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ABSTRACT

This paper presents a Bayesian interpretation of maximum entropy
image reconstruction and shows that exp(αS(/, m)), where S(f,m)
is the entropy of image / relative to model m, is the only consis-
tent prior probability distribution for positive, additive images. It
also leads to a natural choice for the regularizing parameter α, that
supersedes the traditional practice of setting χ2 = N. The new con-
dition is that the dimensionless measure of structure — 2aS should be
equal to the number of good singular values contained in the data.
The performance of this new condition is discussed with reference
to image deconvolution, but leads to a reconstruction that is visually
disappointing. A deeper hypothesis space is proposed that overcomes
these difficulties, by allowing for spatial correlations across the image.
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1. Introduction

The Maximum Entropy method (MaxEnt) has proved to be an enormously pow-
erful tool for reconstructing images from many types of data. It has been used most
spectacularly in radio-astronomical interferometry, where it deals routinely with images
of up to a million pixels, with high dynamic range. A review of the method, together
with many examples taken from fields such as optical deblurring and NMR spectroscopy
is given by Gull & Skilling (1984a).

The purpose of this paper is to present the underlying fundamental justification
for the maximum entropy method in image processing and to give it a Bayesian inter-
pretation. The advantage of this probabilistic formulation is that it now allows us to
quantify the reliability of MaxEnt images. We also extend the power of MaxEnt in the
field of imaging by introducing spatial statistics into the formalism.

In Section 2 we review the work of Cox (1946), who demonstrated that any con-
sistent method for making inferences using real numbers must be equivalent to ordi-
nary probability theory. This forces us to formulate our preferences for images f(x) as
Bayesian prior probabilities pr(/).

In Section 3, we observe that the only generally acceptable procedure for assigning
prior probabilities is MaxEnt: it is the only method that gives acceptable results in
simple cases. However, MaxEnt applies not just to probability distributions, but more
generally to any positive, additive distribution such as an image, giving a direct justifi-
cation for the use of entropy in imaging. However, it is too simplistic just to select that
single image which has maximum entropy, because the Bayesian methodology forces us
to consider quantified (probabilistic) distributions of images.

Once more taking a simple case, we proceed in Section 4 to quantify the entropy
formula, finding that the prior probability pr (/) of any particular image f(x) must be
of the very specific form exp(aS(f} ra)), where S is the entropy and m(x) is the measure
on x which must be assigned in order to define the entropy properly, m can be thought
of as an initial model for /, away from which 5(/, m) measures (minus) the deviation,
and it is often chosen to be constant. Finally, α is a dimensional constant which can
certainly not be assigned a priori.

With noisy data, traditional practice has been to select a value of a that makes
the χ 2 misfit statistic equal to the number of observations, but this is ad hoc and
does not allow for the reduction in effective number of degrees of freedom caused by
fitting accurate data. In Sections 5 and 6, we complete the derivation of "Classic"
MaxEnt with the Bayesian determination of α, finding that the amount of structure in
the image, quantified as — 2αS, must equal the number of "good" (accurate) singular
vectors contained in the data. The value of χ 2 is not relevant to the choice of α, but
instead allows an estimate of the overall noise level if it is unknown.

The application of this method is discussed (Section 7) by reference to a specific
deconvolution example. Disconcertingly, the "Classic" reconstruction is visually disap-
pointing, with an unfortunate level of "ringing". This can only be due to a poor choice
of initial model ra. Indeed, the initial, flat model is very far from the final reconstruc-
tion. In order to allow the "good" singular data vectors to be fitted, a must be small,
so that there is little entropic smoothing, and the consequence is under-smoothing of
the "bad" noisy data.

The next step must be a better model, incorporating some expectation of correlated
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spatial statistics in a deeper hypothesis space. Section 8 rationalizes our approach to
this, within the Bayesian MaxEnt framework, and Section 9 quantifies it. We intro-
duce a set of "hidden variables" fh(x) which are then blurred to make the model m(x)
used in "Classic". The prior for these hidden variables must also be of entropic form
exp(/?5(m,flat)). The new multiplier β and the width of the hidden blur are determined
by Bayesian methods.

The results from this deeper hypothesis space are excellent, and provide a coherent
rationale for some of the manipulations of the model m that have been found useful in
current practice.

2. Bayesian probability theory: The Cox axioms

Whatever the content of our discussions, be it Raman spectroscopy or Roman his-
tory, we wish to be able to express our preferences for the various possibilities i, j , fc,...
before us. A minimal requirement is that we be able to rank our preferences consistently
(i.e. transitively)

(Prefer i to j) AND (Prefer j to k) = > (Prefer i to k). (2.1)

Any transitive ranking can be mapped onto real numbers, by assigning numerical codes

i)> s u c h that

P(ϊ) > P(j) <ί=> (Prefer i to j). (2.2)

Now, 2/there is a common general language, it must apply in simple cases. Cox
(1946) formulated two such simple cases as axioms, which we restate briefly. It is difficult
to argue against either.

Axiom A:

If we first specify our preference for i being true, and then specify our preference
for ,;' being true (given i), then we have implicitly defined our preference for i and j
together.

This refers to a particularly simple set of hypotheses involving just two propositions

i and j. In terms of the numerical codes,

P(i,j)\h) = F(P(i\h),P(j\i,h)), (2.3)

where h is the given evidence and F is some unknown function. Using the Boolean rules
obeyed by logical conjunction of propositions, Cox was able to manipulate this axiom
into the associativity functional equation

) , r ) . (2.4)

As a consequence of this (see also Aczel 1966), there exists some monotonically increas-
ing non-negative function π of the original preferences p, in terms of which F is just
scaled multiplication.

= Cπ(i\h)*(j\i,h), (2.5)

where C is a constant. We may as well use this new numerical coding π in place of the

more arbitrary original coding P.
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However, π is not yet fully determined, because Cr"1πr (with r > 0) also obeys
(2.5). Although this is the only freedom, it is still too much and another axiom is
needed.

Axiom B:

If we specify our preference for i being true, then we have implicitly specified our
preference for its negation ~ i.

In terms of the numerical codes,

π(~ i\h) = f(π(i\h)), (2.6)

where / is some unknown function. As a consequence, Cox showed that there is a
particular choice of r and C which turns the codes π into other codes pr obeying

pr(i | f t)+pr(~i | f t) = l. (2.7)

Equation (2.5) then becomes

pr(i,i |Λ)=pr(i |Λ)pr(i | i,Λ) (2-8)

with its corollary, Bayes' Theorem

pr (i\j, ft) = pr (f |A) pr {j\i, ft)/ pr (j\h). (2.9)

We also have

0 < pr < 1 (2.10)

and may identify
pr (falsity) = 0, pr (certainty) = 1. (2.11)

There is no arbitrariness left. Thus there must be a mapping of the original codes P into
other codes pr that obeys the usual rules of Bayesian probability theory. Therefore,
if there is a common language, then it can only be this one, and in accordance with
historical precedent set by Bernoulli and Laplace (Jaynes 1978) we call the codes pr
thus defined "probabilities". Logically, of course, there may be no common language.
There may be a lurking "Axiom C", just as convincing as Axioms A and B, which
contradicts them. Although much effort has been expended on such arguments (Klir
1987), no such contradictory axiom has been demonstrated to our satisfaction, and
accordingly we submit to the Bayesian rules.

Bayes' Theorem itself, which is simple corollary of these rules, then tells us how
to modulate probabilities in accordance with extra evidence. It does not tell us how to
assign probabilities in the first place. It turns out that such prior assignments should
be accomplished by MaxEnt.

3. Maximum Entropy: The assignment of positive, additive distributions

The probability distribution pr(x) of a variable x is an example of a positive, ad-
ditive distribution. It is positive by construction. It is additive in the sense that the
overall probability in a domain D equals the sum of the probabilities in any decomposi-
tion into sub-domains, and we write it as JD pr (x) dx. It also happens to be normalized,

J ( ) d
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Another example of a positive, additive distribution is the intensity or power /(#, y)
of incoherent light as a function of position (x,y) in an optical image. This is positive,
and additive because the integral f fD f(x, y) dx dy represents the physically meaningful
power in D. (By contrast, the amplitude of incoherent light, though positive, is not
additive.) For brevity, we shall call a positive, additive distribution a "PAD".

It turns out to be simpler to investigate the general problem of assigning a PAD than
the specific problem of assigning a probability distribution, which carries the technical
complication of normalization. Accordingly, we investigate the assignment of a PAD
/(x), given some definitive but incomplete constraints on it: such constraints have
been called "testable information" by Jaynes (1978). Now if there is a general rule
for assigning a single PAD, then it must give sensible results in simple cases. The four
"entropy axioms" -so called because they lead to entropic formulae-relate to such cases.
Shore and Johnson (1980) and Tikochinsky, Tishby and Levine (1984) give related
derivations pertaining to the special case of probability distributions. Proofs of the
consequences of the axioms as formulated below appear in Skilling (1988a), though our
phraseology improves upon that paper.

Axiom I: "Subset Independence"

Separate treatment of individual separate distributions should give the same as-
signment as joint treatment of their union.

More formally, if constraint C\ applies to f(x) in domain x G D\ and Ci applies
to a separate domain x G D2, then the assignment procedure should give

/[£>i|Ci] Uf[D2\C2] = /[£>i UD2 |CΊ UC2], (3.1)

where /[£>|C] means the PAD assigned in domain D on the basis of constraints C.

For example, if f(x) = 4(0 < x < 1) is assigned under the constraint /0 / dx = 4,

and f(x) = 2(1 < x < 2) from Jχ f dx = 2, then the joint assignment under the double

constraint (JQ f dx = 4,/* f dx = 2) should be f(x) = (4 for 0 < x < 1, 2 for 1 < x <

2)

Consequence: The PAD / should be assigned by maximizing over / some integral
of the form

S(f, m) = J dx m(x)e(f(x), x). (3.2)

Here Θ is a function, as yet unknown, and m is the Lebesgue measure associated with
x which must be given before an integral can be defined. The effect of this basic axiom
is to eliminate all cross-terms between different domains.

Axiom II: "Coordinate invariance"

The PAD should transform as a density under coordinate transformations.

For example, if f(x) = 4 (0 < x < 1) is assigned under the constraint f0 f(x) dx =
4, and x is transformed to y = 2x +1, then the corresponding constraint Jχ F(y) dy = 4
should yield the reconstruction F(y) = f(x)dx/dy = 2(1 < y < 3).

Consequence: The PAD / should be assigned by maximizing over / some integral
of invariants

S(f, m) = J dx m(x)φ(f(x)/m(x)), (3.3)
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where φ is a function, as yet unknown. The crucial axiom is the next.

Axiom III: "System independence"

If a proportion q of a population has a certain property, then the proportion of any
sub-population having that property should properly be assigned as q.

For example, if 1/3 of kangaroos have blue eyes (Gull and Skilling 1984b), then the
proportion of left-handed kangaroos having blue eyes should also be assigned the value
1/3.

Applying this to a two-dimensional PAD on the unit square with constant (unit)
measure m(x,y) = 1, we see that if the marginal distribution along x is known to be

I
1

f(x,y)dy = a(x), (3.4)

then the x-variation of / at any particular y must be assigned as α(x). In other words,
/(a;, y) = a{x)φ{y) for some φ. If, additionally, the marginal y-distribution is known to
be

' f(x,y)dx = b(y), (3.5)i:/o

then the overall assignment must be

f(x,y) = Ka(x)b(y)y (3.6)

where the constant K takes account of overall normalization.

Consequence: The only integral of invariants whose maximum always selects this
assignment is

S(/, m) = -Jdx f(x) log(/(x)/ cem (*)), (3.7)

where c is a constant, scaled by e for convenience.

Axiom IV: "Scaling"

In the absence of additional information, the PAD should be assigned equal to the
given measure.

Without this axiom, the PAD is assigned as f(x) = cm(x), so the axiom fixes
c = 1, and states in effect that / and m should be measured in the same units. This is
a practical convenience rather than a deep requirement.

Consequence: The PAD / should be assigned by maximizing over /

S(f, m) = J dx{f(x) - m(x) - f(x) \og(f(x)/m(x))). (3.8)

The additive constant f mdx in this expression ensures that the global maximum of
5, at f(x) = m(x)1 is zero, which is both convenient and required for other purposes
(Skilling 1988a).

Because of its entropic form, we call S as defined in (3.8) the entropy of the positive,
additive distribution /. It reduces to the usual cross-entropy formula — f dx f log(//m)
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if / and m happen to be normalized, but is actually more general. (Holding that the
general concept should carry the generic name, we deliberately eschew giving (3.8) a
qualified name.)

We see that MaxEnt is the only method which gives sensible results in simple cases,
so if there is a general assignment method, it must be MaxEnt. (Logically, there may
be a lurking, contradictory "Axiom V", but we have not found one, and accordingly we
submit to this "principle of maximum entropy".) Two major applications follow from
this analysis. Firstly, MaxEnt is seen to be the proper method for assigning probability
distributions pr (x), given testable information. Secondly, in practical data analysis, if it
is agreed that prior knowledge of a PAD satisfies axioms I-IV, and if testable information
is given on it, then any single PAD to be assigned on this basis must be that given by
MaxEnt.

However, the arguments above do not address the reliability of the MaxEnt assign-
ment: would a slightly different PAD be very much inferior?. Furthermore, experimental
data are usually noisy, so that they do not constitute testable information about a PAD
/. Instead, they define the likelihood or conditional probability pr(data|/) as a func-
tion of /. In order to use this in a proper Bayesian analysis, we need the quantified
prior probability pr(/)-or strictly pr(/|ra) because we have needed to set a measure
m.

4. Quantification

The reliability of an estimate is usually described in terms of ranges and domains,
leading us to investigate probability integrals over domains V of possible PADs /(#),
digitized for convenience into r cells as (/i, Λ, > /r)

pr (/ G V\m) = ί cΓfM(f) pr (/|m), (4.1)
Jv

where M(/) is the measure on the space of PADs. By definition, the single PAD we most
prefer is the most probable, and we identify this with the PAD assigned by MaxEnt.
Hence pr (f\m) must be of the form

pr(/|m) = monotonic function (S(f1m)), (4-2)

but we do not yet know which function. Now S has the units (dimensions) of /, so this
monotonic function must incorporate a dimensional constant, a say, not an absolute
constant, so that

pr (/ G V\m) = ί dr/M(/)Φ(αS(/, m))/Z5(α, m), (4.3)
Jv

where Φ is a monotonic function of dimensionless argument and

Zs(a,m)= j drfM(f)Φ(aS(f,m)) (4.4)
J

is the partition function which ensures that pr(/|ra) is properly normalized.

In order to find Φ, we consider a simple case, satisfying axioms I-IV, for which
the probability is known. Let the traditional team of monkeys throw balls (each of
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quantum size q) at r cells (i = l ,2, . . . , r ) , at random with Poisson expectations μ, .
The probability of occupation numbers n, is

pr(n|μ) = Π ί / i^e-^/n i ! . (4.5)

Define /< = n, g and m, = μ, g to remain finite as the quantum size q is allowed to
approach zero. Then the image-space of / becomes constructed from microcells of
volume gr, each associated with one lattice-point of integers (ni, 712,..., nr). Hence we
have, as q tends to 0,

pr(/€V»= £ pr(n|μ)
lattice points in V

= UdΓf/q^TLiμVe-nimX. (4.6)
Jv

Because we are taking n large, we may use Stirling's formula

n> ! = (2πnι )
1 / 2n t

n e-n< (4.7)

to obtain (accurately to within 0(l/n))

Here we recognize the entropy on r cells,

Σ(Λ -m-fi Iog(/i/m0) = S(f, m), (4.9)

Comparing this with the previous formula (4.3), we must identify

ί = l / α , Φ(αS(/,m)) = exp(αS(/,m)) (4.11)

and

Zs(a,m) = (2π/a)r'2, M(f) = Π/Γ1'2 . (4.12)

save possibly for multiplicative constants in Φ, Z5, M which can be defined to be unity.
Note how the often-ignored "square-root" factors in Stirling's formula have enabled
us to derive the measure M, which allows us to make the passage between pointwise
probability comparisons and full probability integrals over domains.

A natural interpretation of the measure is as the invariant volume (άetg)1!2 of a
metric g defined on the space. Thus the natural metric for the space of PADs is

0 otherwise,

which happens to equal (minus) the entropy curvature VVS = d2S/df df. This result
was previously obtained from an alternative viewpoint by Levine (1985).



XXIV - Bayesian Maximum Entropy Image Reconstruction 349 

Although this analysis has used large numbers of small quanta q, so that a is large, 
this limit also ensures that each ni will almost certainly be close to its expectation pi. 
Indeed, the expected values of aS remain 0(1), so that the identification 

holds for finite arguments u. Finally, if there is a general form of O, it must be valid 
for the small quantum case, so O must be exponential. 

To summarize, if there is a general prior for positive, additive distributions f ,  it 
must be 

Pr ( f  Im) = exp(aS(f,  m))/Zs(a) (4.15) 

and furthermore 

pr ( f  E Vim) = 
d'f exp(aS(f, m)) 

9 

where 

This quantified prior contains just one undetermined, dimensional parameter a .  

5. Classic MaxEnt- the  choice of a 

The only remaining parameter in our "Classic" hypothesis space is the constant a .  
We do not believe that we can determine a a priori by general arguments. Not only 
is a dimensional, so that it depends on the scaling of the problem, but its best-fitting 
value varies quite strongly with the type and quality of the data available. It can only 
be determined a posteriori. 

We therefore turn for a moment to the other side of the problem, the likelihood, 
which we write as: 

~r (Dlf)  = exp(-L(f))/Zr,, (5.1) 

where 

N being the number of data. The log-likelihood L(f) defined by this expression contains 
all the details of the experimental setup and accuracies of measurement. For the common 
case of independent, Gaussian errors, this reduces to L = x2/2, but other types of error 
such as Poisson noise are also important. Quite frequently, the overall level of noise is 
not well-known, so we will eventually generalize to 

but for now we assume that the errors are known in advance, so that a = 1. 

We now write down the joint p.d.f. of data and image: 

~ r ( f ,  Dla,rn) = ZL'Z;' exp(aS - L). (5s4) 

Byes' Theorem tells us that this is also proportional to the posterior probability distri- 
bution for f : pr (f ID, a ,  m). The maximum of this distribution as a function of f is 
then our "best" reconstruction, and occurs at the maximum of 
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This brings us back once again to the choice of α, which can now be viewed as a
regularizing parameter. When seen this way, a controls the competition between S and
L: if α is large, the data cannot move the reconstruction far from the model-the entropy
term dominates. If a is low there is little smoothing and the reconstruction will show
wild oscillations as the noise in the data is interpreted as true signal. We have to control
a carefully, but there is usually a large range of sensible values.

Our practice hitherto (Gull k Daniell 1978, Gull & Skilling 1984a) has been to set a
so that the misfit statistic χ2 is equal to the number of data points N. Although this has
a respectable pedigree in the statistical literature (the discrepancy method (Tikhonov
k, Arsenin 1977)), it is ad hoc, and can be criticized on several grounds.

(1) the only "derivation" of the χ2 = N condition that has been produced is a
frequentist argument. If the image was known in advance and the data were then
repeatedly measured, χ2 = N would result on average. However, the data are only
measured once and the image is not known a priori, but is instead estimated from the
one dataset we have.

(2) There is no allowance for the fact that good data cause real structure in the
reconstruction /. These "good" degrees of freedom are essentially parameters that are
being fitted from the data, so that they no longer contribute to the variance. This leads,
in general terms, to "under-fitting" of data (Titterington 1985). This is particularly
apparent for imaging problems where there is little or no blurring. The χ2 = N criterion
leads to a uniform, one standard deviation bias towards the model. This bias is very
unfortunate: it is the job of a regularizer such as entropy to cope with noise and missing
information, not to bias the data that we do have.

(3) For many problems (such as radioastronomical imaging, where we started) the
data are nearly all noise, so that χ2 « N for any reasonable a. The statistic χ2 is in
any case expected to vary by ±y/N from one data realization to another, and this can
easily swamp the difference between χ2 at a = oo and the χ2 appropriate to a sensible
reconstruction.

For these reasons we now believe that there is no acceptable criterion for selecting
a that looks only at the value of a misfit statistic such as χ2.

6. Bayesian choice of a

Within our Bayesian framework there is a natural way of choosing α. We simply
treat it as another parameter in our hypothesis space, with its own prior distribution.
The joint p.d.f. is now

pr(/ ,D,a |m)= pr(α)pr (/,£>|α,m). (6.1)

To complete the assignment of the joint p.d.f. we select an uninformative prior, uniform
in log(α): pr(logα) = constant over some "sensible" range [ α m i n , α m a x ] . We shall
return to the definition of "sensible" later.

Using Bayes' Theorem, this joint distribution is also proportional to the posterior
distribution pr (/, α|Z), m) and we proceed to estimate the best value of a by marginal-
ization over the reconstruction /:

pr (a\D, m) = J drf Π/"1/2 pr (/, a\D, m).
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lZi\ (6.2)

where ZQ = /d r /Π/- 1 / 2 exp(α5 - L).

It is essential to perform this integral carefully, rather than estimating a by maxi-
mizing the integrand with respect to / and a simultaneously, because the distribution
in / — a space is significantly skew. In fact, the maximum of pr (/, α|D, m) is usually
at a = αmaχ = large, / « m, which is certainly not what we want.

We now evaluate the integrals involved. The integrand for Zs has a maximum
at / = m and, using Gaussian approximations, we find that for all a a reasonable
approximation to log Zs is:

\ogZs = r/2 log(α/2π). (6.3)

In performing this integral, the terms from the volume element cancel with those from
the curvature VV5. This is a happy consequence of the fact that the entropy curvature
is also the natural metric tensor of the / space.

The ZQ integral is done similarly, expanding about the maximum of Q(/, ra, α) at
/. We can aid our understanding by introducing at this point the eigenvalues {A,} of
the symmetric matrix

A = diag (Z1/2).VVL. diag (f1'2), (6.4)

which is the curvature of L viewed in a the entropy metric. The eigenvalues λ and
eigenvectors in / space define the natural coordinates for our problem, and the λ1/2

are the appropriate "singular values". A large value of λ implies a "good" or measured
direction, whereas a low or zero λ corresponds to a poorly measured quantity.

Evaluating the integrals in the Gaussian approximation, we find

log pr (a\D,m) = constant +r/2 log(α) - 1/2 Iogdet(α7 + B) + Q(/,m,α)

= constant +1/2 ̂  log(α/(α + λ; )) + α5(/, m) - L(f). (6.5)
j

For large datasets this has a sharp maximum at a particular value of α. Differentiating
with respect to logα, and noting that the / derivatives cancel, we find the condition:

-2α<?(/, m) = Σ Xj/(a + λ, ). (6.6)
3

This fixes our estimate of α = ά quite closely, provided we have many data, so that
we can return to the determination of the reconstruction /. Strictly, having already
integrated out / to determine pr(α), the formalism does not allow us to return with
a single value ά. However, we are allowed to find the distribution of any integral
fdaf(x)r(x) by integrating the joint p.d.f. successively over / and then a. Because
pr (a) is so sharply peaked, the effect on R is just as if a were set equal to ά. We may
as well simplify the notation by setting a = ά in the derivation of / itself:

= / dαpr(α|D,m)pr(/|α,JO,m)

S pr(/|ά,D,m)

/ ( 6 . 7 )



352 Skilling & Gull - XXIV

The fluctuations (uncertainty) of / about / can also be investigated, at least in principle,
by using the known curvature:

(δfδf*) = [WQΓ1. (6.8)

We can understand our Bayesian formula for the best value ά as follows.

(1) The statistic λ/(α + A) is a measure of the quality of the data along any given
singular vector. If λ >> a the data are good and λ/(α + λ) adds one to the statistic. If,
on the other hand, A < α , then the regularizing entropy dominates the observations and
the contribution is approximately zero. We can therefore say that Σλ/(α + λ) specifies
the number of good, independent data measurements, or the number of degrees of
freedom with the entropy rather than the likelihood because these are the directions
(dimensions) that contribute to the entropy. We shall see later (equ. 9.3-4) the reason
for this apparently perverse choice of notation.

(2) The quantity — 2aS is a dimensionless measure of the amount of structure in
the image relative to the model, or the distance that the likelihood has been able to
pull the reconstruction away from the starting model.

The formula thus has a very plausible interpretation: the dimensionless measure
of the amount of structure demanded by the data is equal to the number of good,
independent measurements. We also note that, as we indicated earlier, the value of the
misfit statistic L is irrelevant to the choice of a. However, it too has a role to play. To
see this we now generalize to the case of unknown overall noise level

pr(D|/,σ) = exp-L(f)/σ2/ZL(σ), (6.9)

and this time keeping all terms involving σ find:

pr (α,σ) = constant -JVlog(σ) + 1/2 Σa'/(a' + A,-) + aS = L/σ2, (6.10)

where a! = ασ 2 . There is now an additional Bayesian choice for σ and its estimate σ,

2L(f)/σ2 = N- Σλ/(α + A). (6.11)

The interpretation of this condition is also very plausible: the expected χ 2 ( = 2L) is
equal to the number of degrees of freedom controlled by the entropy, that is, the poorly
measured "bad" directions of / space. This is less than the number of data, thereby
answering our first objection to χ 2 = N, and showing that the χ 2 (or L) is really suited
to estimation of the noise level, not a. Notice also how there is a clean division of
degrees of freedom between S and L, so that

N = ndf(S) + ndf(L). (6.12)

The choice of regularizing parameters has been much debated in the statistical
literature (Titterington 1985 gives a review). Our arguments in this section have repro-
duced (albeit for an entropic variation) one of these prescriptions, known elsewhere as
Generalized Maximum Likelihood (Davies & Anderssen 1986).
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7. Performance of the Bayesian a

To illustrate both the power and the shortcomings of the Bayesian choice for α, we
turn now to a practical example, a picture of "Susie". Figure 1 shows Susie, digitized
on a 128 x 128 pixel grid, with grey-level values between 40 and 255. This picture was
blurred with a 6-pixel radius Gaussian point-spread function (PSF) and noise of unit
variance added. This is a traditional example for MaxEnt processing (e.g. Daniell k Gull
1980, Gull k Skilling 1984a), and we show a χ 2 = N reconstruction. Our previously-
published "Susie" have used a disc PSF, appropriate to an out-of-focus camera, and
for which the MaxEnt results at this signal-to-noise are more impressive visually. A
Gaussian PSF gives less improvement in resolution because the eigenvalues of VVL fall
off very fast.

Figure 1. 128 x 128 image of Susie, blurred with a 6-pixel Gaussian PSF. MaxEnt
reconstruction using χ2 = N.

We now reach the first practical difficulty associated with our Bayesian answer. The
log-determinant and the ndf(S) statistic require a knowledge of the eigenvalue spectrum

of /1/2VVX/1/2. For the present case, this is a 16384 x 16384 matrix, a size which is well
in excess of the limits for conventional computational methods of calculating eigenvalues.
However, Skilling (1988b) has recently developed a method based on the application of
the matrix to random vectors, together with the use of Maxent, that allows an estimate
of the eigenvalue spectrum to be obtained. In particular, the accuracy of estimation
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of scalars such as ndf(S) is excellent using this technique. It seems, therefore, that
practical computation of the Bayesian solution is in general possible.

For the moment, the problem of the eigenvalues is avoided in a different way: we
change the definition of S. All of the Bayesian analysis of the last section applies equally
to any regularizing function, so we select a simple one that allows us to diagonalize VVL
and VVS simultaneously. This is the case for a spatially-invariant, circulant PSF and
for the quadratic

^ m i ) 2 , (7.1)

which is a linearized version of the correct form, and a reasonable approximation for a
low-contrast image such as Susie. The computations can now be performed easily in
eigenvector (Fourier ΊVansform) coordinates. The change in the definition of S makes no
difference to the formulae, except that the metric is now flat, the f1/2 terms disappear
and / might possibly go negative. The change makes no difference whatever to our
conclusions about the performance of the Bayesian solution.

Figure 2 shows the reconstruction from blurred Susie for a selection of a values.
When a is high the reconstruction looks like the original blurred data, and when a is
too low unsightly ripples appear due to the amplification of noise. Note, however that
this behavior covers a wide range of α(~ 104) and that there is a large region where the
reconstruction is generally satisfactory.

For our example the Bayesian solution suggests that there are ~ 790 good degrees
of freedom out of the total 16384. As might be expected, this is somewhat greater
than 16384/36π = 145 independent PSFs contained in the image, the excess being a
rough measure of the degree of deconvolution obtained. Its estimate of the noise level
was correct to within the expected error and, indeed, we have always found that the
noise level prediction performance of the Bayesian solution is excellent. Figure 3 shows
a plot of the posterior probability of α, both as its logarithm, and also linearly, to
emphasize the discrimination in the determination of α, which is better than 1 db for
this dataset. The posterior p.d.f. is normalizable as a approaches zero (towards the left
of Figure 3a, b, ) if the noise level is known, but a global view (towards the right of
Figure 3c) shows that it levels off once a exceeds the highest eigenvalue, resulting in a
technically improper distribution. We therefore return to the definition of a "sensible"
cutoff for c*maχ referred to earlier. The scale of Figure 3c is rather large: in order to
make a 50 per cent contribution to the probability integral, the α m a x cutoff has to exceed
exp(exp(1.4 x 107)). Such numbers are typical of the "singularities" encountered in this
type of Bayesian analysis. We are content to take α m a x less than this bizarre value, so
that we are unconcerned by this technical impropriety.

The reconstruction f(ά) is shown as Figure 4. It is visually disappointing, and
is clearly in the range of the "over-fitted" solutions for which a is too low. It is very
easy to understand why this is so. The initial model used for these reconstructions was
everywhere uniform, at approximately the mean of the data. This model is very far
from the final reconstruction, because there is plenty of real structure in the picture
produced by the 790 good measurements in the data, a must be reduced sufficiently to
accommodate this structure, or a large penalty in L results. An unfortunate consequence
is that a now becomes too low to reject noise properly along the "bad" directions. In
general terms, the Bayesian solution will tend to allow fluctuations of the same order of
magnitude as the deviation of the reconstruction from the initial model.
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Figure 2. Susie images showing the behavior of reconstruction quality as a is varied.

8β Towards a better model

We have seen that the Bayesian choice of a will often lead to a reconstruction that
is over-fitted. Despite this3 we feel that this "Classic" choice is the correct answer to
the problem that we have so far formulated. In fact, it was the purity of this derivation,
combined with problems of its performance that led us to propose the name "Classic"
for it. We have derived a joint p.d.f. pr (Z), /, a, σ\m) which is still conditional on the
knowledge of an initial model m. This m was first introduced as a "measure" on the
αj-space of pixels, but it is a point in /-space and acts as a "model" there. The only
freedom that we have left in our hypothesis space is to consider variations in this model,
which we recall was a flat, uniform picture set to the average of the data mo. The fact
that the model was flat expresses our lack of prior information about the structure of
the picture, but where did the brightness level mo come from?

The answer is again: Bayes' Theorem. We expand the hypothesis space to pr (D, /, a,
mo I flat) and select an unίnformative prior for pr(mo| flat). The posterior distribution
for mo (Figure 5) is again sharply peaked and in the Gaussian approximation has a
maximum at exactly the mean of the data. Reconstructions using values of mo different
from this Bayesian optimum exacerbate the over-fitting problem, as one would expect.
However, this exercise of varying the model is very instructive, because it emphasizes
the cause of the problem; the picture is very non-uniform. There are large areas of the
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Figure 3. Posterior distribution of the smoothing parameter a for the Susie image,
plotted (a) logarithmically, (b) linearly, (c) logarithmically over a large range of α.
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picture where the lighting is generally light or dark, with interesting details superim-
posed. There are correlations from pixel to pixel present in the image that we have
so far ignored. Indeed, our earlier MaxEnt Axiom I forbids us to put pixel-to-pixel
correlations directly into our prior pr (/|ra,α). We wish to circumvent this axiom, but
we must be subtle.

Figure 4. "Classic MaxEnt" reconstruction of Susie.

Suppose we imagine a silly case where the left half of our picture is Susie, but
the right half is a distant galaxy. Axiom I is designed to protect us from letting the
reconstruction of Susie influence our astrophysics, or vice-versa. But there is nothing
stopping us from having a different ra0 level for each half. In fact, in view of the grossly
different luminance levels involved, it would be extremely desirable to have different
levels of rriR and m^. When seen this way, there is nothing to prevent us considering
the right and left halves of the original Susie picture separately, because the average
luminance levels are different. A new hypothesis space involving pr (mΛ, mL\ flat, L/R)
will again fix suitable levels for IΎIR and TΠL a posteriori. If there is a strong right/left
brightness variation across the picture, then this two-value model will be closer to the
reconstruction and a will increase, reducing the ripples. But in that case why not use
4 subdivisions (top/bottom, left/right), or 8, or more?

If we continue to subdivide, we can get a better model, closer to the reconstruction,
so we expect that & will increase. However, we are introducing extra parameters, so
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Figure 5. Posterior probability distribution of the initial model level mo for the
Susie image. The maximum occurs at the mean of the data.

that we would expect there to be a penalty for this, and that it would be likely to have
some effect on the choice of a. A further consideration is that, if at all possible, we
should like to avoid the sharp boundaries that such a crude division of the model would
involve.

9. New MaxEnt

We are now in a position to formulate a new, flexible hypothesis space that is
suitable for pictures such as Susie. We suppose that the model m for use in "Classic"
MaxEnt is itself generated from a blurred image of hidden variables m:

m = fh*b = bin, (9.1)

where b is our "model-blur" PSF, which can also be written as a circulant matrix B. For
the case of Susie we might like to think of m as the source of background lighting. If this
model-blur is broad, then our model in "Classic" is smooth, and there are effectively
very few parameters in it. If 6 is narrow, there are many parameters. The shape and
width of the model-blur are to be determined by Bayesian methods as well. We do not
expect the shape of this blur to matter greatly and we arbitrarily restrict it to be a
Gaussian. The crucial parameter is the width and we expect that the most useful width
will be about equal to the size of the correlation-length that is actually present in the
picture. Our Bayesian analysis of the larger, richer hypothesis space will then tell us
how useful is the freedom provided by the hidden variables. The final probability levels
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will quantify for us the level of improvement relative to "Classic", which is contained in
our new space as limiting cases.

To complete the analysis we must assign a prior for the "pre-model" fh. We treat
fh as an image and again use the entropic prior:

pr (ro|/?, flat) = Zjι exp(/?T), (9.2)

where T = S(m, flat) and we have introduced β as a new Lagrange multiplier for the
ra-space entropy T. We again restrict ourselves to the mathematically tractable (but
still interesting) case of quadratic S and T, circulant blurs and spatially uniform noise
level, for which the VVL, VVS and VVΓ matrices are all simultaneously diagonal in
Fourier transform space. The Bayesian calculation of ά and β now yields:

-2αS(/, m) = ndf(s) = £ W ( α / ? + β\ + αλ<6?), (9.3)

-2/JΓ(m, flat) = ndf(T) = ] Γ αλt 6?/(α/? + β>* + aXibl) ( 9 4 )
i

where 6? are the eigenvalues of BtB and

log pr ( α, β, b\D) = constant +1/2 ̂  aβ/(aβ + /?λs + αλ<6?) + βT + αS - L. (9.5)
t

The noise level σ can also be estimated as before:

χ2 = 2L(/)/ά2 =N- ndf(S) - ndf(T). (9.6)

Notice how there is once again a neat division of the degrees of freedom between 5, T
and L.

We have tested the performance of New MaxEnt on the Susie picture. Classic
MaxEnt is contained in new Maxent in several ways:

(1) As β —*- oo, because m cannot move from the initial mo.

(2) As 6 —• oo, because the model becomes flat.

(3) (rather surprisingly) As b —• 0. This last case illustrates a general peculiarity
of

log pr (α, β, b\D) = constant + log(det) + aS + βT - L, (9.7)

an object which would be known elsewhere in physics as a Gibb's surface. Our new
hypothesis space has sufficient structure to contain phase transitions and one such occurs
for the Susie image as the width of 6 is reduced below 4.27 pixels. Below this value of
the model-blur, the model is sufficiently detailed to cope with all the structure in the
image demanded by the data, and 5(/, m) no longer adds anything that is useful. The
New MaxEnt d increases to infinity at this pint; S switches off and the reconstruction
is the model m = fh * 6. This is illustrated in Figure 6, which shows the posterior
distribution of a and β for 6 = 3 and 6 = 7 pixels.
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Figure 6. Posterior p.d.f. of the Lagrange multipliers a and β for the New MaxEnt
reconstruction of Susie, having 6 = 3 and 6 = 7 pixels. The contours' intervals are
linear.
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Figure 7. (a) Posterior distribution of the model-blur width for New MaxEnt Susie
images, (b) Image-space entropy 5 and model-space entropy T. Note that 5 is zero
for model-blurs narrower than 4.27 pixels.
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Figure 8. (a) Posterior distribution of the model-blur width for New MaxEnt Susie
Images, (b) Image-space entropy S and model-space entropy T. Note that S is
zero for model-blurs narrower than 4.27 pixels.

Figure 7 shows the posterior distribution of the width of b, which rises to a max-
imum at ~ 8.5 pixels. This diagram also answers the question of how useful our new
hypothesis space is. It is useful to the extent of being more probable than Classic Max-
Ent by exp(520). The extrinsic variables S, T and χ2 are also plotted, showing a change
of slope at. the phase transition. There is no specific heat associated with this phase
change! Inspection of the reconstruction and effective model m = m*6 for the optimum
width of b (Figure 8) confirms that the New MaxEnt has indeed achieved its promise.

Of course, our New MaxEnt can be used to encourage smoothness in any image,
whether-or not it is actually blurred. Indeed, our failure to offer a solution the problem
to analyzing noisy, but unblurred pictures has been a continual source of frustration over
the years. We test the noise-smoothing properties of the method with a picture of Susie
which is in focus, but which has had 25 units of noise added. For this type of problem,
the Classic MaxEnt reconstruction is almost identical to the data. The best value of the
model blur is now ~ 3 pixels, and it can be seen from Figure 8 that there is an increase
in probability of exp(lOOQO) over Classic for this case. The picture produced (Figure 9)
is also very good, and shows all the structure that can be reliably produced from this
noisy dataset. A detail from this (Figure 10) confirms that the pixel-to-pixel noise has
been greatly reduced, without degrading the information content of the picture in any
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way.

Figure 9. Comparison of Classic and New MaxEnt reconstruction of a noisy Susie
picture.

10. Discussion

Our New MaxEnt approach is related to other methods of introducing spatial
smoothing that have been found useful in practice. Within the context of maximum
entropy image processing, there are now many examples of "reconstruction-dependent"
models m(/). A particularly successful application to tomographic mapping of stel-
lar accretion discs is presented by Marsh and Home (1988), following Home (1985).
To improve the quality of the images, they used a model that was a blurred form of
their current reconstruction. We have also found such techniques useful: Charter k
Gull (1988) give an example of studies of drug absorption rate into the bloodstream, in
which a blurred version of the reconstruction is again used as the model.

Such tricks have previously lacked any rigorous justification, because the develop-
ment of the MaxEnt story treats m as a point in /-space that is given a priori. It was
thus difficult to see how we could legally let it depend on / . However, in New MaxEnt,
the effective model m looks very much like a blurred version of / , although it is actually
a blurred version of the hidden variables fh. We can now justify the above tricks in
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Figure 10. Detail of Figure 9, showing the improvement due to noise suppression.

terms of New MaxEnt. Thus in the drug absorption problem, / represents the rate of
absorption into the bloodstream, m is the rate at which the tablets break down in the
stomach, and b represents the time delay as the drug passes through the liver. Char-
ter (private communication) also gives another, intriguing example, in which he simply
pretends that the data are more blurred than is actually true, adding an additional
"pre-blur" to the real PSF. Often the results are improved by this device, encouraging
smoothness and eliminating noise. We can now see that this trick too is covered in
New MaxEnt as the degenerate case a —* oo that occurs in the case of Susie for small
model-blurs. The New MaxEnt hypothesis space provides a natural justification for
these variants, and automatically includes any consequential effect upon the stopping
criterion due to the additional parameters in the model.

It is also useful to examine our new procedure in the context of spatial statistics.
Indeed, much of our motivation for the New MaxEnt was provided at this very meeting
where, although our practical results were well received, the MaxEnt Axiom I was
considered unhelpful, to say the least. In this field of spatial statistics, the currently
favoured techniques are things such as Markov random fields (Kinderman and Snell 1980,
Geman & Geman 1984) and smoothness-enforcing regularizes (Titterington 1985). We
can compare New MaxEnt with these techniques by marginalizing out m to get an
effective prior for pr(/|α,/?,fc, flat). We have not so far done this, because it would
obscure the real structure of our hypothesis space, which is still faithful to the spirit of
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Axiom I. When we do it, we find

(10.1)

where δfi = /,- — mo and R is a circulant matrix that has eigenvalues I/a + b2/β.

By varying the shape of the model-blur 6 we can clearly mimic any given spectral
behavior of spatial smoothing. Markov random fields correspond to particular functional
forms of 6. New MaxEnt contains these techniques as special cases. However, we prefer
the rationale of our new hypothesis space, because we feel it is more closely related to
our prior knowledge of the imaging problem.

11. Conclusions

The Bayesian choice of the regularizing parameter a completes the derivation Clas-
sic MaxEnt and represents a major advance over our previous practice of setting χ2 = N.
The resulting formula — 2aS = ndf(S) is theoretically appealing, and expresses the fact
that the amount of structure produced in the reconstruction is equal to the number of
good, independent measurements present in the dataset.

For some problems we have found the Classic stopping criterion to be satisfactory,
but there are general grounds for supposing that it leads to overfitting, because a has
to be reduced to allow for the structure produced by good data. This leads to under-
smoothing of bad data, as we have illustrated with our picture of Susie.

The New MaxEnt hypothesis space which incorporates spatial correlations is suf-
ficiently powerful to correct these problems and is considerably more probable than
Classic, showing that the inclusion of spatial information is useful.

New MaxEnt also provides a consistent rationale for a wide class of model manip-
ulations that are found to be useful in practical applications. Although we have, for
reasons of computational expediency, illustrated the New MaxEnt only in the quadratic
(Wiener filter) approximation, the results are already excellent. We do not expect our
conclusions to change when the correct entropic forms are used, indeed the results can
only improve.

Finally, we ask the question: "Is our hypothesis space good enough?" Of course,
the answer depends on what we are trying to achieve. Certainly our new procedure
is good enough to overcome the over-fitting problems of Classic MaxEnt and produce
a good reconstruction of Susie. However, looking at the images produced for different
values of the model-blur width, our eyes tell us that the reconstruction for 6 = 5 pixels
is visually slightly better than that for the Bayesian optimum 6 = 8.5 pixels, although
the probability of 6 = 5 is lower by exp(50). This is a warning that we may eventually
find another, deeper hypothesis space even more useful for the imaging problem (as
envisaged by Jaynes 1986). We speculate that the improvement we get by going to
6 = 5 tells us something about human vision. We pay attention to the fine details
present in Susie's face and relatively ignore the background. The computer, with its
spatially-invariant model PSF sees the smooth surfaces in the background and weights
them equally, thereby arriving at a slightly large correlation length than our eyes would
like.
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