Hunter (1976) and Worsley (1982).

Recently, Hoover (1990) extended this class of Bonferroni-type inequal-
ities to order k > 3. Consider again the identity (2.9). Then,

t = l

where Si is defined in equation (2.8),

p t fl + i = P(A f Π At + i )

and

(2.11) P(A) < 5Ί - £ Λ >i+i - Σ Σ Ph+ι
t = l j=2 i = l

π ^ + i Π - n A?+i_! n A t + j ) .

The inequality (2.11) is an improvement over the inequality (2.10) and is a
member of a more general class of inequalities discussed in Hoover (1990).

In Sections 3 and 4, Xj are stationary and Ij = / for j = 1,... ,n and
hence Ai,...,An are stationary events. It is tedious but routine to show
that inequality (2.11) implies for the problem at hand:
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-(n - k)p ί f μ , j = βk.

The advantage in using the Bonferroni-type inequalities (2.12) is that
they are valid without any assumptions on the distribution of the random
vector X. On the other hand, they are usually inaccurate and quite often give
a negative value. The product-type inequalities or approximations always
produce a value between 0 and 1. The following result supports the use of
product-type approximations and inequalities.

THEOREM 2.4 (Glaz (1990a)). Let X = (Xx,. . . ,X n ) ' be a random vector

and Aj = (Xj £ ij), j = 1,... ,n. Iffk and βk o>τe given by equations (2.6)

and (2.12) respectively, then

Ίk > βk^

REMARK Other interesting approaches to obtain improved Bonferroni-

type inequalities are discussed in Hoppe and Seneta (1990), Prekopa (1988),

Seneta (1988) and Tomescu (1986).

In Sections 3 and 4 of this article I will illustrate the performance of

the Bonferroni-type inequalities and the product-type approximations that

were discussed above for the problem of evaluating the distribution and the

mean of extreme order statistics for two sequences of stationary dependent

random variables.

3. Extreme Spacings

Let ^(i), ,X(n) be the order statistics of iid observations from the
uniform distribution on the interval (0,1]. Consider the m-spacings defined

by
(3.1)

The distribution of the smallest of the m-spacings,

(3.2) MM

has been studied extensively (Barton and David (1956), Berman and Eagle-

son (1983, 1985), Cressie (1977a, 1977b, 1980, 1984), Darling (1953), Glaz
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(1989, 1991a), Huntington and Naus (1975), Naus (1965, 1966, 1982), Neff
and Naus (1980), Newell (1963), Pyke (1965), and Wallenstein and Neff
(1987)). The distribution of Mn

m^ is closely related to the distribution of
scan statistic,

(3.3) Nd= sup Nx,x+d,
0<x<l-d

where NXiX+d is the number of observations that are in the scanning interval
(x,x + d] and 0 < d < 1. Mn is the smallest interval containing m points.
The following relation is true:

(3.4) P{Nd > m} = P{Mn
m>> < d}.

The exact distribution of Mn is derived for m = 2 in Barton and
David (1956) and Darling (1953), and for m > 2, under certain restriction
in Naus (1965, 1966a, 1966b). A thorough discussion about the exact result
for the case m > 2 (without any restrictions) is presented in Neff and Naus
(1980), who tabulated P{Mn

m) < d} for 0 < d < .5 and 3 < m < n <
20. The formulas for evaluating the distribution of Mn are complicated
and computationally impractical for large value of n, moderate value of m
and small value of d. Therefore, there has been an interest in evaluating
asymptotic results: Berman and Eagleson (1983), Cressie (1977a, 1980),
and McClure (1976). One can also employ the Chen-Stein method (Arratia,
Goldstein and Gordon (1989, 1990), Chen (1975) and Stein, (1972, 1986,
Chapter VIII)) and obtain Poisson approximation for the distribution of
Mim).

In what follows an mth order product-type approximation and an mth

order Bonferroni-type inequality are derived for P{Mn < d}. Similar
results can be obtained for the distribution of the largest of the m-spacings.

For 3 < m < n/2, 0 < d < .5 and 0 < i < n - r a + l define the events

where X(0) = 0. It follows that

fn-m+l

The following notation will be used throughout this article:

(3.5) Ql = P{Ao},Qt =
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and

(3.6) Qk = P{ΠAcΛ, l < * < n - r o + l .

For i = l , . . . ,n - ra, Qt+i = <£, - Q*+1 and, therefore, for i > 2, Q, =

Qι -Σj=2 Qj I t ; follows from Glaz (1991a, Section 2) that for 1 < fc < n-m

(3.7) P {MJM < d) < 1 - Qk + (n - m + 1 - *)Q*.

Equation (3.7) is the Bonferroni-type inequality given in equation (2.11).

The following result is used in evaluating the inequality (3.7) for 3 < k < m:

THEOREM 3.1 (Glaz (1991a)). Let X ( 1 ) , . . . ,X ( n ) be the order statistics of
iid observations from the uniform distribution on the interval (0,1]. Then
for3<k<m< n/2 and 0 < d < .5

(3.8) Ql = b(m - 1; n, d) - 6(m; n, d)
n-m+l A - 2

+ Σ ( - ^ j
where

b(j;n,d) =

The above result is also useful in evaluating the following product-type

approximation for P{Mn < d}. For 1 < i < n - m, write

n—m-\-l

(3.9) PiM^<d} = l-Q

which can be approximated by

(3.10) pWiMW <d} =

where 1 < k < n - m. Approximation (3.10), referred to as the kth order
product-type approximation, has been studied in Glaz (1989, 1991a). The
product-type approximation (3.10) for k = m can be viewed as an (m — 1)
order Markov like approximation, where the terms Qk/Qk-ii for m + 1 <
k < n — m + 1, are approximated by Qm/Qm-i- This approximation is
supported by the asymptotic result stating that as n —> oo and k —> oo and
nd = 0(1), Qk/Qk-ι -» 0, where 0 < θ < 1 is a constant (Glaz (1989,
Theorem 3.1)).

In Table 1 the performance of the product-type approximation, the
Bonferroni-type inequality and the asymptotic approximations mentioned
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above axe compared for n = 500 and selected values of ra, and d. From
the numerical results it is evident that the product-type approximations are
the most accurate ones. The Poisson asymptotic approximation using the
Chen-Stein method, denoted by CS, outperforms all the other asymptotic
approximations.

d

.001

.005

.01

.05

m

4
5
6
8
9

10
12
12
13
14
15
16
38
40
44
46

F
Simulation

.960

.507

.069

.977

.680

.271

.019

.935

.665

.341

.135

.048

.618

.314

.046

.014

» ( m ) { M ^ m ^ < d
(3.10)

.997

.506

.068

.971

.670

.267

.018

.916

.645

.331

.135

.048

.582

.304

.045

.014

[} UB(m)
(3.7)
> 1
.700
.071
> 1
> 1
.309
.018
> 1
> 1
.397
.144
.049
.807
.351
.046
.014

Asymptotic

Berman and
Eagleson (1983)

.999

.587

.083

.999

.883

.440

.031

.999

.938

.643

.300

.109

.999

.947

.293

.099

Approximations

Cressie (1977a)
1.000
.728
.122

1.000
1.000
.995
.258

1.000
1.000
1.000
1.000
.999

1.000
1.000
1.000
1.000

CS

.999

.577

.080

.999

.869

.417

.028

.999

.921

.604

.270

.095

.997

.880

.194

.058

Table 1. Comparison of Seven Approximations to P{Mn < d} for

n = 500.

Note: This simulation is based on 20,000 trials.

We now turn to the problem of evaluating E[M}Γ^]. Exact results are

available for m = 2 (Parzen (I960)) and for n/2 < m < n (Naus (1966)).

For 2 < m < n/2 the following approximation is evaluated in Glaz (1991a).

First, note that in this case P{M}Γ > x} = 0 for x > .5 and therefore

(3.11) E[M<T)]= Γ
Jo

where
F(x) = P{MW > x}.

Using the extended Simpson's rule for 2N points (Davis and Polonsky (1972,

p. 886)) to evaluate numerically the integral in equation (3.11) we get that

(3.12) ^ [

where xt = i/4N. The numerical procedure is set up as follows. Start with

N = 25 (50 points) and proceed to double the number of points in the inter-

val [0, .5] until the difference between successive approximations for E[Mn ]

is less than 10~6. In Table 2 below the approximation (3.12) is evaluated

for n = 100 and selected values of m. These approximations are compared
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with simulated values and inequalities derived by Arnold and Groeneveld
(1979) and Aven (1985, Corollary 2.1). The approximation that one can ob-
tain from the Bonferroni-type inequalities will not be presented here as they
have not produced accurate results. Related Bonferroni-type inequalities for
expected values of order statistics have been studied in Hoover (1989).

m

10
20
30
40
50

Simulation
E[Mim)]

.039

.120

.213

.312

.415

E[M^m)]
(3.12)
.039
.122
.215
.313
.416

LB
Arnold &

—
—
—
—

—

UB
Groeneveld (1979)

.089

.188

.287

.386

.485

LB

Aven (1985, Corr. 2.1)
—
—
—
—

—

Table 2. A Comparison of Five Approximations for E[Mn ], n = 100.

Note: E[Mn ] was estimated from a simulation with 20,000 trials. — de-
notes negative values for the lower bounds.

From Table 2 it is evident that the product-type approximation provides
an accurate approximation for the expected length of the smallest mth order
spacing. For large m the Arnold and Groeneveld (1979) upper bound appear
to be quite good.

4. Moving Sums of Normal Random Variables

Let Z χ , . . . , Z n be iid standard normal random variables. Define the

sequence of moving sums of order m:

Xi = Zi + -•• + Zi+m-ly i = l , . . . , n - m + 1.

Approximations for the distribution of X(n) = max(Xχ,... ,Xn) have been
discussed in Lai (1974), Bauer and Hackl (1980), Glaz and Johnson (1986)
and Glaz (1990a). In this section I will evaluate the product-type and the
Bonferroni-type approximations for the distribution of X(n) and compare
them with the Poisson approximation (Aldous (1989, p. 50) and Hoist and
Janson (1990)). If the Zt 's have a discrete distribution the problem of ap-
proximating the distribution of the extreme order statistics of moving sums
has been discussed in Glaz (1983), Glaz and Naus (1991), Naus (1982) and
Samuel-Cahn (1983).

To evaluate the product-type approximation 7^ in equation (2.6) and
the Bonferroni-type inequality βk in equation (2.12) for
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we have to evaluate the k — 1 and k dimensional multivariate normal proba-
bilities. In this paper I will use the algorithm developed in Schervish (1984).
The inequalities and the approximations will be computed for 1 < k < 5 only
since for k = 6 the evaluation of the multivariate probabilities becomes time
consuming. The use of product-type approximations for approximating the
distribution of extreme order statistics for moving sums of normal random
variables is supported by the quasi-stationarity property for moving sums
of iid random variables in Glaz and Johnson (1986). For moving sums of
iid discrete random variables the quasi-stationarity has been established in
Samuel-Cahn (1983).

The Poisson approximation using the Chen-Stein method (Aldous (1989,
p. 48-52)) is given by

(4.1) lim P{X(n\ <a} = exp{-n:r},

where a is large and

(4.2) x

In Tables 3 and 4 the performance of the product-type approximations,

Bonferroni-type inequalities and the Poisson asymptotic approximation us-

ing the Chen-Stein method (denoted in the tables by CS) is compared for

TO = 10 and α = 10.

n P* 75 βh 74 β\ 73 fl> 7i βι C S ~
200 .926 .926 .923 .925 .923 .923 .920 .861 .850 .861
400 .856 .855 .844 .854 .842 .849 .836 .736 .694 .736
600 .792 .789 .764 .788 .762 .781 .752 .629 .537 .630
800 .732 .729 .684 .726 .681 .718 .669 .538 .381 .538

1000 .675 .673 .605 .670 .601 .660 .585 .460 .224 .460
2000 .455 .451 .206 .448 .198 .434 .168 .210 — .210
3000 .305 .303 — .299 — .286 — .096 — .096
4000 .202 .203 — .200 — .188 — .044 — .044
5000 .133 .136 — .133 — .128 — .020 — .020

Table 3. A Comparison of Ten Approximations for P[X(n) < 10].

Note: P* was estimated from a simulation with 10,000 trials. — denotes a
negative value for the approximations.
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75 74 73 72 CS

6000 .090 .091 .089 .081 .069 .0092
7000 .060 .061 060 .054 .045 .0042
8000 .041 .041 .040 .035 .029 .0019
9000 .028 .028 .027 .023 .018 .0009
10000 .020 .019 .018 .015 .012 .0004

Table 4. A Comparison of Six Approximations for P[X^ < 10].

Note: P* was estimated from a simulation with 10,000 trials.

From Tables 3 and 4 it is evident that the product-type approximations
are more accurate than the Bonferroni-type inequalities and the Poisson
approximation. The product-type approximation 75 is remarkably accurate
throughout the entire range. It is also interesting to note that the Poisson
approximation (4.1) is equal to the value of

7i = (1 - * ) "

where x is defined in equation (4.2). It is routine to verify that the Poisson
approximation always exceeds 71, but for a value of x that is close to 0 (which
is the case in this example that was chosen to enhance the performance of
the Poisson approximation) both approximations are equivalent.

At this point, I would like to note that Prekopa (1988) has used a linear
programming approach to derive optimal kth order Bonferroni-type inequal-
ities for the probability of a union or intersection of n events. The difficulty
in applying this approach is the need to evaluate the terms Sj given in equa-
tion (2.8) for large j . For a special case of the problem considered in this
section (m = 2) Glaz (1990b) compares the performance of the product-type
approximation with these Bonferroni-type inequalities. Again, the product-
type approximation appears to be a more accurate approximation.
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