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ABSTRACT

It is often the case that the future growth of an entity depends not
only on its current size but on its shape as well. For example, dis-
covery of a spheroidal tumor of volume V in a patient would likely
be viewed differently by an oncologist than discovery of two adjacent
spheroidal tumors each of volume V/2. Much of the literature on
growth models ignores the shape aspect. Through stochastic geomet-
ric models, their simulation and their fitting to data, it is shown how
growth processes can be modeled morphologically.
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1. Introduction

Growth of an entity can be observed and measured in a number of different ways;
it is rarely one-dimensional, leading to ambiguity as to how the process can be sum-
marized and analyzed. For example, cellular organization is known to be important in
characterizing tumor growth (Rubin, 1982), but most of the mathematical models have
used one-dimensional summaries (e.g., volume, number of cells, leading front, mean ra-
dius) of the tumor in (sometimes stochastic) differential equations. These contributions
(see e.g., Laird, 1964; Burton, 1966; Saidel et al., 1976; Sawyer, 1977; Hanson and Tier,
1982; Bartoszynski et al., 1982; Le Cam, 1982; Miller et al., 1982; Adam, 1986; Swan,
1987) are typically answering different questions than are being asked in this article,
and are usually meant for applications where incidence data on many cancer patients
are available.

The spatial component of growth models, while less prominent, has not been ignored
completely (see e.g., Shymko and Glass, 1976; Green 1980; Goodall, 1985; Tautu, 1986;
Adam, 1987). Furthermore, interacting particle models, built at the cellular level (see
Section 2.2) allow simulations of and conjectures about the shape of tumors. Theoretical
results have appeared that show the tumor to be asymptotically (i.e., as time tends
to infinity) circular. Nevertheless, none of these articles is relevant to the inference
problems encountered when analyzing data like the sequence of images presented in
Section 3.

I am interested in following the growth of one tumor in one patient at a supracellular
level, and modeling its changes in shape and size. Necessarily then, the data have to be
good quality images, sequenced at fixed time intervals apart, and photographed under
identical conditions. In vivo data of this type are unknown (to me), partly because
tumors have been surgically removed as soon as possible after discovery, partly because
the precision of X-ray pictures has been inadequate for detailing tumor shape, and
partly because the importance of taking pictures under identical conditions, sequenced
at fixed time intervals, has not been clinically appreciated. Apart from simply looking at
the sequence of pictures, how can the clinician analyze such data? This article explores
some possibilities in this direction. It is hoped that more theoretical research in image
analysis, combined with higher resolution sensing, will lead to a better description and
understanding of tumor growth. Good quality in vitro pictures are analyzed in Section
3 in this article, to demonstrate what can be done at present; the fits are remarkably
good.

By now, molecular biologists know quite a lot about the formation of cancer cells
and there are a number of theories that explain their clinical observations. It is not my
intention here to give a comprehensive review of this literature, nor is it immediately
relevant to the spatial scale at which the above-mentioned image data are analyzed.
Nevertheless, it seems that several aspects are worth mentioning.

A good review of the mathematical theories of carcinogenesis can be found in
the papers by Whittemore (1978), Whittemore and Keller (1978), Forbes and Gibberd
(1984), and Murdoch et al. (1987). The process of carcinogenesis is generally considered
to follow the degeneration of a normal cell to a malignant state through a finite number
of intermediate stages; heritable alterations to the cell are accumulated at each stage.
What causes this degeneration? It is generally thought that it starts at the level of
DNA, the genetic material of the cell. Normal cells contain DNA segments called
protooncogenes that appear to be responsible for regulation of cell growth. A carcinogen
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alters the DNA by transforming protooncogenes to oncogenes (DNA segments that
produce cancer when transferred to normal cells). The effects of exposure to a carcinogen
are often not seen for many years after the exposure occurred.

Other factors, such as hormones, dietary components, asbestos, etc. (called pro-
moters) then modify cells or body defence mechanisms to allow for more rapid growth
once the cellular DNA has been altered. Cell organization is also important, but it
seems that this spatial component has not been given the attention it deserves (Ru-
bin, 1982, 1985). The implication is that to understand tumor growth in humans, it
is necessary to understand the growth process at the supracellular as well as the cel-
lular level. Section 2 builds a spatial model of growth that can be interpreted at both
global and local levels; to illustrate the flexibility of the model, various simulations are
presented. Section 3 summarizes a model-based analysis of a sequence of images of a
tumor growing. Discussion and conclusions are given in Section 4.

2. Random-set models

A theory of random sets, proposed independently by Matheron (1971, 1975) and
Kendall (1974), has been developed to handle data collected by imaging or probing
an object. Cressie and Laslett (1987) summarize the theory and identify the hitting
function as an analogue of the cumulative distribution function for random variables.

Suppose X is a random set in Rd;

Tχ(K) = Pr(X Π K φ 0); K G /C, (2.1)

where K, is the space of all compact set in Rd, is defined to be the hitting function of X.
Choquet's theorem for random sets (Matheron, 1971) states that X is characterized by
its hitting function Tx. In principle then, random-set models can be constructed from
specification of the hitting function up to several unknown parameters, and data can
be used to make inference on these parameters.

Cressie and Laslett (1987) argue that the real potential of random-set theory is yet
to be realized because of a dearth of hit ting-function models. One class of models, viz.
the Boolean models, have a particularly simple hitting function:

Tχ{K) = 1 - exp{-XE(\Z Θ A'|)}; K G K. (2.2)

Some explanation of the notation in (2.2) is needed:

A Θ B = {a + b : a G A, b G B}; A, B C Rd, (2.3)

\A\ = ί ds; AC Rd. (2.4)
JA

The random set known as the Boolean model is obtained as follows:

(i) The events {sl5 s2,...} of a homogeneous Poisson point process D, intensity λ, form

the germs (or foci) of the model.

(ii) Independent and identically distributed random sets Zu Z2,..., are generated ac-
cording to the probability law of the random set Z\ these form the grains of the
model.
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(iii) The grains are translated to the germs:

(iv) The union of the sets in (iii) define the Boolean model X:

X Ξ U ί Z i f o ) :%€£>}, (2.5)

where D is a homogeneous Poisson point process, and

Aφ{h}. (2.6)

Cressie and Laslett (1987) summarize various generalizations that are possible; in
particular, if (i) is modified to:

(i*) The events {s1,s2,...} of an inhomogeneous Poisson point process D, intensity
function {λ(s) : s G Rd}, form the germs (or foci) of the model,

then X given by (2.5) has hitting function,

TX(K) = 1 - exp{-£(|2 φ K\χ)}; K € K, (2.7)

where

\A\X = / λ(s)da. (2.8)
J A

The idea of tumor growth occurring at (random) germs or foci, as in the Boolean
model, is clinically verifiable (Chover and King, 1985). The same principle is now
applied to the tumor itself as it grows, viz. within the tumor there are foci about which
growth occurs. Needless to say, there will be orders of magnitude more foci in malignant
tissue than in normal tissue. Let Xι denote the tumor at time 2 = 1, and F\ C X\
denote the foci, countable in number. Then the tumor at time t — 2 is modeled to be:

X2 = υ{Zi(si):si(EF1}, (2.9)

where Z i , ^ , . . . , are independent copies of a random set Z. This model was first
proposed by Cressie (1984), where JF\ consisted of Poisson points, homogeneous on Xχ\
more details are given in Section 2.1. The case where F\ is a countable number of
regularly-spaced nodes of a grid in Rd is considered in Section 2.2.

2.1 Poisson foci

For Poisson foci in Xι, the model (2.9) can be written as

X2 = \J{Zifa) : S i G £>}, (2.10)

where from (i*), D is an inhomogeneous Poisson process with intensity function,
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Then (2.7) yields the hitting function,

Tχ2(K) = 1 - exp{-\E(\(Z φ K) Π X (2.12)

which is used extensively in analyzing the tumor-growth data of Section 3.

Simulations of (2.10) yield pictures that evoke images of tumor growth. Figure 1
shows a progression from an initial disk in (a) through to an irregular set in (d). Each
set is generated from the previous one via the relations (2.10) and (2.11), with grain Z in
each case being a disk centered at the origin, of fixed radius. This spheroidal growth is
often seen in experiments (Haji-Karim and Carlsson, 1978; Martinez and Griego, 1980),
and has been proved mathematically for certain stochastic models of tumor growth
(Richardson, 1973; Schurger, 1979; Bramson and Griffeath, 1980, 1981; Durrett and
Liggett, 1981).

(b)

(O

Figure 1: Simulation of the model (2.10), (2.11), where (a) shows the disk (circle
and its interior) Xι, and (b) shows X^. The set X3 in (c) is obtained from X2 in
the same way X2 is obtained from X\\ similarly for X4 in (d). The random grain
Z is a disk of fixed radius.

It is not expected that simulations such as Figure 1 are a realistic picture of in
vivo growth over long time periods. Initially, the growth is uninhibited, but before
long lack of blood supply to parts of the tumor, as well as tissue barriers, result in a
more complicated growth pattern. It is not my intention to model such patterns here,
but I shall mention other researchers who have; without exception they are only able
to simulate and not to perform statistical inference (cf. Section 3) with their models.
Notable is the work of Duchting (1980) and his co-workers (Duchting and Dehl, 1980;
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Duchting and Vogelsaenger, 1981, 1983). See also Ransom (1977), who models and then
simulates the displacements that occur when interior tumor cells divide.

It is my hope that the model (2.10), (2.11) provides a good description of a variety
of growth processes; this will depend on the spatial scale of observations and the type
of questions being asked. An important requirement is to be able to make statistical
inferences about λ and the law of J£, from data X\ and X2. Section 3 discusses this
important inferential aspect.

2.2 Nonrandom foci

Suppose F\ in (2.9) is an at most countable collection of foci, where the foci loca-
tions {§^§2,...} are fixed. Define

TZ{K) = Pr(Z Π K φ 0); K G /C, (2.13)

the hitting function of the grain Z. Then from (2.9), (2.13),

TX9(K) = 1 - .§{1 - Tz(/f (-a,-))}; K € IC. (2.14)

A special case is when F\ is the set of nodes of a regular grid; in R2,

It is easy to simulate
X2 = U{Zi(si):sieF1}, (2.16)

where F\ is given by (2.15). Figure 2 shows the analogous simulation to Figure 1, where
now foci are nonrandom and belong to a square grid in X\\ the grains are once again
disks of fixed radius.
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Figure 2: Same as in Figure 1, except now the model (2.16) is used to simulate
growth.
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Grains need not be disks, and if one is modeling tumor growth at the cellular level,
it makes more sense to choose them as rectangular blocks (dominoes) of dimension
2Δ x Δ, where Δ is the square-grid spacing. A growth process can then be generated
by (2.16), where Z is a north-pointing domino with probability (wp) pλ, a south-pointing
domino wp p2, an east-pointing domino wp p3, a west-pointing domino wp p 4, and a
Δ x Δ square wp 1 — pi — p2 — P3 — p±. Figure 3 shows an analogous simulation to
Figure 2 (i.e., regular foci) with these dominoes and the square as realizations of the
random grain.
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Figure 3: Same as in Figure 2, except now the random grain Z is a square wp 1/5,
or dominoes in each of the four directions, each wp 1/5.

A natural question to ask is whether models of the type presented in Figure 3 have
anything in common with interacting particle systems (see e.g., Liggett, 1985; Durrett,
1988). Although the latter are typically continuous time models, they can be discretized
in time by considering small time intervals. That is, they are Markov processes whose
state ξt at time t is a subset of Z2 (more generally Zrf), and for u small:

(i) tumor cells die at rate δ; i.e.,

(2.17)

(ii) tumor cells are born at rate 6s(£*); i.e.,

.«. (2.18)

Contact processes occur when 6§(&) = 0 if s is not a nearest neighbor of any point in
ξt (Harris, 1974).
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Suppose ξ\ is given and ξi+u is the random set obtained from the Markov process
(2.17) and (2.18); u small. Let F\ = ξι in (2.16). Does there exist a random grain Z
in (2.16) that yields the random set X2, identical in distribution to ξi+u? Consider the
contact process, &s(0 = number of points in (ξ Π JV§), where N$ = {r : ||r — s|| = 1};
then clearly such a random grain does exist (Figure 3 gives an example where δ = 0;
when δ > 0, Z = 0 with a positive probability). But the contact process just described
is simply the Williams-Bjerknes (1972) tumor growth model (which was built in two
dimensions since they were restricting attention to the basal layer of an epithelium).
Eden's (1961) model is the special case δ = 0. Thus, the process defined by repeated
application of (2.9) is flexible enough to include various contact processes as special
cases.

Much research has been devoted to these models, usually with the aim of obtaining
asymptotic (t —* oo) properties such as an asymptotically circular shape (Richardson,
1973; Schurger, 1979; Bramson and Griffeath, 1980, 1981; Durrett and Liggett, 1981),
a critical value of δ above which the tumor eventually dies out (Harris, 1974; Griffeath,
1981; Andjel, 1988), and rates of convergence (Griffeath, 1981).

To test out the asymptotically circular shape mentioned above, I used the same
parameters as in Figure 3, but now with a rectangular initial set X\. Shown in (a)
through (d) of Figure 4 are generations of the tumor at respectively, t — 1, t — 6,
t = 11, and t = 16.
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Figure 4: Same as in Figure 3, except now X\ is a rectangle and not a disk, and
( b ) i s X 6 , ( c ) i s X U ) ( d ) i s X 1 6 .
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2.3 Discussion

One could now return to the Poisson-foci case of Section 2.1 and ask the same
questions on asymptotics as in Section 2.2. Most notably, is there an asymptotically
circular shape? I conjecture that there is; see Figure 1.

One could also combine the approaches of Sections 2.1 and 2.2 and build a random-
set model based on random regular foci. Suppose F\ is defined by (2.15); define F* as
follows. For each st G F i , ^ G F* wp p, , independently of whether ŝ  G Ff, for any
.;' φ i. Finally, define

):si £F?}, (2.19)

where Z\, Z^,... are independent copies of the random set Z (with hitting function
The hitting function of X2 is,

oo

TX3(K) = 1 - Π [1 - Pi +Pi{l - TZ(K(-Si))}]; K € K. (2.20)
1 = 1

If pi ~ λ.ds, , where cfej is an infinitesimal area element about st , then

Tχ2(K) ~ 1 - exp{-λ / Tz(K(-s)ds}

= 1 - exp{-XE(\(Z Θ K) Π Xι I)}.

Thus lim Tχ2(K) is precisely (2.12), the hitting function of the random-set model based
Δ—*Ό

on Poisson foci (as it should be).

3. Analyzing tumor growth data

Figure 5 depicts a sequence of 3 digitized images obtained from in vitro growth
of a human breast cancer cell line; shown are the boundaries of the same cell island
pictured 72 hours apart. These data were supplied by Dr. G.C. Buehring (School of
Public Health, University of California, Berkeley) and come from experiments like those
described in Buehring and Williams (1976). The data are truly two-dimensional since
the tumor was grown on a flat dish covered with a nutrient medium.

The model I shall fit to these data is described in Section 2.1. My reason for
using this model, which admittedly requires certain unverified (but not implausible)
assumptions, goes as follows. Since Poisson foci are seen in normal tissue, I assume that
the same occurs in malignant tissue, only at very, very much higher intensities. Since
at the cellular level asymptotic growth is spheroidal, I assume that at the supracellular
level (after 72 hours of growth), the grains are disks with random radius R.

After transformation to spaces where the model is likely to hold, data of Figure 5
are analyzed by matching theoretical hitting functions given by (2.12), with empirical
hitting functions calculated from the images. This yields estimates and standard de-
viations of parameters λ, E(R) and var(Ή). Full details can be found in Cressie and
Hulting (1989). I shall present a summary of their results below.

Table 1 shows estimates (along with biases and standard deviations) of model
parameters for time-l-to-time-2 growth and for time-2-to-time-3 growth. There is clearly
a significant difference in λ (foci intensities) and E{R) (grain sizes) over the two growth
periods.
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ύ
(b)

0 QJrwn

Figure 5: Digitized boundary of cancer cells grown in vitro; (a), (b), and (c) repre-
sent the same cell island photographed 72 hours apart.

To see how much of this difference is simply due to the disparity of size of the
initial cell island in the two growth periods, each of the estimates was standardized so
that the initial cell island had a "size" of 1. This was achieved by computing the mean
caliper width (average of the largest inscribed circle and smallest circumscribed circle)
for Xι ("size" of Xι) and rescaling the analysis of the first growth period by this size.
The same was done with X2 for the second growth period. Since the estimators from
which Table 1 is calculated, are equivariant under scale change, it is a simple matter to
compute standardized model-parameter estimates; these are presented in Table 2.

Table 2 refers to shape information in the data. The shape of X2 is significantly
different from that of X3, as evidenced by a significantly larger Poisson foci intensity
and a significantly smaller grain radius, during the earlier period of growth. From
simulations, I have determined that a growth process given by (2.10) with larger radius
and smaller intensity is more dangerous in the sense that the area of the future cell
island tends to be larger. As has been mentioned before, this accelerated growth in the
latter period will likely not continue in vivo due to lack of blood supply and to tissue
barriers,

4. Conclusions

The sequential growth models given by (2.10), (2,16), and (2.19), are a very flexible
class, whose hitting functions can be computed (see (2.2), (2.14), and (2.20) respec-
tively). In fact, the Williams-Bjerknes (1972) tumor growth process is seen to be a
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TABLE 1

Estimates of growth parameters, their standard deviations, and their biases.

time 1 to time 2

parameter estimate (sd) [bias]

λ
E{r)

var (R)

parameter

λ
E(R)

var (R)

438.495 m m " 2

0.11492 mm
0.000357 mm 2

time 2 to

estimate

59.685 m m " 2

0.2975 mm
0.00133 mm 2

(24.733)
(0.00225)
(0.00009)

time 3

(sd)

(4.7035)
(0.00737)
(0.00077)

[0.0]
[0.00012]

[-0.00001]

[bias]

[0.0]
[0.00057]

[-0.00001]

special case of (2.16). But, from a statistician's viewpoint, flexibility and simulated pic-
tures are not enough to solve the inverse problem, viz. given data, what are the "most
likely" parameters to have generated those data? Inference on image data is addressed
in Section 3.

Cressie and Hulting (1989) provide evidence that the tumor growth model of Section
2.1, with appropriately estimated parameters, provides an excellent fit to the data in
Figure 5. Although the actual growth process clearly does not occur according to the
time scale of 72 hours, the Poisson-foci model fitted may provide a conjecture about
how the tumor is growing. Why and how do these foci of growth develop? Moreover,
growth where the foci intensity is high but the growth radii are small may yield identical
cell island area at time 2, to the situation where foci intensity is low but the growth
radii are large. However the cell island appears to take on a different character in these
two situations. How can the estimable parameters, viz. foci intensity and moments of
growth radius, be used to explain this "character"? Simulation indicates that the latter
is more dangerous since it represents greater growth potential.
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TABLE 2

Estimates of growth parameters, their standard deviations, and their biases, after stan-
dardization by size (size = mean caliper width)

time 1 to time 2 (size of Xλ = 0.1097 mm)

parameter estimate (sd) [bias]

λ
E(R)

var (R)

5.26194
1.04758
0.02978

(0.29682)
(0.02050)
(0.00764)

[0.0]
[0.00113]

[-0.00071]

time 2 to time 3 (size of X2 - 0.2604 mm)

parameter estimate (sd) [bias]

λ 4.04668 (0.31894) [0.0]
E(R) 1.14240 (0.02826) [0.00221]

var(#) 0.01967 (0.01142) [-0.00146]
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