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We consider random walks whose laws are perturbed in an irregular way by

a second random mechanism, the so-called random environment. The perturba-

tion acts in such a way that visits to certain randomly chosen points are favoured

or disfavoured. There have been proposed several models in the mathematical

physics literature, sharing the common feature that only very few facts are

known on a rigorous mathematical level. We present here some of these models

and some problems connected with them.

We always look at a random walk on the d-dimensional lattice Z d but we

start by introducing the random environment, the "disorder". It is given by i.i.d.

random variables X(i), i e Zd, satisfying

X(i) > 0 almost surely (1)

EX(i) = l. (2)

X = 1 is then just the case where no perturbation occurs. Sometimes, it is conve-

nient to have a one-dimensional parameter β e R regulating the amount of disor-

der. This can be done by considering

xβ(i) =ePγ<i>/m(β)

where Y(i) are i.i.d. real random variables such that m(β) = E (eβy) < ~ for β in a

neighborhood of 0.

The unperturbed random walk is an ordinary random walk ξ0 = o, ξ l f . . ., ξ τ

on Z d whose jump distribution is given by p(x), x e zd, Σχp(x) = 1, i.e. we have

where io = 0. We always assume that for some ε > 0, we have

£ * ε | x | p (x) < oo and Σ xp(x) = 0.

This random walk and the random environment are chosen to be independent.
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Formally, we consider the probability space

Ω = Ωpathx Ω«nV Ωpath = ί 2 * ) " Ω«nv = W^> w i t h ^ appropriate pIΌdUCt

field and equipped with the probability measure Q = P ® μ2*, where P is the law

of the above defined random walk on Z d and μ is the law of the X(i). The ξ and

the X variables are given by the appropriate projections.

We denote by < > the expectation with respect to ξ and by E(.) the expecta-

tion with respect to the environment variables. Strictly speaking, < > is the

conditional expectation given the X variables and E(.) is the conditional expecta-

tion given the random walk. The total expectation is then given by E(< >).

One natural model for a perturbation would be to introduce the weight factor

and to transform the measure P on the path space Ωp^ for each realization of

the X variables, by considering P T | X defined by

d*r, x/dP(ω) = κτ(X,ξ(ω))/<κτ(X,ξ)>, ω e Ωpath

A typical quantity one is interested in is the mean square displacement

J|^|2dPτ,x= <|ξ^|κτ(X,ξ)>/<kτ(X,ξ)>

and its asymptotic behaviour for large T.

For the model just introduced, essentially nothing seems to be known. It is

related to some problems for random Schrδdinger operators. To see the rela-

tion, it is convenient to switch to a continuous time random walk which, for sim-

plicity is assumed to be just a nearest neigbour symmetric random walk.

Furthermore, we assume that X(i) is of the form exρ(Y(i))/m, where the Y(i) are

i.i.d. Bernoulli random variables taking values 1 or -1. Then

=exp

T

ίjY(ξs)dsl/mΊ

Assuming furthermore d=l, we consider the discrete Laplacian Δ on Z :

Δf(i) = (f(i+l) + f(i-l) - 2f(i))/2. It is known that for almost all realizations of

the Y variables the operator Δ + Y acting on 12 (Z) (Y just by multiplication) has

a pure point spectrum which is dense in [-3,1] and where each eigenvalue has

exponentially decaying eigenfiinctions (see [2]). Therefore <κτ(X,ξ)li(ξχ)>
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can be expanded in terms of these eigenfunctions ψj:

< Kj, (X, ξ) i{ ( ^ ) > = £ e λ ' τ

 Ψ j (0) Ψ j (i).
j

In the limit T -><>o, only those eigenvalues count which are near the upper

edge of the spectrum. However, there seems to be no information available,

where the eigenfunctions are situated. Up to my knowledge, even for d = 1, the

mean square displacement in the above model is not known.

The model of directed polymers in a random environment seems to have

grown out of an even more difficult problem, where one replaces the random

walk ξ by a polymer, i.e. a self avoiding random walk. There seems to exist ab-

solutely no results for this on a mathematical level, but there is a considerable

interest in this in the physics literature. Form background information, see the

introduction of [3] and the references there.

A directed polymer is a caricature of a true polymer, where one makes the

random walk self avoiding just by stepping in one of the dimensions determinis-

tically one step in each time point (we take time discrete again). Of course, we

can identify this special dimension with the discrete time axis. The model is

therefore the same as that introduced in the beginning, with the only difference

that the environment variables now change also independently in time, i.e. we

consider random variables X(i,t), i e z d , te N, which satisfy (1) and (2), and we

put now

There is some disagreement what the "dimension" of such a model is. If the

time axis is considered as one of the space dimensions, the dimension is d + 1 .

It appears clear that this model is much easier than a true polymer in a ran-

dom environment, but despite its simplicity, not much is known on a rigorous

level. There seems to be the general belief that for d = 1 the mean square dis-

placement of ξ τ is for almost all X realizations of order T413 (see e.g. [5], [7]).

The following result is a generalization of the results in [1] and [6]:

Theorem. Let d > 3. There exist δ > 0, depending only on d and the transitions

probabilities p(x), such that ί/var(X) < δ, one has almost surely

a) lim T 1 Y (λ,i)2 μ τ χ ( i ) = (Σλ,λ)
X ϊ Off 4 * B " *• » Λ

A ~* i € Z d
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for all λ € Rd. Here, (.,.) denotes the inner product and Σ is the covariance ma-

trix for p.

-»N(0,Σ) in distribution

This has been proved in [1] for the special case where X = l + ε Z , Z = + l

with probability 1/2 and for the nearest neighbor random walk.

We prove here a) in our slightly more general situation, b) can be proved by

showing the convergence of all moments.

To prove a), one first remarks that for any realization of the random walk ξ

Kχ(X,ξ) is an Fγ martingale, where Fj = σ(X(i,s): i e z d, s < T), which satisfies

E(κT(X,ξ)) = 1. It converges to 0 almost surely, except in the trivial case X = 1.

Then also <κτ(X,ξ)> is an Frmartingale, with E(<Kτ(X,ξ)>) = 1. The tran-

sience of the d-dimensional random walk for d > 3 is now used to prove that this

martingale converges to a strictly positive limit if var(X) is small enough. To

see this, we write

<κτ(X,ξ)>2)=E(<κτ(X,ξ)

where ξ' is an independent copy of ξ . Interchanging E() with < >, we get

E(<KT(X,ξ)>2) = <ΠE(X(ξ s,s)X(ξ'g,s))> = <
8 = 1

where

Ύ Ύ oo

nτ(ξ,ξ') = Σ !ξ =ξ = Σ !ξ -ξ =0* Σ !ξ -ξ =0 = no
S = 1 S s 8 = 1 ^ S S s l ^ S

n^ obviously has an exponential moment, so, if var(X) is small enough, we

have supr E(<Kχ(X,ξ)>2) < «> and, by the martingale convergence theorem,

<κτ(X,ξ)> converges to a limit, say θ with E(θ) = 1. The event

{ ξ =0 }

is clearly measurable with respect to the field σ(X(i,s): i e Zd, s > t) for any t, so,

by the Kolmogorov 0-1-law, we get P(θ > 0) = 1, showing that

P( lim <κτ(X,ξ)> exists and is > 0) = 1. (3)
T—»*°
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To prove a) in our theorem, we use the well known fact that for any λ e Rd

(λ,ξτ)2 - T(λ,Σλ) is a martingale for the filtration of the random walk. Using

that κτ(X,ξ) is an Fτ martingale for a fixed path, we conclude that

M T = <((λ,ξτ)
2 - T(λ,Σλ))κτ(X,ξ)>

is an F-p martingale, and so

T Ld s s j - l o
8 = 1

too. Remark that

Ms - Ms.! = <((λ,ξs)
2 - s(λ,Σλ))κs.1(X,ξ)(X(ξs,s) -1)>. (4)

By a calculation which is slightly more complicated than that above for E<κ-

τ(X,ξ)>2, using (4), one sees that if var(X) is small enough, one has

so Uj converges almost surely, and by the Kronecker lemma, we have

lim i Mτ = 0.
T-x-T τ

From this and (3), part a) in the theorem follows.

It is generally believed that the properties in the theorem no longer hold true

if var(X) is too large, although this is essentially based only on Monte Carlo sim-

ulations (see [4] and the references cited there). This is related to a large devia-

tion problem. We will give a short discussion of this point. To discuss this, it is

convenient to have the one dimensional parameter β as introduced in the begin-

ning, i.e. we consider

where m(β) = E(e^γ) < <*> for Iβl small enough. Our theorem states that for

small enough Iβl, one has the properties a) and b). It is expected that even if Y is

bounded (so m(β) exists for all β) this central limit behavior breaks down for

large enough Iβl. This is not at all understood. The question is connected with

large deviation problem in the following way: We have
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κτ(X,ξ) = exp(βSτ)/m(β)τ,

T

where s τ = ]Γ Y(ξs, s). From the above proved fact that for small enough Iβl
s = l

one has

lim <Kτ(X,ξ)> >0

one concludes that

lim - log <e > = log m(β), almost surely. (5)

So, one has the somewhat strange fact that for almost all realizations of the

environment variables Y, Sy has as a random variable depending on the path

space the same large deviation behaviour as do sums of i.i.d. Y variables, at

least in a neighborhood of EY. A first step towards an understanding of the large

Iβl region would be a discussion of the question if (5) breaks down for large Iβl.

As far as I know, such a breakdown has not been proved. A strong indication

that this happens is however given in a discussion of even simplified (so called

mean-field) model by Derrida & Spohn [3]. They discussed a random walk on

the so called Caley-tree which can be interpreted as a walk on an infinite dimen-

sional lattice. The path space Ωpath here is the set of sequences

with ξ, e {-1,1}', such that if ξ t = (a l f..., a^ then ξtΛ = (a l f ..., at_j). The path

measure is defined by the property that ξ t adds to ξt_! as the t'th component +1

or -1 with probability 1/2.

The environment variables are given by

Xβ(i) =exp(βY(i)) forieA= U ί - U } 1 .
H t = i

Then, one investigates

(It is unnecessary to take X(i,t) because the position in A already fixes the time

point). Our analysis of <κτ(X,ξ)> works as well here, so (5) is true for small

enough Iβl. Derrida and Spohn discussed the special case where Y is standard
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normally distributed, in which case log m(β) = β2/2. Here, in fact, there is a crit-

ical point for β and limτ^m(l/T) log<ePsT> agrees with β2/2 only in some re-

gion Iβl < βc r i t, and outside, this limit depends linearly on β.

If lξtl denotes the sum of the components in ξ t then our analysis in the theo-

rem works as well for this, proving e.g. that for small enough Iβl

Vmm I <lξτl
2κτ(X,ξ)>/<κτ(X,ξ)>= 1

for almost all realization of the environment variables. It would be interesting to

know what happens with this quantity for Iβl > βc r i t.
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