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We bound the expected maximum order statistics {EX^}^LX of a

d.f. Fx both above and below. Our results have an interpretation in

terms of stochastic orderings < e and <we denned as follows: Fx <e Fy

iff EX{n) < EYin) for all n, and Fx <we Fγ iff EX(n) < EY(n) for n suf-

ficiently large. We apply our results on <we to the end-to-end delay in a

resequencing M/G/oo queue.

1. Introduction

If XL, . . . , Xn are i.i.d. random variables with parent distribution Fx, let
X(n) denote the maximum order statistic max(Xχ,... ,Xn). We are inter-
ested in the case when Fx has nonnegative lower endpoint, and upper end-
point +oo. In this case we wish to control the behavior of X(n) &s n —• oo;
in particular, to bound it above and below in expectation or in related senses.
The bounds should be as free of assumptions on the distribution Fx as pos-
sible.

Our original motivation for investigating this question was the study of
stochastic models arising in computing (Downey and Maier (1990)). There
the X{ are interpreted as time delays. (See Section 3 for a typical example, a
resequencing M/G/oo queueing model.) But our results have a more general
interpretation, in terms of stochastic inequalities. If a relation < e and its
weak counterpart <we are defined on the class of finite-mean distributions
of nonnegative r.v.'s by

(1) Fx<eFY ^ EX(n) < EY{n), n > l

( 2 ) Fx <we Fγ <==> EX(n) < EY{n), n stiff, large

then our results have implications for < e and <we.
The orderings < e and <we are very natural, but seem never to have

been studied before. Chan (1967) showed that a distribution is uniquely
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determined by its expected extreme order statistics, a result that has been
considerably generalized (Huang (1987)). In fact Fx is uniquely determined
by the sequence {EX^}^=N^ for any N > 1. So both < e and <we are
antisymmetric relations, and are therefore partial orders. We shall see that
they are related to the increasing convex order <icx-

Several different lines of research have yielded upper and lower bounds
on EX{n). Arnold (1985) showed that if EXP < oo, then EX* = 0{nx^\
n —> oo. The precise statement is

(3) EX(n) <EX + \\X - EXWyfr

with \\Z\\P signifying the Lp norm (E\Z\p)χlv\ this result was rediscovered
by Downey (1990). This is an example of a distribution-free result. Other
results follow from the classical theory of the convergence in distribution
of X(n), suitably normalized, as n —* oo. It is well known that many distri-
butions Fx lie in the domain of attraction V(A) of Λ(/) = exp(-e~~*), the
double exponential distribution. For them we have (X(n) - bn)/an =Φ- Y
with Y distributed according to the law Λ, if an and bn are appropriately
chosen. Gnedenko (1943) showed that one may take bn = Fχ'^"1) and
an = ^"(e" 1 ? ! " 1 ) - FJ"(n~x); here F% is the right-continuous inverse of

the complementary d.f. Fx = 1 — Fχ>
De Haan (1975) showed that if Fx G ̂ (Λ), convergence in distribution

also obtains if an is chosen to equal μχ(Fχ~(n~1)). Here μχ(t) signifies
the mean residual life after time t, Fχ(t)-χ f?° Fχ(s)ds. Pickands (1968)
showed that moments converge as well. So if Fx G

(4) EX(n) - FJΓtn-1) + iμxiFZirC1)), n -> oo

since the Euler-Mascheroni constant 7 is the first moment of the double
exponential distribution. In general one expects that even if F ^ ^(Λ),
if Fx has a sufficiently thin and well-behaved tail then X(n) is not likely to
differ from Fx^"1) by much more than μχ(Fχ"(n"1)) in the n —> 00 limit.
However the question of which distributions Fx have the property that for
all e > 0, there is an M such that

(5) limsupP{|( > M) < ex ( n ) -
seems not to have been resolved. This property defines a larger class than
V(A). Geometric distributions, for example, satisfy it but are not attracted
to Λ.

It is known however (Gnedenko (1943)) that if Fx G Λ-oo, « e., the
complementary d.f. is regularly varying with index -00, then

(6) X
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in probability; the converse also holds. (In fact by the work of Lai and
Robbins (1978) and Pickands (1968)) we may substitute for (6) the statement
that for all p > 0, E \x{n)/F£(n"1) - 1 P -> 0.) Recall that F G Λ-oo
means that for all c > 1

(7)

It is known (Resnick (1987)) that if F has upper endpoint +oo, then
F G V(k) =>• F G R-oo. So F G ίί-oo is another natural weakening of the
condition F G V(k).

In general imposing such regularity conditions as the property (5), Fx G
X>(Λ), or Fx G iZ-oo will facilitate the control of the sequence {EX^n)}<^L1.
But as we sketch in the next section, the large-n asymptotics of this sequence
can be usefully bounded in terms of F ^ n " 1 ) and μχ(Fχ(n~1)) even if no
regularity assumptions are imposed on Fx.

2. Recent Results

Suppose that Fx has upper endpoint t*x and is the distribution of an r.v.
with finite mean. Since X^ has distribution JPJ, we have Fχ^n) = hn(Fχ)

with hn{u) =f 1 - (1 - u)n. So

oo oo

(8) EX(n) = / FX{n)(t)dt = / hn(Fx(t))dt.

It is natural to extend this statement to noninteger values of n; indeed,
to all n G [0,oo). With this definition £X(n), as a function of n, will be
increasing and concave; in fact, its derivative is completely monotone in the
sense of Widder (1971). For the remainder of this paper we allow n to take
on noninteger values.

THEOREM 2.1 (Downey and Maier (1990)) We have the following bounds
on EX(n). For all t G [0,oo) and n G [l,oo)

oo _

(9) EX,n)<t + nJ Fx(s)ds
t

and for all t 6 [0,tχ)

(10) EX{n) > (1 - e"1) (ί + n7Fχ(s)<

in which n = -Fγ(ί)""1. The same lower bound holds for arbitrary n G [l,oo)
ift is defined to equal Fχ'(n~1).
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REMARK The upper bound of the theorem is well known (Lai and Robbins

(1978)); the lower bound follows from (8), and is a refinement of Chebyshev's

inequality.

COROLLARY In general

(1 - e-1) [^(n- 1) + μxίFϊin-1)-)] < EX(n)

(11) <Fχ{n-ι) + μ

for all n > 1. So if the distribution Fx is continuous,

EX(n) e (1 - e"1

for all n > 1.

PROOF (of Corollary). To obtain the upper bound we set t = Fχ'(n"'1).
This implies n < Fχ(t)"1

1 so the upper bound follows. It also implies
n > Fxζt—)"1, so the lower bound follows as well. •

The corollary provides the desired distribution-free bound on ^
in terms of Fχ(n~ι) and μχ(Fjf"(n"1)), or rather μχ{Fχ{n^λ)—). Due
to the presence of the 1 — e"1 factor, for general distributions X(n)

1S allowed
to differ in expectation from ^^(n"" 1 ) by much more than O(μχ(F^(n'^1)))
in the large-n limit. The deviation may only be in the negative direction
however. So for continuous distributions the inequality (5) may be replaced

by

(13) limsupP{(x ( n ) - ^ ( r T 1 ) ) /μx(F£(n"1)) < -Ml < e
n—> o o ^ x ' J

without any loss of generality.

Another consequence of Theorem 2.1 is the abovementioned relation be-

tween < e and <iex. Recall that Fx <icx Fγ iff /t°° Fx ds < /t°° Fγ ds for all

t > 0. Equivalently, Ef(X) < Ef(Y) for all increasing convex functions /

on [0, oo). So <icx is a weaker ordering than <^, the standard stochastic

ordering.

THEOREM 2.2 (Downey and Maier (1990)) < e and <{cx are related as fol-
lows.

l Fx <icxFγ^Fx <eFγ.

2. Fx < e Fy => Fx <icx Fκγ for some universal constant K, which may

be taken to equal (1 - e^1)""1.
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PROOF (1) It is well known (Ross (1983)) that if Xu... ,Xn and Yu... ,yn

are independent and X{ <{cx YJ for all i, then

(14) g(Xu . ,Xn)<ic*g(Yu...,Yn)

for all increasing convex functions g on H n . Since max is an increasing
convex function of its arguments, X(n) <icx Y(ny So EX^ < EY(ny

(2) We shall prove the contrapositive of the claim. Assume that Fx &Cχ
Fγ, i.e., that J?°Fχ(s)ds > f?°Fγ(s)ds for some t e [0,*J). The lower
bound of Theorem 2.1, applied to Fx, says that

(15) EX(n) > (1 - e)"1 (t + nCfFx(s)dsyj

with n = F χ ( ί ) " 1 . The upper bound of Theorem 2.1, applied to Fy, says
that

(16) EYM <t + n°fFγ(s)ds.

t

Combining the bounds (15) and (16) yields EX(n) > (1 - e " 1 ) ^ ^ . That

is, if K ά= (1 - e" 1 )- 1 then EX{n) > En^Y^y So Fx £e Fκ-iγ. •

Theorem 2.2 implies that if distributions which differ only by a change
of scale are identified, < e and <icx become identical. This is a very curious
result, and suggests that it may prove profitable to explore the ways in which
stochastic orderings relate such 'scaling equivalence classes' of distributions.
Scaling equivalence classes have been considered by Barlow and Proschan
(1975).

For the queueing theory application of the next section we need a variant
form of Theorem 2.2, which characterizes ^ e rather than < e . Theorem 2.3,
the proof of which is almost identical, relates <we to the weak increasing
convex ordering <wiCχ, defined as follows:

CO _ CO _

(17) Fx <wicx Fγ <=Ϊ f Fχds< / Fγ ds, t stiff, large.
t t

Equivalently, Fx <wicx FY if and only if Ef(X) < Ef(Y) for all increasing
convex / supported sufficiently far away from zero. <wiCχ, unlike <icx, < e

and <we? is not a partial order: it is merely a pre-order.

THEOREM 2.3 f^e and <wicx are related as follows. For any 7 > 1

1- Fx <wicx Fγ => Fx <we FΊγ.

2- Fx <we FY =ϊ FX <wicx FΊKγ, for n the universal constant of Theo-

rem 2.2.



Orderings Arising from Expected Extremes 71

3. A Queueing Application

We now show how the above results yield useful bounds on a stochastic

model introduced by Harrus and Plateau (1982) and pursued by Baccelli,

Gelenbe and Plateau (1984). The model is based on an M/G/oo queue.

Arrivals to the queue are Poisson; that is, interarrival times are distributed

according to the law EXP(λ), with λ some specified arrival rate. Since

there are an infinite number of servers available, customers are processed

immediately upon arrival; service time has some finite-mean distribution Fx.

We write μ = (EX)"1 for the processing rate.

This M/G/oo queue will be recurrent, irrespective of the traffic intensity

p = λ/μ, and the stationary distribution of the number of busy servers will

be Poisson with parameter p. However we require that for a customer to de-

part, all its predecessors must have departed. In other words the processing

must not be allowed to alter the order of the arriving customers; they are

released only in sequence. This introduces an additional resequencing delay:

a customer's total delay time y , the 'end-to-end' delay, will be the sum of

the processing time X and (possibly) some additional holding time.

A formally stationary distribution for Y was worked out by Harrus and

Plateau. Baccelli, Gelenbe and Plateau showed that if the queue begins

empty, the distribution of the end-to-end delay of the jth. customer does

indeed converge, as j —> oo, to the formula given by Harrus and Plateau.

Their formula is equivalent to the following (Downey (1992a)):

(18) ^
71=0 n *

in which Fx* is the distribution of the equilibrium excess of the renewal
process with renewal period distribution Fχ That is,

(19) Fχ.(t) = (EX)-1 !Fχ(s)ds.
t

The interpretation of formula (18) is simple. If we condition on n servers be-
ing busy with previous arrivals when a new customer arrives, since the arrival
time is random the time to completion of the kth. server, k = 1,. . . , n, will
have distribution Fx*. So the end-to-end delay of the new arrival will nec-
essarily be max(X,X]",... ,X£), in which Xj", mmm<iX* are i.i.d. with parent
distribution Fx*. Since n is Poisson, removing the conditioning yields (18).

We wish to study how the end-to-end delay of this system, in the heavy
traffic limit, depends on characteristics of the service time distribution other
than its expectation. So we fix μ, and restrict ourselves to distributions with
expectation μ" 1 . We equip this class with a pre-order -< defined as follows:
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if Fχ1 and Fχ2 are two service time distributions, we say that FXl -< Fχ2 iff
EY\ < EY2 for all sufficiently large p. Here Y\ and I2 are the corresponding
end-to-end delay times, whose distributions are computed from FXl and Fχ2

by (18).
It follows from (18) that

(20) EY =
n=0

The expression (21) follows from (20) by noting that

(22) £max(X,Xί, . . . ,X:) = EX[n) + (n + I)'1 EX.

This is easily verified by integration by parts.

The formula (21) allows us to prove Theorem 3.1 below. The statement of
the theorem relies on an ordering <3 and its weak counterpart <^3, defined
as follows. We say that

oooo _ oooo _

(23) FXl < 3 Fχ2 «=> / / FXl(u)duds < I / Fχ2(u)duds, t > 0
t s t s

Equivalently, FXl < 3 Fχ2 iffEfίX^ < Ef(X2) for all functions / on [0,oo)
that axe increasing, convex and have nonnegative third derivative. ^^3 is
the corresponding weak pre-order:

00 00 _

^ ^ 3 ^ 2 <=> I JFXl(u)duds
t s

00 00 _

(24) < / / Fχ2(u)duds, t suff. large.
t s

Equivalently, FXl <w3 Fχ2 iff Ef(Xτ) < Ef(X2) for all functions / on [0,00)
that are increasing, convex and have nonnegative third derivative, and are
supported sufficiently far away from zero. The definitions (23) and (24)
serve to define <3 and <^3 on the class of d.f.'s that have finite mean and
variance.

THEOREM 3.1 If Fχλ and Fχ2 are two service time distributions with finite
variance and the same (finite) mean, then for any 7 > 1

i. FXl <w* FΊ-iχ2 =* FXl -< FΊχ2.

%> Fχ1 -< Fχ2 =ϊ Fχ1 <wz FKΊ2χ2, for K the universal constant of Theo-

rem 2.2.
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PROOF Since EXi = EX2, the parameter p is the same for both service
time distributions. Also, since EX\2, EX22 < 00 we have by examination
that EXϊ, EX% < 00. But if Z is any nonnegative r.v. with finite expecta-
tion, it is easily verified that

(25) Σ ^fEZ(n) ~ EZ{P), p^oo.
n=0 n

(This is a special case of an Abelian theorem for completely monotone func-
tions (Downey (1992b)).) It follows by (21) that EY{ ~ E(X?\p), p -> oo.
Accordingly for any 7 > 1

(26) Fχ; <we FχS =* FXl •< FΊχ2

(27) FXl •< Fχ2 => FXί <we FΊχ;

These two implications may be extended by applying Theorem 2.3; we get

(28) Fχ» <wicx FΊ-ιX. =• Fχ> <we Fx* => FXl

(29) FXl -< Fχ2 => Fx. <we FlX.2 => Fx* <
w i c x

By (19), the hypothesis of (28) may be written as

00 00 _ 00 00 _

(30) (V< > 0) / / FXl(«)duds<Ί ί ! FΊ-lχ2(u) duds,
t s t s

and the conclusion of (29) as

o o o o _ . o oooo _

(31) (Vt > 0) / / FXl(u)duds < AC'S"2 / / FKΊ2X2(u)duds.
t s t s

But (30) is implied by Fχλ <w^ FΊ-iχ2, and similarly (31) implies Fχx <w%
FKΊ2χ2. So we are finished. •

Theorem 3.1 makes it clear that in analysing the effects of the service
time distribution on the expected end-to-end delay in the heavy traffic limit,
the ordering <™3 on service time distributions will prove useful. It is difficult
to see how this could have been deduced without the aid of Theorem 2.2.

It would of course be desirable to reduce the constant K toward unity.
Theorem 3.1 is a distribution-free result, and we expect substantial strength-
ening will be possible if regularity conditions are imposed on the service time
distributions.
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4. Conclusions

We have seen that for any finite-mean distribution Fx, EX(n\ may be
bounded for any n above and below in terms of Fχ(n~λ) and the mean resid-
ual life μχ(F^(n^1)). μχ(t) is expressible in terms of an integral of Fχ(t),
so it proved possible to relate < e to the 'integrated' stochastic ordering <icx.

Our result Theorem 2.2, and its weak counterpart Theorem 2.3, are ex-
pressed in terms of a universal constant K. It is not clear that our bounds,
when the choice K = (1 — e""1)"1 of Section 2 are used, are tight. It would
be desirable either to prove this or to compute the minimal value of K, par-
ticularly from the point of view of applications such as that of Section 3.
Moreover the classes of d.f.'s for which X(n) ~~ ^!x"(n~1) 1S

in expectation or in other senses, remain to be characterized.
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