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ABSTRACT

Much attention has recently been focussed on the use of statistical
and probabilistic models in the restoration of digital images corrupted
by noise. A possibly multivariate “signal” (data) z; is observed every-
where on a regular finite lattice, and carries information on a small
number of unobserved “labels”, or colors’ ¢; at each pixel 7, where
i = 0...N labels the sites of a lattice. The objective is to restore
the labels (that is, to classify the pixels) ¢ = {c;}, given the data
z = {z;}. The key idea is that many (or even all) of the signals
are used to classify every pixel. This is known variously as image
segmentation, image restoration or contextual classification. A num-
ber of algorithms are now available for this problem. Many of these,
though ad hoc, are quite satisfactory in practice. But as such it is
impossible to conduct any detailed theoretical analysis of their per-
formance, even in terms of something as apparently fundamental as
error rate, and restorations must be regarded as equivalent to point-
estimates, unqualified in any way. In this paper we show that a simple
proposal of Switzer (1980) can be extended to yield a method which
is not only perfectly adequate in at least some important cases but
admits of fairly detailed analysis of its properties.
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1. Introduction

Much attention has been focussed recently on the use of statistical and probabilistic
models in the restoration of digital images which have been corrupted in some way; a
particular case is where the corruption is by “noise”. In this context a signal z; is
observed everywhere on a finite regular lattice, and carries information at each pixel
on one of a small number of unobserved labels or colors ¢;. The objective is to restore
the labels ¢ = {¢;} (that is, to classify each pixel according to the data x = {z;}).
Recent work is concerned with using many (or even, in principle, all) of the signals to
classify every pixel; this has become known as “contextual” classification. While the
problem has been addressed for many years, initially on the (non-contextual) basis of
using only z; to classify pixel i (Duda and Hart 1973), and subsequently in terms of ad
hoc smoothers (Switzer 1983), recent work has pursued the idea that the image, and
the noise, may be modelled via spatial stochastic processes.

The paper by Geman and Geman (1984) is regarded as seminal; they have pioneered
the use of non-causal Markov Random Fields (Besag, 1974) as models of the underlying
“true” or uncorrupted image. See also Yu and Fu (1983), Hansen and Elliot (1982),
Besag (1986), and Derin and Elliot (1987). Others have used causal Markovian models,
which while sometimes more tractable, are essentially asymmetric; see Devijver (1985),
Derin et al. (1984), and Haslett (1985). The relaxation methods of Rosenfeld (1978) are
motivated by similar ideas, but fall short of being models. Alternative non-Markovian
ideas have been proposed by Switzer (1980), Owen (1984), Campbell and Kiiveri (1985),
Kent and Mardia (1986) and Haslett and Horgan (1985, 1987). It is from the latter that
this paper is derived; its closest parallel is in the work of Switzer (1980).

A number of aspects have emerged from the debate; see the discussion following
Besag (1986). Firstly, there is agreement that most “contextual” methods can achieve
considerable improvements over naive or non-contextual methods. This improvement
is clearly most marked when the signal-to-noise ratio is low, and when the corruption
exhibits a very simple spatial structure (such as added white noise). There have however
been relatively few systematic evaluations on real images; an exception is that of Saebo
et al. (1985), who worked with satellite imagery. Switzer (1986) is critical of the ex-
tensive use in the methodological literature of artificial examples based on uncorrelated
noise.

Secondly, however, there has emerged some disagreement as to how to measure the
performance of any given restoration method. In particular the natural measure, the
proportion of pixels misclassified, while widely criticized as inadequate, is often used
in presentation of results. For a discussion on this, see Derin et al. (1984), Geman
and Geman (1984), Ripley (1986), Besag (1986), Marroquin (1985, 1987), Titterington
(1986) and Switzer (1986). It has been pointed out (Besag (1986), Marroquin (1985))
that algorithms, which have as their objective the minimization of this quantity, are in
effect adopting, in a Bayesian context, the criterion of marginal mazimum a posterior:
probability (marginal MAP). Thus, one seeks to evaluate, for each pixel i, the posterior
probability, given all the data z, Pr (C; = c|z), for each possible ¢, and to allocate, se-
quentially for each i, pixels to that ¢ which maximizes this. Others (in particular Geman
and Geman (1984) and subsequently others) have suggested a global MAP approach,
based on simultaneously allocating all pixels to that ¢ which maximizes Pr(C = c|z).
However, Besag (1986) and Greig, Porteus and Seheult (1986) (see also this volume)
have pointed out that this goal, while well-intentioned, can yield degenerate solutions in
the context of the model most commonly adopted, the discrete Markov Random Field,
(MRF). Marroquin (1985) provides graphic examples to support this. In particular,
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because of the very long range properties of the discrete MRF (the Ising model is a well
known example; see Besag (1973), Bartlett (1975)), the most globally probable coloring,
being too model dependent, can involve an image comprising only one color! Besag’s
(1986) Iterated Conditional Modes algorithm, ICM, is partially justified by the fact that
it avoids the above criterion. He thus makes the point that the MRF model, and the
global criterion, are to be used with caution. In many ways ICM, and many other similar
approaches, are model based only to the extent that the model is used to motivate an
algorithm; see Titterington (1986). Thus ICM is not only simple to implement, but is
remarkably insensitive to departures from the nominal requirements of the method. It
is however, completely impenetrable to any analysis of its properties, in common with
most other methods.

It will be observed that whatever the basis adopted, all such algorithms in fact work
by computing, iteratively or recursively, a function of the data surrounding each pixel i,
and using it to classify pixels, sequentially or in parallel (it matters not, for this simply
redefines the function). This classification function we denote as g;(z). There are many
difficulties in such computations, and that proposed by Geman and Geman (1984),
namely stochastic annealing, in fact has a random component in the very definition of
this function.

Finally, although much attention has been given to exploring these different routes,
and some to their comparison in terms of misclassification rates on simulated and oc-
casionally real images, little attention seems yet to have been given to a theoretical
investigation of these error rates, or indeed any other performance measure. In what
theoretical circumstances are these rates higher or lower? For a given restoration, is
there any estimate, from the fitted model, of the error rate? This latter question can be
explored by simulation, given the MRF model; see Haslett (1986) and work by Anderson
reported elsewhere is this volume. These second-order questions are of course normal,
and dominate the conventional classification literature, along with related questions,
such as the certainty with which any particular case (pixel) is classified, and whether
indeed it should be classified at all. There are many good reasons why such questions
have not yet been approached.

Firstly, there remains doubt as to whether the error rate itself is the most useful
performance measure; yet it is widely used, and no clear alternative has yet emerged.
Secondly, it requires that we discuss the distribution of g;(z), conditional on knowing c;.
Given the form of g;(z) associated with most algorithms, this is effectively impossible.
An exception is the rule proposed by Switzer (1980), wherein g;(z) is a linear function
of the data in a small neighborhood of 7. This is the approach which we shall generalize
in the following, and relate to a spatial stochastic model of the observed image. Finally,
such discussions are necessarily very reliant on the model proposed; if it is inappropriate,
then the results are meaningless. In particular, it is not clear whether the MRF model
is appropriate, because of its global properties (Besag 1986). We will deliberately avoid
relying on any strongly specified model of the underlying image, relying rather on a’
non-parametric description.

In the following, therefore, we approach this cautiously, considering only the simple
case of an underlying binary image (each pixel has one of only two possible colors). We
confine ourselves to additive Gaussian noise. We use bounds and a simple approximation
for the error rate for theoretical studies, and we propose a simple “plug-in” rule for the
evaluation of a given restoration. We explicitly confine ourselves to an approximation to
a marginal MAP solution. We rely only on the covariance properties of the underlying
image, and make no statements about joint probabilities about sets of pixels, other
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than pairs. We do not confine ourselves necessarily to uncorrelated noise, however.
Some generalization to images possessing more than two colors is possible, but with
difficulty. The method proposed, while claiming no optimality, will be seen to compete
satisfactorily with others in these simple cases, as far as the restoration is concerned.
It does not generalize in any simple way to the very rich range of hierarchical models
currently being tackled by iterative methods based on the MRF. But it does allow some
access to the second-order properties mentioned above, which we hope to illustrate, and
these properties can serve as a useful baseline against which claims of optimality can
be compared. The approach may further be used to identify “outliers”, and indeed
generalize this concept, as well as to identify pixels where there is insufficient evidence
to make a firm classification.

2. A linear solution for a simple case

We consider a binary underlying image, corrupted by noise. We denote the two
possible colors by ¢ = 0 and ¢ = 1; in this underlying image all pixels have intensities
that are either pg or ;. (Our notation will be such as to indicate which of our arguments
can be extended to more than two colors; see also Haslett and Horgan (1987), but for
simplicity we confine ourselves here to the binary case). We label the pixels in arbitrary
order as 0,1,..., N, using a single subscript for notational simplicity. We shall take
the true underlying image ¢, the observed image z and the noise ¢ as finite portions of
realizations of random variables (C, X, E), themselves generated by appropriate spatial
stochastic processes, such that

Xi=pe,+€ i=0,1,...,N; E and C are uncorrelated, and ¢; ~ N(0,0?). (2.1)

Without loss of generality in the binary case we have taken pixel intensities as scalar;
further we take po = 0 and g3 = 1 which allows (2.1) to be written more simply as

Xi=Ci+e¢ (2.2)
Suppose further that C' and E are second order stationary processes for which
Pr{Ci=1}=p, and Cov{C;i,C;j}=Pr{Ci=1,C;=1}-p’ =ke(d;) (23)
where d;; denotes the separation of pixels ¢ and j; and
Cov {ex 5} = ke(ds;) (24)

It follows that
Cov (Xi, Xj) = kz(ds;) = ke(ds;) + ke(di;) (2.5)

Thus any two of k;, k. and k. specify the second order properties. Our objective is
then to classify pixel ¢ on the basis of some near optimal classification functions g; .(z)
which are sufficiently simple to allow access to their distributional properties. We will
propose below a linear combination of the data &

gI,C(g’:) = _A_;I:c£
for some weights A,Tc In principle these weights are defined for every pixel; in practice

we will in the subséquent; take the weights to be zero unless the corresponding pixel
is close to pixel i. We will see that such functions can be motivated in a number of
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ways including Linear Discriminant Analysis (LDA) and, for binary underlying images,
kriging and Wiener Filters. In combination with the Gaussian assumption (ii) above,
reasonable approximations can thus be made for probability statements concerning the
function g;;.(z). Note that in the binary case it will be sufficient to confine attention
(for the purpose of the allocation rule) to

gi(2) = gip(2) — gin(z) = Az (2.6)

2.1 Spatial linear discriminant analysis

Recall that in general LDA may be motivated in a number of closely interrelated
ways: viz. (i) the Mahalanobis distance of a given observation to the mean p, of
each of k possible populations, assuming a common (or, in practice, pooled) covariance;
(if) maximum likelihood for multivariate normal populations, and the closely related
Bayesian minimum error rate; and (iil) in the case of two populations only, Fisher’s
Discriminant Function and prediction via multiple linear regression on an appropriately
defined indicator variable. See, for example, Seber (1984) Section 6.9, Mardia et al.
(1979), Chap. 11, and Flury and Riedwyl (1985). We will show how our spatial problem
may conveniently be formulated as (i) and (iii) which are non-parametric. We will show
also that analogies with (ii) may be made as a good approximation to yield the second-
order properties we desire. Haslett and Horgan (1985) have sketched approach (iii) for
binary data; an outline of the more general arguments has been presented in Haslett
and Horgan (1987).

The neighborhood. Let us confine our attention to a single pixel, which we label
0; we define an n-neighborhood, V,,, of this pixel as all pixels within +n (vertically and
horizontally) of pixel 0, and let m = (2n + 1)2. We shall ignore for the moment the
question of edge-effects, although they pose no more than notational and computational
inconveniences, and we leave open the choice of n, which can, in theory, be arbitrarily
large. Let the labelling be such that pixels with labels exceeding m are not in V.
Clearly the ideas to follow can be translated, by second order stationarity, to any other
pixel.

Let XV~ = (X0, X1,X2,...,Xm)T denote the random variable of which z¥» the
totality of the signal information in V,, is a realization. We shall be interested in the
second-order properties of X Va particularly when we condition on C, = ¢. In particular
we note that:

(i) E[X"*] = pl,, where 1,, is an m- dimensional vector of 1’s;

(ii) ©r = Cov{X""} has as its (4, j)th elements o;;,r = kz(d;;);

(iii) E[X"|Cy =¢] = p, has as its ith elements p;;. where

Hize = p — ke(dyo)/(1 - p) if ¢=0

. (2.7)
=p—ke(dio)/p if e=1
and

(iv) while £, . = Cov[X""|C; = ] is not available, the pooled within group
variance covariance matrix £, = (1=p)Zy,0+pZw,1 has as its (7, j)th element

Oijw = ka(d; ;) = keldi0)ke(d; 0){p(1 — P)} (2.8)
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In classical terminology, X,, is the (pooled) within-group variance-covariance matrix,
and X7 is the total variance-covariance matrix.

We note that unless all of the pixels within V, have the same colour, X" does
not follow a multivariate Normal distribution. Non-parametric linear discriminant func-
tions of themselves make no such requirement; we shall invoke the multivariate Normal
distribution, however, as a means of obtaining approximate second order information.

Linear discriminant function. Classical results show that a rule, based on com-
paring the Mahalanobis distance of a given " to the two means EZ ~, with respect to
Yy, leads to comparing the two functions

D= (g% - p")' 5 @ - ) (2.9)

[

for ¢ = 0 and 1. This is equivalent to a decision rule based on

go(z") = ATz (2.10)
where
Ay = Z5Hp) - pi} = 53k {p(1 - p)} (2.11)

where k,, has k.(d; ) as its ith element.

This is our desired linear combination. The above arguments can be generalized
straightforwardly for the case of more than 2 colors (Haslett and Horgan 1987). It is
insightful however to view (2.10) from a prediction point of view.

Prediction. If we seek that linear combination 6’0 = an + é: z¥" of the data in

V, which minimizes E{(é’o — Co)?} we find, after routine algebra which closely follows
indicator kriging, (Haslett and Horgan 1987, Ripley 1981, Journel and Huigbregts 1978)
that:

B, =%;'k, and an,=p(1-p"1,) (2.12)

This approach is akin to performing 2-group LDA by regression on an appropriately
defined indicator variable (Flury and Riedwyl 1985). That 8 and ), are identical to
within a multiplicative constant follows from classical results. It is also clear that (2.12)
is simply a finite version of the Wiener filter.

Operationally (2.10) amounts to smoothing the image by a linear filter. In principle
adjustments must be made near the edges, and the formulation of (2.12) in particular
shows that there are no difficulties in predicting from other than a symmetric neighbor-
hood. We ignore such details here. Following the smoothing, allocation is performed
by contrasting g;(z"») with some threshold to be determined. We pursue this below in
the context of minimizing the mis-classification rate. In the subsequent we shall omit
explicit reference to the neighborhood size n.

2.2 Misclassification rate.
It follows from the above that:

min E[(Co — Co)}] =52 =p(1-p) - S (2.13)

where S = _ﬂ_T&,
E[ColCo = 1] =my=p+ S/p
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and R

and finally, though 32 = Var [c’?o|co = ¢] is not available, the pooled variance
62 = (1 — p)3% + &} is given by

7 = S[1-S{p(1 - p)}""] (2.15)

If we further assume that, to a reasonable first approximation, the conditional dis-
tributions of Co are approximately Normal, with common variance &2, we have that the

allocation rule “allocate to colour 1 if Co > h; else allocate to colour 0” has misclassifi-
cation rate of:

PIC, = Pr{Incorrect classification; h,n} (2.16)
= (1-p)@{(h — mo)/7} + p®{(m1 - h)/7}

which is minimized, wrt h, when

h=y+5S{p(1-p)} (1/2~7) (2.17)

where v = p+ p(1 - p) In{(1 - p)/p}
At this threshold, the rate is

PIC, = (1-p)[1/2Dg; +Do1,n In{(1-p)/p}]+P[1/2D5;,+ Dot;n In{(1-p)/p}] (2.18)

where Dgl;n = (my — mg)?/5?% can be shown to be the Mahalanobis distance between
ﬁ(‘)"‘ and ﬁ:’" wrt ¥,,. We discuss in Section 3 the approximation implicit here, and
possibilities for improving it.
Thus, subject to the Normal approximation above, we have from (2.14, 2.15) that
for a specific pixel ~
0dds (Co = 1|Co = o) o exp{co/d?} (2.19)

the familiar logistic function. Equivalently, from (2.10, 2.11) we have that
0dds (Co = 1)2"») « exp{go(z")}

which emphasizes the interrelationships between the alternative approaches behind
(2.10) and (2.12).

It is seen then that the proposed allocation rule is approximately marginally MAP
and is based on the classification function go(z"») = /2. This may be contrasted
with that from Besag’s ICM which yields, at convergence, a classification function which
can be expressed as g{(z), where

“0dds” (Co = 1|z) x exp(9d™(z)) (2.20)

with gf®™(z) = z0/0? + 87, the quotes indicating that the ultimate classification cri-
terion is not in fact an odds ratio conditional only on z. Here 8 is the parameter of the
MREF (see Besag, 1986), and ¥ is the number of nearest neighbours of pixel 0 of colour 1
at the previous iteration. That iteration of course drew on the data at their neighbours,
including of course pixel 0, and so on back through the iteration. If s iterations are
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used, then that MRF model which is based on 8 nearest neighbours, effectively uses z¥*
rather than z in defining the classification function g{“M( ).

In the subsequent sections of this paper we evaluate these suggestions, and discuss
other operational aspects.

2.3 Implementation issues. We outline here some of the practical issues to be
faced in implementing the foregoing. Some of these, although interesting, will be given
only passing consideration due to considerations of space.

Firstly, from where might one obtain the key information needed - namely mg and
m; (taken to be 0 and 1 respectively above), p, and any two of {kz( ),kc( ), ke( )}?

In theoretical studies we may take these as known; k.( ) in this case is the empirical
covariance function for the given clean image. Here the interest lies in investigating, as a
theoretical issue, the extent to which increasing the noise auto-correlation, for example,
affects PIC. There is currently a complete lack of theoretical tools with which to study
even such basic issues. We briefly outline some results in Section 4.

But the issue of how to estimate such parameters, and of the resulting impact on
accuracy given, in extremis, only the image, is a critical question which has been taken
up by many authors in image segmentation. Of course the issue has been extensively
researched in a non-spatial context, and the fact that the method proposed above is so
close to classical discriminant analyses suggests that there may be considerable room
for some further theoretical analyses here; see for example the not unrelated study of
Lawoko and McLachan (1985). The key requirements are: (i) estimates of the class
means po and p1, for from these, and a knowledge that the noise process is zero mean,
ff)llow good estimates of p, given that N is typically very large; and (ii) an estimate
ke( ) of the covariance structure in the noise process (taken to be uncorrelated with
the underlying image) for from this, and an empirically obtained estimate 75,,( ) from
the given image, follows 75,;( ). If the noise process is known to be spatially uncorre-
lated, then this is straightforward. If not, then the autocorrelations of E and C will
be impossibly confounded. This issue is discussed in geostatistics as “structural anal-
ysis” (Journel and Huigbregts 1978), and is not a simple issue. The reader will note
that this problem remains unresolved in the general image segmentation literature, for
the estimation procedures that have been discussed normally assume that the signals
X, conditional on the underlying image, are independent. Switzer (1986) has pointed
out that this is unrealistic in certain cases; examples include satellite imagery, where
the “noise” is in fact often “unimportant detail” rather than atmospheric and other
interference.

It is interesting to note however, that the natural emphasis is on the means, g
and p1, and on the noise process. The need to model the underlying image reduces,
given stationarity, to a non-parametric description of its second order properties. If it is
known to have a Markovian representation, then in principle a parametric description
follows. (In practice of course this is an unsolved mathematical problem). In the
subsequent therefore we confine ourselves to the illustration of some of the consequences
of estimating all parameters, bar g and pu;; we confine this illustration to the case where
the noise is iid.

The second major issue is that of choice of neighborhood Vn. Recall that an
iterative method such as Besag’s ICM, with s iterations, effectively uses a neighborhood
of size (25 + 1)2. For low signal-to-noise ratios - in this case measured by {p(1 —
p)}/o%-convergence with ICM is often achieved in 6 or so iterations; with a high ratio,
convergence can be almost immediate. In our case we shall presume that a limited
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neighborhood is sufficient. This can be measured via PICn, as in (2.18) or equivalently
via 32 in (2.15), and it is easy to show empirically that these converge rapidly with =,
providing guidance in choice of n. A more interesting approach is to select a reasonably
large n* at the outset, and to use subset methods on equation (2.12) to select an
appropriate subset of the m* = (2n* + 1)? potential discriminators. In combination
with an exploitation of the symmetry involved in this spatial application, (pixels ¢ and
J must have equal discriminatory power, and coefficients, if d;; = —d; (and if isotropy
is assumed, if |d;o| = |d;,])) this can reduce the numbers of pixels (or combinations
thereof with a priori identical coefficients) to a very small number. However space
does not permit us to develop this argument here; see Haslett and Horgan (1985) and
Haslett (1989). Similarly, the handling of edge effects is entirely straightforward, but
for simplicity here we ignore this entirely, and treat our image as though surrounded by
an uninformative strip, in which all the pixels have intensity h, the threshold.

3. Bounds for the misclassification rate

In the above, the approximate expressions for PIC (2.16, 2.18) are in fact remark-
ably satisfactory, as we shall see in Section 4. In this section we explain why this is
so, and indicate how formal bounds may be obtained for PIC. Given that the classi-
fication method of Section 2 is sub-optimal (restricted as it is to linear combinations
of the observed data), the main interest for practical purposes lies in the upper bound,
for this bound is then generally relevant to all restoration algorithms pertaining to this
problem. We adopt the notation of (2.12) and drop explicit reference for the moment
to the neighborhood size n, for simplicity. We note that:

Co=a+fT{CY +e"}=2+Y (3.1)

where Y = ETQV ~ N (0,0’3), with o2 = _@TEY B, the elements of TY being available

from k¢ (d;;), adn Z = a+_ﬁ_T_QV. Letting Z; g(Z|Co = 1) we have, for a given threshold
h, that
PIC=1-p—-(1-p)Pr(Z0+Y <h)+pPr(Zi+Y <h) (3.2)

Our task below is to bound these probabilities, given the Normal distribution of Y, and
the available information on the distributions of the Z;. This is that

(i) EZ,‘ =m; from (2.14)
(i) (1-p) Var(Zo) +p Var(Z,) = 3% — o2 = o? from (2.15)
(iii) Zo € [ao, bo], where ag = a + § min(0, 3;) and by = a + §0 max(0, 3;) and
i#0 i

(iv) Z1 € [a1,b1], where ay = Bo + a0, b1 = Bo + bo.

Our approximations and bounds are therefore essentially concerned with:

Pr(Zi+Y <h)= Blo{(h - 2)/0,)] (33)

and with the approximation or bounding in (a;, b;) of F(z) = ®{(h — 2)/0y}.

Many approximations in this range are excellent for, since 03 > o2 in practice, the
exact form used for the distribution of Z; is not of critical importance. In particular the
approximation implicit in the statement that Z; ~ Normal, as used in (2.16), is very

adequate for this reason. Quadratic approximations for F(-) yield predictions almost
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indistinguishable from those derived with this Normal approximation. We may however
go further and formally bound F(-) above and below by suitably simple functions, and
obtain formal bounds for PIC. We illustrate this with the linear bounds, and concentrate
on the upper bound.

3.1 A linear upper bound.

Lemma.
PICL PICt =1—-p—(1 - p)ry + prf (3.4)
where
g = F(mo) if bo>ao>h

= (ao — co)™[(ao — mo) F(co) + (mo — co) F(ao)] otherwise

where
co = min(h — oyn(ao), bo) and
7y =F(my) if bop>ao>h
= (b1 — 1) (b1 — m1)F(c1) + (m1 — ¢1)F(by)] otherwise

where ¢; = max(h — oyn(b1),a1).

Here 9 = () satisfies ¢(n) = {®(r) — ®(n)}/(7 — 1), where &(-) is the Normal
Distribution Function, and ¢ its derivative; see Figure 1.

1.00

0.05

Figure 1. Definition of 7(t).

Proof.
PI‘(ZO + Y S h) = EF(Zo)
Zo

If ag < h, F(2) is concave in (ag,bp), and by Jensen’s inequality

EF(Z) 2 F{E(Z0)} = F(mo)
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If bp < h, F(z) is convex in (ag, bg) and

F(z) 2 (a0 — bo)™*[(a0 = 2)F(bo) + (2 — bo) F(ao)] in (ao, bo)
If ap < h < by however, then

F(z) 2 (a0 — do)~*[(a0 — 2)F(do) + (2 = do)F(ao)] in (ao, bo)

where dop = h — oy n(ap).
If by < h however, then by < dy; we therefore write ¢y = min(bg,dy); thus if b > a,,
these two expressions lead, on taking expectations wrt Zg, to the result,

EF(Zo) > (a0 — co) " *[(a0 — mo) F(co) + (mo — co) F(ao)]

The proof for the upper bound #7 follows similarly; equally we could obtain a lower
bound for PIC, were that of interest.

Finally, we note that (3.4) defines a family of upper bounds, for neither the threshold
h nor the neighborhood size n have been specified. In practice however, neither (2.16)
nor (3.4) exhibit any sensitivity to variations in h near the optimal value; but for large
neighborhoods PIC* can be very pessimistic, for the events corresponding to the upper
and lower extremes Z; = by and Z; = a,, respectively, correspond to very unlikely
events, such as a black pixel being completely surrounded in a large neighborhood by
white pixels. If we accept that PIC is a decreasing function of the separation Dglm,
then if N = {no,n1,na,...} defines a set of neighborhoods with increasing DZ, ,,, we
may with advantage define PIC* = mx]x\} PIC}. It is rather easy in practice to define

ne
such a set of neighborhoods, in the context of the subset selection methods referred to
in Section 2, and we use this below to tighten our upper bounds.

4. Prediction of misclassification rate-Results

In this section we evaluate the predictions of PIC made in Sections 2 and 3. For
this purpose we have used a simulation approach on two test images CAT and CHESS;
see Figures 2 and 3. The CAT image is similar to other test images used in this field; the
CHESS image is quite artificial, and is designed to allow the exploration of an extreme
case.

In each case the image is a 50 x 50 array, rather smaller than is likely to be encoun-
tered in practice, and consequently somewhat more prone to edge-effect problems. To
these arrays was added an array of simulated Gaussian “noise”, with zero mean, speci-
fied variance o2 and correlation structure as below. The correlated noise was generated
by the turning bands method (Ripley 1987); in this method 1-dimensional realizations
of correlated noise are generated along each of a number of “spokes”, and combined to
yield noise with a known 2-dimensional correlation structure.

For our testing purposes we have generated AR-1 noise on each spoke, with 1-
dimensional correlation structure at lag s given by p;(s) = exp(—ps) and corresponding
2-dimensional structure

1
) = 2/m) [ expl=po)(1 = o) V2

Clearly at p = 0 we have iid Gaussian noise. This function decays quite slowly with
distance; for example, at p = 0.2, py(1) = 0.41 and p2(5) = 0.08.
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Figure 2. (a) CAT image; (b) plus noise (¢ = 1, p = 0); (c) C; (d) reconstruction
by linear method (error rate = 7.9%)

Figure 3. (a) CHESS image plus noise (¢ = 1, p = 0); (b) CAT image plus noise
(6 =1, p=0); (c) Error rate 10.2%; (d) Error rate 9.5%

A number of experiments are reported below for different combinations of image
and (p,0?). In particular we consider two basic experiments. In the first, in which we
justify the model, we shall presume that the all parameters are known; this presumes
knowledge of the second order structure of the underlying true image; see Figure 2 for
an example. We shall see that in this case the method, as a classification method, works
well in comparison with Besag’s ICM recipe. But further, the predictions of accuracy
are almost exactly as given in (2.16), and the bounds from Section 3 are tight. Our main
thesis will thus be vindicated, and it becomes possible to make some general statements
about precision. In the second, oriented at rather more practical applications, we shall
presume the existence of a single noisy image and knowledge only of the correlation
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structure of the noise, and its independence from the underlying image, together with
the mean signal for each colour pixel; the correlation structure of the image, and the
parameters p and g% can then be estimated, and used, with (2.16) to yield plug-in
estimates of PIC. We illustrate this only with iid noise; see Figure 3. In principle the
method can be used in general, but in practice it is impossible, from a single image,
to separate the correlation structure of the noise and the underlying image. We will
see that, in common with such estimates in classical LDA, the resulting predictions are
somewhat biased.

Table 1 sets out the results of 10 replications for each combination. Edge effects
were handled for simplicity by assuming the existence of a border with uniform unin-
formative signal equal to the threshold h. A 9 x 9 neighborhood was used in each case,
and experiments indicated no measurable advantage in using a larger neighborhood.
Besag’s ICM was implemented for comparison, for the CAT image; it is not naturally
adapted to the CHESS image (although this can be done, by appropriate definition
of nearest neighbor). In this implementation ICM’s 3 parameter sequentially assumes
the values .2 and 1.7 in steps of .3; as this involves 6 iterations ICM is thus using in
practice a neighborhood of 13 x 13. With this 8-schedule ICM is suboptimal, for the 8
parameter could in principle have been fitted to the true image; our experience is that
this makes remarkably little difference, and in any case does not effect our conclusions.
Additionally, no attempt was made to adapt ICM to the case of correlated noise, and
the conventional recipe was followed even in such cases, with remarkably good results
as will be seen. The standard errors derived from the 10 replications are reported also.

The conclusions from the first set of experiments (see Table (1) are that (a) the
linear method, though crude, achieves accuracies (as measured by PIC) as good as ICM;
(b) the predictions of PIC are excellent in all cases, and the upper bound is quite tight;
and (c) ICM performs quite remarkably well, in comparison with this bound, given our
implementation, and given that it is not even intended to minimize PIC. Additionally
the method predicts a decline in accuracy with increasing s2 in both cases, which is
confirmed, but only in the CAT image with increasing p, which is also confirmed.

The second set of experiments are reported in Table 2; here 5 replications were
used; the predictions and the upper bound now vary with replication, as does accuracy.
As anticipated, the predictions are optimistically biased. ICM, implemented as above,
generally yields better accuracy, but of course no prediction of accuracy. Had the 8
parameter been fitted “on the fly” to the noisy image as per Besag’s recipe, the result
for ICM would be similar.

The actual reconstructions generated by the two methods differ considerably in
“texture”, with the linear method (particularly with high s and with covariance struc-
ture estimated from noisy images) generating rather more “speckled” images. This is
a natural consequence of (i) adopting a marginally rather than globally MAP approach
and (ii) basing the algorithm only on the pairwise joint or conditional probabilities of
pixel colour, rather than, as in ICM (or any MRF based procedure) on conditional
probabilities, given all 8 neighbours. Indeed if, a priori, isolated pixels of a given colour
are known to be very unlikely, post- smoothing (Switzer 1983) a restoration, generated
by this linear method, can be advantageous. Many such smoothers are available; in-
deed ICM is one such. Significant improvements are available in such cases, though
not for ICM generated reconstructions, which are already smooth. For example the
linear method followed by a simple opening (Serra 1982) yields an image very little
different in appearance or error rate, though somewhat in detail from that generated
by ICM. However, the blind application of such smoothers has effects which cannot be
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predicted, and would clearly be quite inappropriate for images such as CHESS, and
even in advantageous cases no prediction of decrease in error rate is possible.

5. Conclusions

In this paper we have investigated linear methods for restoring binary images de-
graded by additive Gaussian noise. Our objectives have not been to obtain restorations
that are “better” - in terms of accuracy of reconstruction, an ill-defined term in any
case - but to produce methods which, while adequate in this respect, are simple enough
to admit of some analysis of their properties. For we share the belief of Titterington
(1986) that there is “little to choose visually” between many different methods of such
reconstruction, and his concern that we seek specifically statistical contributions to this
rapidly growing field.

In this spirit we have employed the classical statistical tool of Linear Discriminant
Analysis to a simple version of this problem, and have shown that some of its properties
are attractive. In particular we have shown that it is possible not

Table 1
Achieved and Predicted PIC% Parameters Known

CAT image oc=205 oc=1.0
P PIC (SE) PIC (SE)

Pred 00 1.74 7.43
Upper 3.43 7.46
Linear 2.94 (0.13) 793  (0.24)
ICM 3.1 (0.17) 9.27  (0.33)
Pred 0.2 8.90 22.35
Upper 10.15 22.94
Linear 8.62 (0.36) 22.26  (0.93)
ICM 8.13 (0.37) 22.98 (0.95)
Pred 04 11.68 25.30
Upper 12.83 25.99
Linear 12.00 (0.54) 26.75  (1.45)
ICM 11.43 (0.83) 28.13  (1.46)

CHESS image

Pred 0.0 0.77 8.10
Upper 2.16 10.14
Linear 1.42 (0.089) 777 (0.24)
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Pred 0.2 0.6 7.75
Upper 1.75 8.01
Linear 1.83  (0.089) 8.23  (0.43)
Pred 04 0.15 5.76
Upper 1.46 6.14
Linear 1.93  (0.089)* 6.21 (0.14)

Notes: (i) SEs based on 10 replications.
(i1) Edge effect just measurable at case *; PIC internally
to image is ~ 1.50%; on the edge it is 10.50%.

only to achieve reconstructions which compare well with other methods, in particular
with ICM, but also to predict pixel misclassification rates with surprising accuracy, even
in circumstances normally avoided in such methods, namely that of correlated noise. The
method has been shown to be capable of handling images of widely differing texture, and
correctly predicting that which was initially surprising, that increasing the correlation
in the noise does not always lead to an increase in error rate. Additionally, since formal
upper bounds for error rates can now be determined, for a method which makes no
claim to optimality, standards are now available for methods claiming optimality. By
these standards ICM is seen to perform remarkably well even in circumstances departing
substantially from its nominal requirements.

However, as Critchley (1986) points out, our main practical interest is not perfor-
mance in some theoretical situation, but for the given image. Simple plug-in rules for the
error rate have been proposed, and have been shown as elsewhere to be useful, though
somewhat optimistically biased. These may in principle be contrasted with those of
Anderson reported elsewhere in this volume. Additionally pixels whose classification
cannot, in honesty, be anything other than guesswork (typically those on the edges of
regions) can be identified as such since we have posterior probabilities which may rea-
sonably be interpreted as such (equation (2.19)). But also, we have some possibilities
for checking whether the model is indeed valid for every part of the given image, in
that it is possible to refuse to classify a pixel whose immediate neighborhood seems
unreasonable in the context of the image as a whole. For we note that D? as defined in
(2.9) has, under the same normal approximation, a distribution which is approximately
x2,, if pixel 0 is of colour c. We may then

Table 2
Achieved and Predicted PIC Parameters Estimated Independent Noise
oc=105 c=10
Predicted Upper Achieved Predicted Upper Achieved

CAT

Linear 1.33 3.28 3.29 5.51 6.27 8.76
SE 0.28 0.14 0.14 1.14 1.03 1.13
ICM 3.11 9.27

SE 0.17 0.33
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CHESS
Linear 0.84 2.53 1.90 5.35 10.24 11.46
SE 0.37 0.42 0.13 1.24 0.57 0.29

Note: SEs based on 5 replications.

determine, by comparing min{D32, D?} with this distribution, whether a pixel is con-
ceivably of either colour. If it is we may allocate it by comparison of DZ and D?, or
equivalently by comparing Co with the threshold h, and return, via (2.19) a posterior
probability of its being colour 1, together with an estimate of the overall misclassifi-
cation rate from (2.18), if it is not, we simply return it as an “outlier”. These steps
are routine in discriminant analyses studies elsewhere. The reader is referred to Haslett
and Horgan (1987) for examples of the application of these ideas to identifying Doubters
and Teztual Qutliers. In other words it is possible to produce reconstructions which are,
as is normal in any other statistical exercise, appropriately qualified by reference to a
simple but adequate model.

In principle the method can be extended to images with more than two colors;
the extension from Section 2 is straightforward, and is outlined in Haslett and Hor-
gan (1987); even the misclassification rates can be predicted, though now from higher
dimensional Normal distributions. In practice however the non-parametric nature of
the description of the underlying image becomes too complicated to sustain, particu-
larly when this must be estimated from a given noisy image. But given an appropriate
parameterization of the covariance structure of such an image (which is regrettably un-
available from models such as the Markov Random Field, but which can be achieved
within the general class of coverage models (Narendra and Schachter 1983) progress may
be possible also.

The model, being linear, can readily be extended, at least in principle, to many
other areas of interest. A particular case is that in which the noise is correlated with
the underlying image. For given the cross-correlation, (2.5) may easily be generalized.
In practice however it is difficult to envisage how, from a single noisy image, one might
isolate the separate components of the spatial variability. Given the knowledge that
the noise is independent of the given underlying image, it is possible to envisage studies
aimed at the analysis of the noise per se. It should be noted that many of the examples
discussed, for example in the discussion of Besag (1986) pertain to remote sensing of
the Earth. Here there is often very little noise as such (except as in cloud, an extreme
example of correlated noise), and the problem is one of ’unimportant detail’.

The main remaining, and as yet insurmountable, difficulty is that error rate is but
one measure of performance, and sometimes a poor one at that.
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