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ABSTRACT

We investigate the effects of various types of prior information for use
in medical image reconstruction. The setting in which this is done
is reconstruction of an image (f) based on measured data (g), where
the two are related via the linear imaging equation g = Hf, where
H represents the point spread function of the imaging system. The
system considered here is a multiple-pinhole coded-aperture imaging
system. Because the dimension of g is much less than the dimension
of f, we have a severely under-determined set of equations.

A coded-aperture imaging system is simulated and reconstruc-
tions are performed. The object that we reconstruct is a digitized
picture of the left ventricle and the surrounding heart muscle. This
gives rise to a "nearly binary" picture. Comparisons of the various
types of prior information are made.
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1. Introduction

The use of maximum likelihood estimation in emission tomography has been studied
extensively since Shepp and Vardi (1982) and, independently, Lange and Carson (1984)
introduced the expectation maximization (EM) algorithm (Dempster et. al. (1977)) as
a means of finding the maximum likelihood estimate (MLE) of the average intensity of
radioactivity within a pixel. Since then, it has been demonstrated by several that the
method of maximum likelihood estimation is not well suited to the emission tomography
problem (Snyder k Miller (1985), Veklerov k Llacer (1987), Geman k McClure (1985),
Liang k Hart (1987a, 1987b)) due to noise in the data and also the unbounded nature
of the likelihood function.

To ameliorate these problems, several approaches have been taken, all of which
have the same basic characteristic of "smoothing" the estimate by not forcing strict
agreement with the data (strict agreement with the data is one of the pitfalls of the
MLE) (Snyder k Miller (1985), Veklerov k Llacer (1987), Geman k McClure (1985a,
1985b), Liang k Hart (1987a, 1987b, 1987c), Miller et. al. (1986), Hart k Liang (1987),
Levitan k Herman (1987)).

Among these approaches is utilization of prior information about the object which
is being estimated (or reconstructed). There have been studies that have used prior
information of varying degrees which, at least aesthetically, appear to yield reconstruc-
tions superior to those of the MLE (Geman k McClure (1985a, 1985b), Liang k Hart
(1987a, 1987b, 1987c), Hart k Liang (1987), Levitan k Herman (1987)).

In this study, we propose to use prior information that is quite restrictive (and per-
haps therefore very problem-or object-dependent) and various ways of incorporating this
prior knowledge into our reconstruction schemes. The application is reconstruction of
medical images in emission tomography. We simulate a multiple-pinhole coded-aperture
imaging system for use in the reconstruction of a digitized version of a photograph of
the left ventricle and its surrounding heart muscle (Figure 4a). This particular object is
well approximated as being binary, and this knowledge (which is quite restrictive) is one
of the pieces of prior information that is used (others are discussed below). Simulations
are performed and reconstructions using varying degrees of prior information are made.

Section II contains a brief explanation of what is involved in a multiple-pinhole
coded-aperture imaging system, and the problem of estimation (or reconstruction) of an
object in the emission tomography setting is developed. Section III sets the problem up
in a statistical framework and shows how the prior information is incorporated into the
reconstruction schemes. Section IV contains the results of the reconstruction schemes
that are introduced in the previous section. Section V suggests directions for further
work and conclusions.

2. Emission tomography and coded-aperture imaging

In the field of nuclear medicine, the goal of emission tomography is to estimate the
activity distribution of a radioactive pharmaceutical that has been taken up in varying
amounts by a specific target organ (e.g. brain, heart, liver) in the human body. In
single-photon emission computed tomography (SPECT), the radioactive pharmaceutical
is absorbed by the target organ and radiation is subsequently emitted from the organ
in the form of gamma rays. The activity distribution in the organ is then estimated (as
a function of position) by knowledge of detected photon emissions.

Suppose that a bank of (discrete) detectors is arranged around the source (the



92 Gooley, Barrett, Roney &; Smith - VII

radiation-emitting organ) in some fashion, and denote the average value at the ith
detector element by J7t . If the object is then denoted by /(#,y), we can represent 'gi as

9i = J hi(x, y)f(x, y)dx dy, (2.1)

where the integral is taken over the region of support of /(z, y). Here Λί(#, y) represents
the point-spread function of the imaging system associated with the ith detector and
can be thought of as giving the response in (discrete) data space to a point source in
(continuous) object space. Now suppose that the object f(x,y) is expressed in terms of
a set of basis functions, {UJ, (x, t/)}, as

where / ; represents the weight of the jth basis function. We then have

Ii = I hi(x)y)lγ^fjuj(x,y) \dxdy = Y^lj hi(x,y)uj(x,y)dx dy\ ft = ]

(2.3)
where it has been assumed that the integration and summation signs can be inter-
changed. This equation can be expressed in matrix form as g = Hf, where the dimen-
sion of g is equal to the number of detector elements and the dimension of f is equal to
the number of basis functions. The notation g has been used to signify that the gt given
by (2.3) is to be interpreted as an average value. In the work reported here, f(x,y)
is discretized into a matrix of square pixels so that fj represents the average activity
distribution over pixel j , and Uj(x, y) represents a rectangle function occupying the area
corresponding to pixel j .

The number of elements in the vector / corresponds to the number of pixels in the
discretized object. Inherent to any data collection configuration is the effect of noise.
For this reason, what is actually observed is not g{ as given by (2.3), but additive noise
in addition to this g, . There is also a noise factor that results from the error introduced
by discretization of /(#,y). Because of the noise, we now write g = Hf -f n, where n
is a noise vector, and where it is understood that the g given here is the data that are
actually observed and not the average g, or g, as written in g = Hf.

The way that the point-spread function (and hence the matrix H, which is also
referred to as the projection operator) is determined, and therefore the manner in which
the data are collected, is dependent upon the sort of imaging system used. In the current
work, we shall simulate what we call a multiple-pinhole coded-apertures imaging system.
Fresnel zone plate coded-aperture were used in nuclear medicine by Barrett (1972), and
Rogers, et. al., (1972) in 1972. See also (Mertz k Young (1961), Dicke (1968), Tipton
et. al. (1976)). A schematic of a particular two-dimensional multiple-pinhole coded-
aperture system is shown below in Figure 1.

The system depicted here is the one that was simulated for the current work. Here
we have discretized the object space into a 39 x 39 set of square pixels. Each pixel then
takes on a certain value which represents the average activity distribution within that
pixel, and the goal once again is to estimate this number. The radiation emitted from
object space can get to detector space only through the openings, which are pinholes in
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Figure 1. A schematic of the two-dimensional multiple-pinhole coded-aperture
imaging system simulated for this study

this study, in the aperture plane. The location and number of pinholes (or openings) is
referred to as the code of the aperture.

In Figure 1 we have depicted what is known as an orthogonal-view system. The
detectors are modular scintillation cameras, which have been designed and built in our
research group (Aarsvold et. al. (1988), Milster (1987)). In the simulations done here,
we have used 64 detector elements in each view for a total of 128 detector elements and
a 39 x 39 discretized version of the object for a total of 1521 pixels or basis functions.
This means that in the equation g = Hf+n, g and n are (128 x 1) column vectors, f is
a (1521 x 1) column vector, and H is then a (128 x 1521) matrix. The problem then, is
given the data g, estimate (reconstruct) the discretized object f based upon g and also
based upon any prior information that one might have concerning the object.

3. Use of the prior information

As have been done by many others, we view the reconstruction problem statistically
(Shepp k Vardi (1982), Lange k Carson (1984), Snyder k Miller (1985), Veklerov k
Llacer (1987), Geman k McClure (1985a, 1985b), Liang k Hart (1987a, 1987b, 1987c),
Miller et. al. (1986), Hart k Liang (1987), Levitan k Herman (1987), Jennison k
Jubb (1987)). Specifically, we view the collection of the data as a Poisson process, so
that each gι is an independently distributed random variable with mean equal to the
zth component of the vector Hf. We assume that there are m detector elements which
gives the likelihood function of the data as

(ft)!
(3.1)



94 Gooley, Barrett, Roney k. Smith - VII

where we unabashedly fail to distinguish between a random variable and the value of
a random variable with our notation. The principle of maximum a posteriori (map)
estimation would then tell us to find the f that solves

maxp(f|g), or equivalently, maxp(g|f)p(f), (3.2)

where p(f) is the prior distribution on the object f. For various specifications of p(f), see
(Geman k McClure (1985a, 1985b), Liang & Hart (1987a, 1987b, 1987c), Hart & Liang
(1987), Levitan k Heman (1987), Jennison & Jubb (1987)). If then, we have any prior
information about the object that we wish to use, we need to specify this in terms of
some p(ΐ) or else incorporate it into our reconstruction scheme in some other manner.

The prior information that will be used in this work is as follows:

(1) We assume that the object is nearly binary. By this it is meant that each pixel
must be very near one of two distinct values.

(2) Neighboring pixels tend to behave alike. In other words, if two pixels are defined
to be neighbors (e.g. pixels which sit adjacent to each other), they would tend to
have the same (or very near the same) average activity throughout the pixel. This
will not always be the case, for example, near the inner and outer boundaries of
the heart muscle around the left ventricle.

(3) The activity in each pixel is non-negative.

Motivated by the first assumption, we model the marginal distribution of each pixel
as the sum of two normal distributions, where each normal distribution has a mean equal
to one of the two binary values, say a or b. Due to the second assumption, we would
expect that if pixel i took on a certain value /,-, then a neighboring pixel, say pixel j,
would take on a value fj the same as, or very near / t . Pictorially, this is depicted in
a simple two-pixel example by Figure 2 below. The conditional distribution of pixel 1
given pixel 2, p(/i 1/2)5 reflects this neighbor dependence.

What we would like to do then, is choose the value of pixel k, /*, based upon
knowledge of values of the neighbors of pixel k. We therefore choose fk from the
conditional distribution of pixel k given values of the neighbors of pixel &, p(fk\dfk),
where the notation dfk denotes the given values that the neighbors of pixel k assume.
This distribution is approximated by the expression

P(h\dfk) a p(fk\h € A)p(fk eA) + p(fk\fk e B)p(h G B), (3.3)

where p(fk\fk € A) is the probability that pixel k takes on value fk given that it came
from class A, and p(fk G A) is the probability that k comes from class A. A similar
explanation holds for class B. Note that this expression is simply a weighted sum of the
two normal distributions of mean a and 6, respectively, where the weights (p(fi G •))
carry the dependence of pixel k upon its neighbors.

Once fk is chosen, this value along with the current values for all other pixels forms
an estimate of f, say f. This procedure of choosing fk based upon neighboring values is
repeated over and over for each pixel, thus generating a series of estimates. The "best"
estimate then is defined as the one that solves

maxp(g|f), (3.4)
16 F
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Figure 2. The /i and /2 axes contain the possible values that pixel 1 and pixel 2,
respectively, can take on. These possible values follow a distribution that is the sum
of two normal laws, say N(a,σ2

a) and N(b,σ2

h). Each pixel is classified as belonging
to class A or class B according to which side of the dividing line it falls on. The
conditional distribution of fx given /2 reflects the amount of correlation between
pixel 1 and pixel 2.

where F denotes the class of estimates that is consistent with the above sampling
procedure. The maximum in (3.4) is estimated using the simulated annealing algorithm.
Simulated annealing is a Monte Carlo procedure that estimates the global extremum of
a function. For details on this algorithm, see (Geman & Geman (1984), Mitra et. al.
(1986), van Laarhoven k Aarts (1987), Smith et. al. (1985), Paxman et. al. (1985)).

Notice that by using the sampling procedure explained above, we are encouraging
(forcing actually, at least to the extent that the variances put on the normal distributions
allow) nearly binary objects. We are also encouraging neighbors to behave alike by
choosing a pixePs value from this "conditional" distribution since it is chosen to agree
in some sense with its neighbors. Results of this technique are shown in Figure 4b.

To investigate the effect of the binary restriction and the agreeing-neighbors re-
lation, we sampled fk from a uniform distribution as opposed to this "conditional"
distribution since the uniform distribution by itself does nothing to encourage binary
objects or neighbors to behave alike. The solution to (3.4) is then sought, where F now
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Figure 4a. The object to be reconstructed. As stated earlier, this is a digitized
version of the left ventricle and the surrounding heart muscle.

Figure 4b. The estimate of the solution of (3.4), where F is taken to be the class
of estimates consistent with the "conditional" sampling scheme. In Figure 3, the
boxes indexed (2,1) and (2,2) would be checked, i.e., the smoothness and binary
constraints are introduced only through the sampling scheme.

becomes the class of estimates consistent with the uniform sampling procedure. Results
of this are shown in Figure 4d.

Figure 4c. A 3 x 3 median-filtered version of 4b.
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Figure 4d. The estimate of the solution to (.4), where F is taken to be the class of
estimates consistent with the uniform sampling scheme. In Figure 3, none of the
boxes would be checked, i.e., neither the smoothness nor the binary constraint is
introduced as prior information.

Equation (3.4) is now modified by including a term for a prior p(f). The form of
p(f) used gives a "prize" for the object being nearly binary and is simply taken as the
product of all marginals p(/»), i.e.

n

p(f) = JJpft). (3.5)

Recall that each p(fi) is represented as the sum of two normal distributions so that

where K\^Ki are normalizing constants, and σ^,σ| are the variances of the normal
distributions of mean a and 6, respectively. This form of p(ΐ) obviously does not assume
any correlation or smoothness in f since independence is necessarily assumed for p(f) to
be formulated in the above manner.

Figure 4e. A 3 x 3 median-filtered version of 4d.
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Figure 4f. The estimate of the solution to (3.7), where F is taken to be the class
of estimates consistent with the "conditional" sampling scheme. In Figure 3, the
boxes indexed (1,2), (2,1), and (2,2) would be checked, i.e., smoothness and bi-
nary constraints are introduced through the sampling scheme, while the binary
constraint is reinforced by specification of p(f).

We therefore attempt to introduce the smoothness or correlation in the reconstruc-
tion by resorting to the "conditional" sampling technique. The problem to solve then
becomes

maxp(g|f)p(f), (3.7)
ί

where p(f) is given by (3.5), (3.6) and F is the class of estimates consistent with the
appropriate sampling scheme. Results of this procedure, where F is taken to be the class
of estimates consistent with the "conditional" sampling scheme, are shown in Figure 4f.

Figure 4g. A 3 x 3 median-filtered version of 4f.

Now note that the binary structure of the reconstruction is appearing through the
specification of p(f) as well as through our "conditional" sampling procedure, and that
this sampling also tends to encourage neighbors to behave similarly. We then, as done
above, sample fk from a uniform distribution as opposed to the "conditional" distribu-
tion, which would seem to take away the similar-neighbors constraint yet maintain the
binary aspect because of the p(f) term. This means that F is then taken as the class
of estimates consistent with the uniform sampling scheme. These results are shown in
Figure 4h.
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Figure 4h. The estimate of the solution of (3.7), where F is taken to be the class
of estimates consistent with the uniform sampling scheme. In Figure 3, the box in-
dexed (1,2) would be checked, i.e., the binary constraint is introduced only through
specification of p(ΐ).

We have attempted in this section, to incorporate some quite restrictive prior in-
formation into our reconstruction scheme in a somewhat different manner. Two ways
of introducing our prior knowledge were considered: (1) by specification of p(f); (2) by
choosing estimates from a restricted class of estimates. This may be summarized in the
2 x 2 table shown below in Figure 3.

p(f)

sampling
f

smoothness

( i . i )

(2.1)

binary

( 1 , 2 )

( 2 . 2 )

Figure 3. The rows of this table represent the two ways in which the prior informa-
tion has been introduced into our reconstruction schemes. The columns represent
the type of prior information that we introduce.

Depending on which of the schemes discussed earlier is used, the appropriate in-
dexed box (or boxes) in this table may then be checked accordingly.

4. Results

In this section, reconstructions using the schemes discussed in Section 3 are shown.

We have not proposed a figure of merit to compare these reconstructions by other
than simply viewing them and then deciding which one looks most like the original
object. Using this criterion, it appears that the reconstruction scheme that utilizes
the greatest amount of prior information that we have suggested here is the one that
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Figure 4i. A 3 x 3 median-filtered version of 4h.

most resembles the original, i.e. Figure 4f (and the filtered version of 4f, Figure 4g).
As expected, when the binary constraint is not enforced, the reconstruction exhibits
intermediate grey levels as seen in Figure 4d (and the filtered version of 4d, Figure 4e).
Figures 4b and 4h appear to be quite similar, but one could perhaps argue that 4b has
fewer "isolated" pixels. This may be a result of the "conditional" sampling scheme used
to obtain Figure 4b, as this sampling scheme was not used in the reconstruction Figure
4h.

5. Conclusions and further directions

As stated at the end of Section 3, we looked at two ways of introducing some
rather restrictive prior information into our reconstruction schemes. These two ways
were summarized in the table shown in Figure 3. We have not, by any means, even
begun to exhaust all the possibilities for scenarios within this 2 x 2 table. There are
many choices of p(f) which could be used to reflect certain prior beliefs. For example,
Jennison and Jubb (1987) attempt to capture the smoothness of an (binary) image by
modeling the prior density as a Markov Random Field which has the effect of penalizing
restorations which have a large number of discrepant neighbors. The initial results of the
current study are, nonetheless, encouraging. By looking at the various reconstructions
presented in Section 4, it appeared that the ones utilizing the most prior information
were the ones that most resembled the original object.

In the future, we plan to do some studies which involve certain figures of merit
to help us judge the worth of the different schemes. In particular, we plan to do
psychophysical studies to see how the human observer would perform given a certain
task. After all, our ultimate goal is to present a physician with a picture from which
he/she can make the most accurate diagnosis can be made. It is far from obvious that
the most aesthetically pleasing picture to the eye is the one which would yield the best
diagnosis, especially if the object has a great deal of structure.

More realistic simulations must also be undertaken. Particularly, a better job (i.e.,
more realistic) of simulating the projection operator H needs to be considered. Finally,
we would like to do all this analysis with real data collected from a multiple-pinhole
coded-aperture imaging system.
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