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ABSTRACT

In this paper we propose a general method for mapping regular
grammars to their equivalent stochastic representations, thereby al-
lowing for a unified solution of stochastic estimation and or statistical
pattern recognition problems over rule generated constraint spaces.
For current problems in image processing in which features of the
images are described by deterministic rules, and the measurements
from which the images are reconstructed are samples of a probabil-
ity distribution, such a synthesis is absolutely invaluable. The ba-
sic approach taken is to establish the formal connection of rules to
Chomsky grammars, and to generalize the original work of Shannon
on encoding rule-based channel sequences in Markov chains of the
same entropy.

Coupling these results to the stochastic diffusions algorithms
which sample these Gibbs distributions, yields the all important prac-
tical results that highly parallel computers may be used to sample the
rule-constrained sets. We present results for image segmentation and
reconstruction for emission tomography based on the DAP 510 mesh
connected SIMD processor of Active Memory Technology.
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1. Introduction

We are currently working on problems in image reconstruction and segmentation
in which both rule-based constraints as well as stochastic priors are available expressing
knowledge pertaining to the objects being imaged. One such example arises in emission
tomography applications for which radioactive tracer doses are limited with the resulting
images exhibiting rather severe speckle artifacts due to the independent increments
property of the data-limited Poisson measurements. [1, 2]. We incorporate Good's
roughness constraint, [3, 4], with this constraint controlled via an edge process for
which there are various regular grammatical connectedness and curvature constraints.
A second example arises in boundary tracing and segmentation for electron microscopy,
[5], for which models in the form of the attribute grammars of Fu are available describing
the small number of organelles being segmented.

This paper provides the starting point for a unified framework for incorporating
deterministic rule based constraints into stochastic estimation problems. For the pur-
pose of illustrating the issue of combining rule-based constraints into the stochastic
estimation framework, consider the following straightforward statistical decoding prob-
lem. Assume that we have a binary message source in noise channel. Denote the input
n—length code words to the channel as xn = (x\X2 . . zn), and the output of the chan-
nel as y. Then the minimum probability of error decoder is the well known maximum
a posteriori (MAP) estimate of xn given by

xn = argmax[logP(y|xn) + logP(xn)], (1.1)
{)

with P(y|xn) the probability density describing the noise source on the channel, and
P(xn) the probability distribution of the message source. The solution of (1.1) is con-
ceptually straightforward, and is ideally suited for use of gradient descent [6, 7] and
simulated annealing [8] methods. The problem explored in this paper is how the so-
lution of (1.1) changes if the constraints on the message source are not in the form
of a probability distribution, but rather in the form of rules corresponding to formal
grammars. For some applications, this seems a more reasonable model for the source.
One example explored in the next section is the high-level data link control (HDLC)
language [9], where the messages on the channel satisfy simple run-length constraints.
The fact that the prior information on the message source comes in the form of a set of
deterministic rules suggests the decoding problem is a constrained optimization prob-
lem, where the constraint set (define it as Ln) is the set of all n-length run constrained
sequences, and the optimization problem is to maximize the probability of the mea-
surement y with respect to xn E Ln. The constrained maximum-likelihood estimator
(MLE) is given by

x n = argmax [logP(y|xn)]. (1.2)
{Xn:Xn€Ln}

While the constrained optimization problem of (1.2) is well defined, in general, the
rules describing the constraint space may be fairly complicated. Newest approaches
for maximizing the probability distribution P(y|xn) by gradient descent and annealing
methods are not applicable as the constraint spaces corresponding to the language
constraints must be incorporated.
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2. Mapping regular grammars via maximum entropy Gibbs distributions

Having stated an example of a particular rule-based constraint set, we now follow
Chomsky [10-12] and formalize the class of rules and the languages which they generate,
and then demonstrate that these languages may be generated as samples of maximum
entropy Gibbs distributions. As an intermediate step we first show how certain types
of regular grammars correspond to Markov sources. We begin with two definitions.

Definition 1. A regular grammar G is a quadruple (Vjv, V T , £ Ό , R ) where V# and
Vy are finite sets of non-terminal and terminal symbols respectively, So G V> is the
start state and R is a finite set of production rules. The productions rules in R are
independent of the context in which the substitutions to the non-terminal symbols are
applied, and of the form

Si -> WjSk or Si -> Wj where Wj € V τ and S, , S* G VN. (2.1)

Each rule consists of the transformation of a non-terminal symbol to either a terminal
followed by a non-terminal, or a terminal alone. The language L(G) generated by G
is the set of all sequences consisting of terminal symbols that come about by starting
in So and subsequently applying a production rule to a non-terminal symbol until only
terminal symbols are left. We denote the subset of L(G) of all strings of length n by

Definition 2. Define for these regular grammars the transition matrix B with entry
B(i,k) to be 1 if there is a production from S% to S*, and 0 otherwise.

For purpose of associating the ergodic finite state Markov sources with regular
grammars, we impose the following additional restrictions upon the grammars. First
we assume that no two arcs emanating from the same state have equal labels, and no
two arcs from the same state lead to the same state. This implies that the sequence
of of non-terminal symbols can be uniquely associated with a sequence of symbols in
the language and vice versa. That is, for 5, —• WjSk and Si —> WιSm then (j = I)
implies (Sk = Sm). As proven in Chomsky and Miller [11] this does not restrict the
class of regular grammars. The second requirement upon our regular languages are that
they are prefix-closed, i.e., Si —• WjSk is a production rule then so is 5, —• Wj. Our
third assumption is that the state graph of the grammar is irreducible so that any non-
terminal symbol can be reached from any other non-terminal, and aperiodic so that the
lengths of the loops beginning and ending in any of the states Si have gcd's 1. Given
these assumptions we now define the finite state Markov sources

Definition 3. Consider the irreducible, aperiodic finite state Markov sources to be a
finite directed graph, with nodes of the graph corresponding to states and arcs labeled
with a source symbol from the terminal symbol alphabet. Associated with each state is
a probability Q(Sj, Sk) from Q describing the probability of going from state Si to state
Sj. We define the language of n-length sequences LΠ | ε(M) generated by the Markov
source as the set of all strings xn with normalized log-probability bounded below by
—H — ε, for ε a finite constant greater than zero, and H the entropy of the Markov
source.1 That is Ln,ε(M) = {xn : l/nlogP(xn) >-H - ε}.

1 The entropy per symbol is defined as H = limn—oo — ^ Σx ^(χn)logP(Xn)
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Definition 4. Also define the state of string x in L(M), denoted by state(x), to be the
state that the generation of x starting in So leads to.

While it is clear how to associate a regular grammar G in this class to a finite state
Markov source of equal generative power, we do not yet have an explicit mechanism for
choosing the Markov chain probabilities associated with each production rule. There
is an infinite family of probabilistic finite-state sources which respect the syntax of G,
yet there is a unique set of production rules which generate a language of identical
size. By properly choosing the transition probabilities so as to maximize entropy and
satisfy the production rules it follows that the finite-state language and the regular
language generated by the production matrix B are both "probabilistically" as well as
"structurally" equivalent. The choice of production rule probabilities Grenander [13]
has termed the style of the grammar.

Recognizing issues of a similar kind for specifying constrained channels (which are
particular examples of regular grammars), Shannon [14] described the generation of
the unique Markov chains satisfying a given set of channel constraints and maximizing
entropy (see Appendix 4 of [14] ). The construction we now state as Theorem 1 follows
his results.

Theorem 1. Let the finite state ergodic source M have transition probability matrix
Q with iJfcth entry Q(i, k) = Bfyl$)^, where e is the right eigenvector corresponding to
the unique largest eigenvalue λ of the production matrix B associated with the regular
grammar. 2 Then} the set of n-length sequences Ln,ε(M) produced by the Markov
source is probabilistically and structurally equivalent to the corresponding regular lan-
guage Ln(G) in the following senses.

(i) The probabilistic equivalence corresponds to P(xn) converging to uniformity
with Probability 1 (denoted as α-£ ), for all xn 6 Ln,ε(M) and large n:

i log P ( x n ) " ' -H for xn G Ln,,(M) a s n ^ o o , (2.2)
n

where H is the entropy per source symbol.

(ii)The structural equivalence follows from the fact that the finite state source
sequences are legal derivations in the regular grammar and the normalized rate of ex-
ponential growth of the grammar and the Markov generated languages are equal. That
is for all ε > 0,

lim ! log |L n , e (M) | = lim - | L n ( G ) | = H = logλ. (2.3)
n-*oo ft n—*oo Π

Proof. That the languages are probabilistically equivalent according to (i) follows from
the ergodic property of the chain. That is for any measurable function /jb(xm) of a finite

2 That there is a unique largest eigenvalue follows from theorems of Frobenius on positive matrices

and the assumption of connectedness of the graph.
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set k of variables {zm>#m-i>... ,#„,_*}, then

asn-oo, (2.4)

with the expectation E{ } taken with respect to the measure of the Markov chain.
n

Since logP(xn) = Σ '°8 Q(5»> ̂ »+i) a n d aU states 5, are a function of a finite number

of random variables, the almost everywhere convergence follows.

The structural equivalence of (ii) has to do with the facts that sequences generated
via the Markov source are legal derivations of the regular grammar and the number
of sequences in the two languages are identical. That the Markov sequences are legal
derivation of the grammar follows simply from the fact that the Markov chain has non-
zero transition probabilities only for state pairs corresponding to production rules in
the regular grammar. Now, the exponential rate of growth of the language is given by
[11, 14]

lim i |L n(G)| = logλ, (2.5)
n-+oo n

with λ corresponding to the largest eigenvalue of the production matrix B. This results
from the growth rate being determined by the entries in the nth power of the production
rule matrix B n , which grow as the largest eigenvalue λ of B (see [14] or [11]). Since as is
well known from the Shannon-McMillan theorem the logarithmic growth of the domain
of the Markov chain is given by the entropy /f, we must show that the entropy H equals
log λ. This involves a straightforward calculation of H according to the definition of the
entropy of the Markov chain [15] given by

; ) , (2.6)

where q is the limit distribution of the Markov chain corresponding to the left eigenvector
of Q with eigenvalue 1. Using

and substituting into (2.6) yields H = logλ, proving part (ii).

We now explore a method for sampling the constraint spaces corresponding to
languages in parallel. Both the regular and finite-state languages are generated using
either sequential application of the rules or sequential simulation of the Markov distri-
bution. Our goal is to sample each n-length sequence xn <Ξ Ln simultaneously using n
processors, with each processor generating one of the n symbols of a particular message
xn in parallel! By rewriting the Markov probabilities as Gibbs' distributions, thereby
releasing the causality constraint inherent to Markov chain states, a direct method for
the parallel computation of entire sequences in the language becomes possible. We pro-
ceed by stating an approach, first heralded by Jaynes [16] as a general principle for
generating Gibbs' distributions subject to mean-value constraints which maximize en-
tropy. This allows us to generalize Theorem 1 maximizing entropy subject to particular
regular grammar constraints to more general constraint rules and languages associated
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with them. As argued by Jaynes, the principle of maximum entropy generates the dis-
tribution representing some specified set of mean-value constraints [17], without adding
additional constraints. In this sense it is the analogue of Theorem 1 and the original
approach of Shannon for constrained channel sequences.

Theorem 2. The distribution maximizing entropy subject to the mean-value con-
straints

E{θj(xn)} = Oj for 1 < j < M, (2.8)

is given by
"M

(2.9)

where &$ are Lagrange multipliers chosen to satisfy the constraints, and Zn normalizes
P(xn) to have measure 1.

Proof. The distribution P(xn) given by (2.9) results by maximizing the entropy func-
tional — X^p(xΛ)logp(xn), with the uniqueness of (2.9) resulting from the strict con-

Xn

cavity of the entropy functional.

It follows that the class of Markov chains and their corresponding regular grammars
are maxent distributions subject to mean-value constraints on functions of the type
(2.8). We first extend the state graph corresponding to the Markov source M with one
additional state φΛ called undefined. We add from any node to φ the arcs labeled with
the symbols in the alphabet of M not emanating from that node in the original state
graph. The probabilities associated with these new arcs are 0. Hence trying to generate
a string not in the language leads to the state φ.

Definition 5. Define the characteristic function on the ordered pair of states as follows:

I(itk)(Sm,Sn) = 1 for Sm = i,Sn = k; ,^ ]n\
I(i}k)(SmiSn) = 0 otherwise.

Now we prove the following corollary.

Corollary 1. Let a finite state Markov source M with stochastic matrix Q have tran-
sition probabilities Q(i, k). Then the set of n—length sequences Ln>e(M) corresponding
to the Markov source may be generated by sampling the Gibbs' measure P(xn) given
by

P(xn) = exp
m = l

(2.11)

with the constants α̂ fc specified as follows:

<*i,u = log Q(i, k) for Q(i, k) > 0; (2.12)

eαi " = 0 for Q(i, k) = 0. (2.13)
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Proof. All that needs be proven is that the Gibbs measure P(x.n) of (2.11) and the
Markov chain probabilities are equal for all xn G Ln>ε(M). This follows directly from
the fact that for each xn G Ln>e(M), there is a unique state sequence (SCo,SCl,..., SCn).
Therefore, for each m in the sum of the Gibbs' distribution only one characteristic

n

function is non-zero, yielding the distribution P(xn) = Π e χP[αcm_ l fcm] Since the α's
m = l m i m

have been chosen according to the conditional Markov chain probabilities, the Gibbs
n

measure is P(xn) = Π β( Scm_!, 5Cm), which is precisely the Markov chain probability
m = l

of message xn with the associated state sequence (5Co, 5C l, , 5C n).
Before concluding this section we define the finite complement languages, as they

play an important role in the embedding of certain kinds of constraints via Gibbs'
distributions. Various of our edge grammars involve the complement grammar repre-
sentation. To avoid the introduction of a new set of notation, we define them informally
while alluding to the formal development in Chomsky and Miller. [11].

Definition 6. Informally, the complement grammar Gc of G is constructed by adding
one new state to the original grammar, call it φ from the construction of Definition 4, to
which all disallowed arcs from the original grammar G lead. For the sequences generated
by G c, once the new added state is entered all possible sequences are allowed, and the
process remains in the added state. As proven in [11] the complement grammar Gc has
the property that its language L(GC) is the complement of the original language L(G).
That is, defining U to be the universal language of all strings which can be generated
from the finite alphabet V τ, then U = L(G) U L(GC), with L(G) and L(GC) having a
null intersection.

The importance of this relationship is that in many instances, the regular language
may be more simply generated by generating the complement of the complement lan-
guage, i.e. L(G) = [L(GC)]C. This allows us to state the following proposition which
constructs L(G) via a Gibbs' distribution generating the complement of the complement
language. We do this by constructing the measure P with the property that it is zero
for Vx G L(GC), and represents the largest language (maximum entropy).

Proposition. Let Gc be the complement grammar of G with the set Φ = {i : (i,.;, φ)}
being the set of states from G with disallowed arcs to φ. Then the distribution P
maximizing entropy subject to the constraints

n-i), stαie(xm))} = 0, Vi G Φ, 1 < m < n, (2.14)

generates the regular language Ln(G).

3. Regular language example

We proceed by illustrating these results via the 4-0,1 HDLC example posed in the
introduction; that is the four symbol run-length constraint sequences of Section 1 have
the set of seven non-terminals Vjv = {SQ = ε,5i = 000,52 = 00, S3 = 0,5*4 = 1,5s ={

= 111}, and the terminals VT = {0,1}, with the set of production rules given as

(3.1)

5 3

• 0 5 3 , 5 o -

0 5 2 , 5 4 -

-+ 154,5i

• 15δ,54 —

-> 1 5 4 , 5 2 -

> 0 5 3 , 5 5 -

->• 154,52

• 1 5 6 , 5 5 —

-*05i

>053,

, 5 3 -

5 6 -

-•154,

>053}
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The state SO is not reachable from any other state and is therefore not part of the
irreducible set of states. Since the capacity of the language is solely determined by
the rule matrix B defined over the irreducible set (see [11] for proof), we confine our
considerations to the matrix B constructed from derivations from non-terminal 5, to
Sk for 1 <i,k < 6 :

B =

"0
1

0
0
0

.0

0
0
1

0
0

0

0
0
0
1
1

1

1
1

1

0
0

0

0
0

0
1

0
0

o-
0

0
0
1

0.

(3.2)

For the matrix B of (3.2), the exponential rate of growth of the language is given
by the log of the largest eigenvalue logλ = 0.879416. Applying Theorem 1 for the
generation of the finite-state, stochastic representation of the regular grammar, the
Markov chain defined via the following transition probability matrix Q generates a
structurally equivalent language:

Q =

"0
0.3522

0
0

0
.0

0
0

0.4563

0

0
0

0
0

0
0.5437

0.6478

1.0

1.0
0.6478

0.5437

0

0

0

0
0

0
0.4563

0

0

0
0

0
0
0.3522

0

(3.3)

Applying the definition of the entropy of the Markov chain as

(3.4)

with q the left eigenvector of Q of (3.3) yields the entropy H = 0.879416. Note, since
there is only one irreducible set of states we can choose any probabilities p, 1 — p for

the productions So-^OSβ and SO ^ 154, without altering the entropy of the Markov
chain.

Returning to the original decoding problem stated in the introduction, it follows
that the MAP solution requiring maximization of P(y|xn) with additive probability
measure P(xn) describing the message sequence is absolutely equivalent to generat-
ing the MLE over the constraint region Ln. For the 4-0,1 constraint, logP(xn) «
—n.0879146 for xn G Ln, implying that for large n performing the MAP decoder of
(1.1) and the constrained MLE of (1.2) are equivalent.

4. Parallel implementation

Conventional sampling methods such as the Metropolis algorithm offer a limited
amount of parallelism in that sites in non-overlapping neighborhoods may be updated
simultaneously. In image reconstruction for emission tomography [18] the neighborhoods
correspond to line integrals through the image, thereby decreasing substantially the
possible parallelism. This has led us to explore an alternate method based on the
following Langevin stochastic differential equation:

dxn(t) = - (4.1)
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in which E(xn) is the Gibbs energy and wn is a standard vector Wiener process. It is
well known that under certain regularity conditions [19-21] the stochastic diffusion has
the following stationary density:

p(xn) = iexp[-£?(x n)]. (4.2)

In order to use (4.2) which generates a continuous-valued diffusion over Rn for
generating sequences corresponding to a finite alphabet we must approximate the Gibbs'
distributions defined on finite-valued domains via distributions defined over continuous
ones. One approach outlined by Vichniac [22] for binary processes is to add a penalty
term to the energy function which forces the diffusion to concentrate on the finite
alphabet. The method adopted here is fundamentally different as we have had difficulties
with the aforementioned approach since the large energy terms restricting the alphabet
symbols overtake the gradient of the energy in (4.1). Instead we define a continuous
random variable u n G Rn over which Langevin's equation is applied, and then map u n

via a function / to the random vector xn which is concentrated over the finite alphabet.
By crafting the gradient in Langevin's equation on u n properly, the resulting measure
on xn is a "good" continuous valued approximation to the desired distribution.

We proceed as follows. For simplicity define x' to be a scalar random variable on
the alphabet {0,1} with E(x') the Gibbs' energy function. The corresponding Gibbs'
distribution is given by

Γ U , _ Q) _ exp[-£(0)]
exp[-£(0)] + exp[-

exp[-£(l)]

Now define the continuous random variables u £ R1 and xG(0, l ) with the autologistic
function fa mapping u to x as follows:

x = f*(u) = — — i = r. (4.4)
1 -f exp[—αu]

Note, by increasing the parameter a from 0 to oo the function fa converges to a step
function. The stochastic differential equation we define on u is given by

μμdt
ax du

with E the identical energy function as defined in (4.2). It is now straightforward to
show that for a large, the probability of x concentrates around the binary values 0,1
with the required probability of (4.2) [23]. We emphasize that the above approach may
be simply extended to vector processes, and is most naturally implemented via analog
circuits since the autologistic function is simply generated in hardware.

To illustrate the application of this method for representing the regular grammars,
we have generated samples from the HDLC example of (3.1) using the diffusion based
approach, concentrated over the binary symbol alphabet. For this case, since the number
of states with disallowed arcs (SΊ = 000, Sβ = 111) is smaller than the number of states
in the transition matrix corresponding to (3.3), we represent the language using the
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complement of the complement grammar. We proceed by simply embedding the most
obvious constraint that the probability of there being a sequence with 4-0's or 4-Γs is 0.
The probability measure disallowing arcs from states 000, 111 to state φ\ = 0000, <fo =
1111 and generating the language is given as follows:

P(xn) = 1/Znexp \Σa[Iφι(siaie(xk)) + Iφ2(siaie(xk)))\ (4.6)
Ufe=i

with α < 0 . Since the indicator function on the state Iψ( ) is equivalent to the logical
and of four consecutive symbols of the same binary value, it may be rewritten as

P(x n) = 1/Znexp
k=4

(4.7)

where x denotes complement of the binary symbol x. Now sampling from the distri-
bution of (4.7) using the stochastic differential equation approach yields the following
sample transition matrix Q:

(4.8)

0
0.3456

0

0

0
0

0
0

0.4420

0
0

0

0
0

0

0.5540

0.6606

1.0

1.0
0.6544

0.5580

0

0
0

0
0

0

0.4460

0
0

0
0

0

0
0.3394

0

Comparing Q of (4.8) to that of (3.3) shows that the diffusion approach yields a
fairly good continuous approximation to the original distribution.

5. A hierarchy for image processing

We now present a hierarchical approach to the image processing problem, parallel
to that first proposed by Baker [24] for speech recognition, and one which incorporates
the more recent attribute grammar approaches of Fu [25, 26] and others on hierarchies of
controlling grammars [27]. We imagine that there are multiple grammars and stochastic
models, organized into a hierarchy of probabilistic Gibbs' distribution representations.
At each level of the hierarchy there is probabilistic data from which estimates of fea-
tures of the image must be generated, with both grammatical as well as stochastic
constraints. The power introduced via a hierarchical description is that the language
theoretic generative power of the model may be increased, while maintaining relatively
simple complexity at each level. For example, regular grammars controlling context-free
grammars can generate context-sensitive languages [26-28].

The importance of the representation theorems of the regular grammars in this
context is that grammar generated language constraints may be embedded within the
stochastic estimation framework in a unified manner. To illustrate the hierarchy for our
tomographic imaging applications [1, 29, 30] at the lowest level 1 of the hierarchy the
features correspond to pixel intensities within anatomic regions. For the tomography
model, we assume that the measurements are Poisson distributed with means deter-
mined by generalized line-integrals through the underlying density of radioactive tracer
(see Snyder et al. [18], this issue ). Unfortunately, low radioactive tracer concentrations



XVIII - On the Equivalence of Regular Grammars and Stochastic Constraints 249

result in maximum-likelihood reconstructions which are noisy [2, 31]. We make the esti-
mation of the pixel intensities robust via the introduction of Good's roughness prior [4].
At level 2 we introduce a layer consisting of image characteristic function attributes C
that serve to attribute the membership of pixels to different object types. These labels
essentially serve to select the statistical models and priors applicable for the underlying
pixel models in layer 1, i.e. the parameters in Good's roughness model for example. We
estimate the image characteristic functions using hypothesis testing against different ob-
ject region models. As a prior on these attributed characteristic functions we constrain
them to be continuous over the interiors of object regions by inducing run-length type
grammatical constraints, which we impose via the complement grammar representation.
At level 3 in the hierarchy, we enforce the constraint that different regions in the image
may be parts of different structures and should be smoothed accordingly. To accomplish
this, Good's roughness is induced on level 1 over the interiors of regions by introducing
a controlling set of edge sites. Weak configurational constraints on the edge site clusters
are induced, such as ones that rule out the existence of parallel edge sites across a single
pixel. To make the estimation of the edges robust, we are presently working on level
4 of the hierarchy where the edge sites are considered part of the "primal sketch" of
Marr and Hildreth; they are therefore smooth (reasonable curvatures) and connected.
These constraints we embed via simple "north-south" turning grammars on the edge
sites. They are in turn attributed (in the sense of Fu) level 5, via hypothesis testing
against various edge-site models which may be available.

To our knowledge the characteristic functions go back to 1977 with Nahi and Ja-
hanshahi [32] who formulated the boundary estimation problem in terms of object char-
acteristic functions. More recently they have been used by Derin et al. [33], and most
recently Geman et al. [34]. The characteristic function formulation presented here and
viewed as attributes of the pixels has been inspired by the work of Fu [25]. The no-
tion of an independent edge site array for the acquisition of boundaries was proposed
by Martelli [35] and heralded by Geman and Geman [8]. The edge sites serve as a
controlling grammar, much like the punctuation process first introduced by Chomsky
and Miller [11], on the lower-level characteristic function grammar as well as on Goods'
roughness and corresponds to the phoneme boundaries in Baker's original Dragon Sys-
tem speech recognizer [24]. The notion of attributing clusters of edge-sites to particular
models is precisely the approach taken by Tsai and Fu [25] in which the edge-site mod-
els correspond to the four different kinds of boundary segments of the various machine
tools being recognized.

5.1 Segmentation

To illustrate the use of the attribute layer and the above controlling edge-sites we
first explore a relatively simple estimation and segmentation problem based on the above
hierarchy. For purpose of simplicity assume that we have a 1-dimensional estimation
problem, with two model types M° and M1 governing the image data, with each a
Poisson counting process having intensity μ° and μ1, respectively. The model in pixel i
becomes

ϊ ^ (5.1)

with Z a normalizing constant and iV, the number of counts in pixel i. The segmentation
problem is to determine which of the two models a pixel is associated with, and where
the boundaries of the region are.

Now the attribute characteristic function layer C is determined via hypothesis
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testing against the aforementioned models. Defining hypothesis H° as occurring in
pixel i when Ct = 0, and hypothesis Hι as occurring when C, = 1, this yields the
following comparison of Bayes log-posteriors for choosing the attribute labels:

rr

-jij + \og(μ})Ni + logP{Ci = 1) $ ~μϊ + log(/i,9)AΓ, + logP(d = 0), (5.2)
Ho

where P{C% = fc) is a prior on choosing model k = 0,1 in pixel i. We note, that for
the actual implementation of the hypothesis test we use fully parallel gradient descent
with respect to the attributes C, . That is, following our approach in Section 4 we force
Ci G (0,1), concentrated near the binary values 0,1, and descend the following Gibbs
energy with respect to C:

Σ [Ci(-μj + logk W) + (1 - C,)(-/i? + logbflW) + log P(Q)} . (5.3)
i

Minimizing (5.3) with respect to the Ct's is a continuous approximation to the hypoth-
esis test of (5.2).

Now the prior P(C t ) correspond to two simple grammars expressing continuity on
the characteristic function attributes, which are controlled by the edge sites. That is
if in pixel i, hypothesis Hk is chosen with Ci = fc, then grammar k produces symbol
Ci + 1 = k. The edge sites control the characteristic function layer in precisely the same
way as they control the pixel intensity interactions in previous papers [8, 35]. That is,
the constraints are removed when straddling an active edge site.

Define the edge sites for the 1-dimensional case via the binary process e, , where
e, = 1 if the site between pixels i and i -f 1 contains the edge site; e, = 0 otherwise.
Then the edge sites are placed based on hypothesis testing using the attribute layer C
as the data. That is, edge sites are placed at locations where the sharp discontinuity
in the characteristic functions C, is greater than some threshold. The hypothesis test
is actually computed by doing gradient descent with respect to the edges e< on the
following Gibbs energy:

) ( 5 4 )

The prior P(e, ) on the edge sites is a simple 2—1 run-length constraint (as previously
described) that forbids the formation of consecutive parallel edge-sites (edges strad-
dling one pixel). Note well, in the above approach the edge-sites are placed based on
discontinuities in the attribute function layer, not the pixel intensity values.

We have implemented via finite-differences on the AMT DAP500 parallel processor
the gradient descent corresponding to the two layers of (5.3,5.4). Shown in Figure 1 are
the results of applying this segmentation approach to a Poisson image. The top row
shows the original 32 x 32 object (left column), with the Poisson data (right column).
The intensities for the two models were chosen to have a moderately high signal-to-
noise ratio (SNR) (low speckle). The bottom row shows the attributes (left column)
and edge sites (right column) that were estimated using gradient descent of (5.3,5.4).
The attributes and edges C,E are real numbers between 0 and 1, with 1 corresponding
to the brightest intensity. We emphasize that the C and E layers were computed jointly
with every element of the C and the E layers updated synchronously in parallel.



XVIII - On the Equivalence of Regular Grammars and Stochastic Constraints 251

Figure 1: Top left shows the original two object image, with top right showing
the Poisson data. Bottom left shows the values of the characteristic function, with
white meaning object 1, and black object 2. Bottom right shows the edge sites
generated from the characteristic layer.

Now returning to the placement of the edge sites in (5.4), we note a strong similarity
to the original edge operator of Marr and Hildreth [36]. Ignoring for a moment the
prior P(e s) in (5.4), the gradient descent algorithm places the edges at locations i where
the function (Ct +i — Ci)2 is a maximum, thereby minimizing (5.4). This corresponds
precisely to the places where the Laplacian of the characteristic layer is zero. The crucial
difference between our approach and the Marr-Hildreth operator for edge detection, is
that the Laplacian would be computed on the characteristic function attribute layer,
not the pixel intensity layer. It does, however, seem clear that if the underlying object
models have no texture (as in our case where we have assumed two constant intensities
μ°^μ1), the sufficient statistic upon which the hypothesis test is performed is simply the
pixel intensities JVf . Therefore, for the simple textureless case at high SNR levels, we
might expect that the placement of the edge-sites based on the Laplacian of the pixel
intensity data should be similar to that derived using our attribute layer. Shown in
Figure 2 are the result of comparing the edge sites generated with the attribute layer
according to gradient descent on (5.3,5.4) and the Marr-Hildreth operator. The top
row shows the results of a higher intensity Poisson image than that seen in Figure 1
(less speckle). The left column shows the Poisson data, the middle column the edges
generated using the attribute layer and equation (5.4) to set the edge sites, and the right
column the edge sites generated with the Marr-Hildreth operator; that is the Poisson
data is first smoothed and then the zero crossings of the Laplacian are computed for
placement of the edge sites. We see for this high intensity (high SNR) data that there
is a fairly good correspondence between the edges placed at the boundary of the square
phantom using both methods. The bottom row shows the results of segmentation from



252 Miller, Roysam, Smith, & Udding - XVIII

Poisson data at a lower intensity. For the highly speckled low SNR Poisson data, the
placement of the edges based on the Marr-Hildreth operator degenerates rapidly. Notice
for this low intensity data the edges are no longer perfectly placed using our new method
(middle column). However, we are presently working on higher levels which incorporate
connectedness and curvature constraints on the edge sites.

Figure 2: Top left shows the Poisson data, middle shows the edge site estimates
generated from the attribute layer, and right the edge sites placed using the Marr-
Hildreth operator. Bottom row is identical to the top row, simply generated from
the lower SNE data. ' " :'

5.2 Tomographic reconstruction

We have begun applying these ideas to the positron emission tomography (PET)
problem. The PET model we adopt is described in greater detail in another article in
this proceedings [18]. We assume that the measurements M§(j) form a Poisson counting
process with mean μθ(j) = Σ ^ ( j | i ) λ ( ί ) for 1 < θ < Nθ. For the Super PETT-I

2

tomograph at Washington University, N$ .= 96 view angles of data are measured with
the point-spreads p§( | ) corresponding to Gaussian-weighted surfaces directed along the
line-of-flight angle θ, with full-width at half-maxima along the lίne-of-flight equal to 7.5
cm, and 1.0 cm perpendicular to the line-of-flight. The measurements are described by
the Poisson log-likelihood given by

(5.5)

and the estimation problem is to estimate λ(i). It is well known that unconstrained
nonparametric maximum-likelihood (ML) estimators may be fundamentally inconsistent
[3, 37, 38]. In the imaging context, this results in artifacts in the form of sharp peaks
and valleys located randomly throughout the image field [1, 31]. Our group has taken
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two approaches towards the stabilization of these estimators. The first is based on
kernel sieves as described in this proceedings [18]. The second is based on Good's [39,
40] roughness measure which we now describe. Denoting the density to be estimated in
pixel i as λt , the 1-dimensional roughness is given by

with γ, = y/λϊ. For 2-dimensional applications in which the roughness is independent
of position in the image, and for which there are no natural or preferred coordinate
directions (see Roysam et al [4]. ) the rotationally invariant version is given by

7, , ;-i | 2 ] . (5.7)

The MRF determined by Good's rotationally invariant roughness becomes our model
of the intensity within each object.

Because of the complexity of the more realistic tomography problem (both the
requirement of large amounts of program memory as well as reconstruction computation
time due to the large kernels), we have not yet implemented the attribute layer of the
hierarchy, but have instead formed the edge sites using the Marr-Hildreth operator.
As we have emphasized in the previous section, for smooth objects at high signal-to-
noise ratios, the edge site placement using the edge operator is similar in quality and
performance to the attribute approach. We are presently investigating more complex
textured lung and brain image reconstructions for which the attribute layer is extremely
important.

The constrained estimation problem with the controlling edge site layer becomes
the following. Assuming the Poisson distribution of the measurements, then the problem
becomes maximize with respect to {λ,e} the following log-posterior distribution:

(5.8)

with L(X) given in (5.5). The 2-dimensional version is straightforwardly generated
using the rotationally invariant roughness of (5.7), and the introduction of horizontal
and vertical edge sites.

Shown in Figure 3 is the heart phantom used for our tomographic reconstructions.
For the simulations shown in Figure 4 a total of 16 view angles of data were collected,
with point-spreads chosen to correspond to the Super PETT-I parameters. Shown in
Figure 3 are the reconstructions of the heart phantom from 100K (top row) and 300/f
(bottom row) total simulated counts. The left column shows the result of maximizing
the log-likelihood L(λ) of (5.5), without the addition of Good's roughness measure.
Notice the extremely rough structure of the unconstrained solution. Shown in the
middle column is the result of adding Good's roughness measure, without any edge
process. The right column shows the reconstruction resulting from the maximization of
(5.8), while simultaneously estimating the pixel intensities as well as the edge process.
The edge process was generated using the Marr-Hildreth operator at every iteration
of the gradient descent on (5.8); the edge process is shown superimposed over the
reconstruction.
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Figure 3: Original heart phantom for the PET reconstruction.

Figure 4: The top left shows the unconstrained EM algorithm from 16 view angles
based on the Super PETT-I parameters with a total of 100 K counts. The top
middle panel shows the reconstruction with Good's roughness applied, without an
edge process. The top right panel the reconstruction with Good's roughness and
the edge site layer active. The bottom row is identical but for 300 K counts.

6» Conclusions

We have proposed a method for mapping regular grammars to their unique Gibbs'
representations, thereby allowing for a unified solution of stochastic and grammar based
estimation problems. Coupling these results to the stochastic diffusions algorithms for
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sampling these Gibbs distributions yields a highly parallel method for sampling these
rule-constrained sets. We present results computed on the DAP 510 parallel processor of
Active Memory Technology for image segmentation and image reconstruction in positron
emission tomography.
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