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Abstract

This article reviews and unifies the hierarchical and empirical Bayes
approach for estimating the multivariate normal mean. Both the ANOVA and
the regression models are considered.

Introduction

Empirical and hierarchical Bayes methods are becoming increasingly
popular in statistics, especially in the context of simultaneous estimation of
several parameters. For example, agencies of the Federal Government have been
involved in obtaining estimates of per capita income, unemployment rates, crop
yields and so forth simultaneously for several state and local government areas.
In such situations, quite often estimates of certain area means, or simultaneous
estimates of several area means can be improved by incorporating information
from similar neighboring areas. Examples of this type are especially suitable for
empirical Bayes (EB) analysis. As described in Berger (1985), an EB scenario is
one in which known relationships among the coordinates of a parameter vector,
say θ = (0i» >0«) allow use of the data to estimate some features of the prior
distribution. For example, one may have reason to believe that the θfs are iid
from a prior πo(λ), where τr0 is structurally known except possibly for some
unknown parameter λ. A parametric empiήcal Bayes (EB) procedure is one
where λ is estimated from the marginal distribution of the observations.

Closely related to the EB procedure is the hierarchical Bayes (HB)
procedure which models the prior distribution in stages. In the first stage,
conditional on Λ = λ, θfs are iid with a prior τro(λ). In the second stage, a prior
distribution (often improper) is assigned to Λ. This is an example of a two stage
prior. The idea can be generalized to multistage priors, but that will not be
pursued in this article.

It is apparent that both the EB and the HB procedures recognize the
uncertainty in the prior information, but whereas the HB procedure models the
uncertainty in the prior information by assigning a distribution (often
noninformaiive or improper) to the prior parameters (usually called
hyperparameters), the EB procedure attempts to estimate the unknown
hyperparameters, typically by some classical method like the method of
moments, method of maximum likelihood etc., and use the resulting estimated
priors for inferential purposes. It turns out that the two methods can quite often
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lead to comparable results, especially in the context of point estimation. This
will be revealed in some of the examples appearing in the later sections. How-
ever, when it comes to the question of measuring the standard errors associated
with these estimators, the HB method has a clear edge over a naive EB method.
Whereas, there are no clear cut measures of standard errors associated with EB
point estimators, the same is not true with HB estimators. To be precise, if one
estimates the parameter of interest by its posterior mean, then a very natural
estimate of the risk associated with this estimator is its posterior variance.
Estimates of the standard errors associated with EB point estimators usually
need an ingenious approximation (see, e.g., Morris, 1981, 1983), whereas the
posterior variances, though often complicated, can be found exactly.

The above ideas will be made more concrete in the subsequent sections
with the aid of examples. Ours is an expository article which compares and
contrasts the EB and the HB methods for multivariate normal linear models.
The outline of the remaining sections is as follows. In the next section, we
address the problem of estimating the multivariate normal mean. EB procedures
for such problems are discussed quite adequately in Efron and Morris (1973),
Morris (1981, 1983) and Casella (1985). However, the interrelationship between
the EB and the HB procedures for such problems is not discussed in these papers.
Lindley and Smith (1972) introduced and provided a detailed discussion of the
HB approach for estimating the multivariate normal mean. However, there is no
mention of the EB approach in their paper.

Deely and Lindley (1981) compared and contrasted the EB and the HB
procedures much in the spirit of the discussion in the preceding paragraphs.
However, unlike the present article, they did not emphasize simultaneous
estimation problems, nor did they incorporate discussion of multivariate normal
models.

In the third section, we consider the regression problem. The EB and the
HB methods are contrasted both for the balanced and unbalanced linear models.
This section is largely a review of the work of Lindley and Smith (1972) as well
as Morris (1981, 1983). However, for the unbalanced case, our calculations go
beyond those of Lindley and Smith (1972). It is our belief that the present
calculations will shed more light on some of the EB approximations of Morris
(1983). For the balanced case, the reader is also referred to Berger (1985).

Extensive development of the EB methodology began with Robbins
(1951, 1955), who called problems of the above type compound decision problems.
In Robbins's terminology, an EB procedure is one where XV...,X are the past
data about # l v . . ,0p . The past data should be used together with the current
data to infer on a current 0t . The terminological distinction between the EB and
compound decision problems will be ignored in this article, and the term
empirical Bayes will be used to cover problems of both types. Also, Robbins's
procedure is a nonparametric EB procedure in contrast to the parametric EB
approach taken in this paper.

The term hierarchical Bayes was first used by Good (1965). Lindley and
Smith (1972) called such priors multistage priors. As noted earlier, the latter
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used the idea very effectively for estimating the vector of normal means, as well
as the vector of regression coefficients.

Estimation of the Multivariate Normal Mean

This section is devoted to a comparison of the EB and the HB procedures
for estimating the multivariate normal mean. We begin with a simple example.

I. Conditional on θv.. .,0 , let XV...,X be independent with Xi ~
i\Γ(0t , σ2), i = l,...,p, σ2 ( > 0) being known. Without loss of generality,
assume σ2 = 1.

II. The 0t 's have independent N(μ^ A), i = 1,. ••?£ priors. Write θ =
(θv.. .,θr)

 T,X= (Xv.. .,Xp)
T and x = (xv.. .,xp)

T.

The posterior distribution of θ given X = x is then
N((l-B)x + Bμ, (l-B)Ip), where B = (A+l)" 1 . Accordingly, the posterior mean
(the usual Bayes estimate) of θ is given by

E(θ\X=x) = (1-B)x+ Bμ. (1)

In an EB or a HB scenario, some or all of the prior parameters are
unknown. In an EB set up, these parameters are estimated from the marginal
distribution of X which in this case is iV(μ, B~^/_). A HB procedure, on the other
hand, models the uncertainty of the unknown prior parameters by assigning
distributions to them. Such distributions are often called hyperpriors. We shall
consider the following three cases.

Case I. Let μχ = . . . = μp = μ (say), where μ (real) is unknown, but A ( > 0) is
known. Based on the marginal distribution of X, X is the UMVUE, MLE and
the best equivariant estimator of μ. Accordingly, from (1), an EB estimator of θ
is given by

J l (2)
The estimator given in (2) was proposed by Lindley and Smith (1972).

They used a HB approach to arrive at the estimator given in (2). The procedure
is described below.

Consider the HB model under which (i) conditional on θ and μ, X ~
N(θ, / ); (ii) conditional on μ, θ ~ iV(μl , AI_); (iii) μ is uniform on (-oo, oo).
Then the joint (improper) pdf of X, θ and μ is given by

Λx, θ, μ) oc ezp[-J| x - θ |f] λΎ eaφ[- ̂ | | θ - μίp jf] (3)
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The factor A 2? could have been left out in (3), but will be needed for later
calculations.

Integrating with respect to μ in (3), it follows that the joint (improper)
pdf of X and θ is

Λδ θ) ex ex^\{θτDΘ - 2θτx + xτx^ (4)

where D = A^A+l)^ - P~XJ?] with / = lplJL Recall that B = (A+l)'1. It
follows from (4) that the posterior distribution of θ given X = x is NζlJΓ1!, IT1).
Since ΣΓ1 = (l-B)Ip + Bp~xJr one gets

E(Θ\X =x) = (l-B)x + Bxlp; (5)

V(Θ\X = x) = (1-5)4 + 5JΓ1/,. (6)

A naive EB approach as noted earlier uses the estimated posterior
distribution N((l-B)x + Bxlp, (l-B)Ip) to infer about 0. A comparison of (2)
and (5) reveals that the EB and the HB approaches yield the same point estimate
of 0, but the naive EB approach estimates the posterior variance by (l-B)IpJ

which is an underestimate when compared to (6). This point is discussed more
fully below.

Based on (3), the posterior distribution of θ given x and μ is
N((l-B)x + Bμlp, (l-B)Ip). Also, integrating with respect to θ in (3), it follows
that the joint (improper) distribution of x and μ is given by

Λft μ) oc # P ez;[-I q x - μlp f]. (7)

It follows from (7) that the posterior distribution of μ given X = x is
1 ) . Hence, one may note that

-B)Ip = E[V(θ\X,μ)\X\; (8)

Bp-% = V[Bμlp\X\ = V[(l - B)X + Bμlp\X\

= V[E{0\& μM (9)

Thus a naive EB procedure ignores estimating V[E(Θ\X, μ)\X\ which amounts to
ignoring the uncertainty involved in estimating the prior parameters when
estimating the posterior variance.

It is shown in Lindley and Smith (1972) that the risk of 0 ^ ι s n o i

uniformly smaller than that of X under the squared error loss L(θ, a) = || θ - a || .
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However, there is a Bayes risk superiority of β^fe over X which is described below.

Theorem 1

Consider the model X\θ ~ N(θ, Ip) and the prior θ ~ N(μlp, AIp). Let
E denote expectation over the joint distribution of X and θ. Then, assuming the
matrix loss L^θ, a) = (g-0)(lH?)"*\ a n d writing ΘB as the Bayes estimator of θ
under Lv

ELλ{θ, X) = Ip;

ELΎ{Θ, ΘB) = (ί-B)Ip,

Eh(θ, gg]) = {\-B)Ip + Bp'1^. (10)

Next assuming the quadratic loss L2(θ, a) = (a-θ) Q(a-Θ), where Q is a known
non-negative definite (n.n.d.) weight matrix,

EL2(Θ, X) = <KQ), EL2(Θ, ΘB) = (i-B)tr{Q); (11)

EL2(Θ, gjg) = (l-BMQ) + B HQv-lJf). (12)

Proof. Note that ΘB = (1-B)X + Bμlp. It is immediate that ELχ(θ, X) =

E[(X-Θ)(X-Θ)T] = E(Ip) = Ip and ELX{Θ, ΘB) = E[V(Θ\X)] = £[(l-B)/p] =

(1—B)I. Also, since marginally X ~ N(μ, (Bp) )

Eh{θ, gg]) = EL^Θ, ΘB) + E [(θB-θ(έB)(θB-&Ί)

= (l-B)Ip + B2E{(X-μ)\ίξ]

= (l-B)Ip + Bp^Jp.

This completes the proof of (10). To prove (11) and (12), write L2(θ, a) =
(θ-a)TQ(θ-a) = triQL^Θ, a)) and use (10).

Remark 1. It follows from (10)-(12) that £[It<g, X) - L%{θ, θ£l)] is

nonnegative definite for each i = 1, 2. Accordingly, θ^ has smaller Bayes risk
than that of X both under the matrix loss Lv and a fortiori the quadratic loss
£ 2 To our knowledge, this particular optimality of the Lindley-Smith estimator
has not been pointed out before.

The perfect agreement between the EB and the HB point estimators of θ
in Case I is an exception rather than the rule. We now consider cases II and III
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which reveal that the point estimators of θ can also differ under the two
approaches.

Case Π. Assume that μ is known, but its components need not be all equal.

Moreover, this time A is unknown. The marginal distribution of X is

I)vJV(μ, B~1I). Then ||X-μ|| is complete sufficient, and is distributed as

B~1χ2

p. Accordingly, for p > 3, the UMVUE of B is given by (p-2)/\\X-μ\\ .
Substituting this estimator of B in (1), an EB estimator of θ is given by

P~2 ΛX-μ). (13)X ΛXμ).

- \\X-μ\Γ~ ~}

This is the celebrated James-Stein estimator (James and Stein, 1961). The EB
interpretation of this estimator was given in a series of articles by Efron and
Morris (1972, 1973, 1975). The most popular version of this estimator takes

It is shown in James and Stein that for p > 3, the risk of 0^g is smaller
than that of X under the squared error loss. However, if the loss is changed to
the arbitrary quadratic loss L2 of Theorem 1, then the risk dominance of θ%£
over X does not necessarily hold. Indeed, it is well-known that (see, e.g., Bock,
1975, or Berger, 1975) that under the loss L2, θ^l dominates X if (i) tr(Q) >
2cΛ1(<2) and (ii) 0 < p-2 < 2[tr(Q)/ch1(Q) - 2], where chτ(Q) denotes the
largest eigen-value of Q.

The Bayes risk of (rfcfe is, however, smaller than that of X under the
losses Lλ and L2, the model given in Theorem 1, and the prior Np(μ, AIp). As
before, let E denote expectation over the joint distribution of X and θ. The
following theorem is proved.

Theorem 2

Let X\θ - N(θ, Ip) and θ - Np(μ, AIp). Then for p > 3,

= 4 - £(F-2)JΓ%; (14)

h (15)
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Proof. To prove (14), use the identity

E\hil &] = tyl^β, ΘB)]

Next write

V Ί)(X-μ)(X~μy

(16)

(17)

2

Marginally, X ~ N(μ, B~ιI). Hence, | | X - ^ | | is complete sufficient, while

(X-μ)(X-μ)T/\\X-μ\\2 = B~\X- μ){X- μ)T/{IΓι\\X- μ\\2) is ancillary.

Hence, using Basu's Theorem (see Basu, 1955), (X- μ)(X- μ)τ/\\X- μ\\ is
2

distributed independently of \\X - μ\\ . Hence,

= E[\\x-μ\\2{(x-μ)(x-μ)τ/\\x-μ\\2}]

= E(\\x-μ\\2)E[(x-μ)(x-μ)τ/\\x-μ\\2}

2 2

Now using £ ||X - μ\\ = B~xp, E\\X - μ\\ = B(p - 2)"1 for p > 3, one gets

Z- μ)τ/\\x- μ\\2] = P"1/-; (is)

m-μ)(x-μ)τ/\\x-μ\\4]

- 2 .
= E[(X-μ)(X-μ)T/\\X-μ\\}E(\\X-μ\\~)

(19)

It follows from (17)-(19) that

Ip) - 2B(p-2)p-1Ip

BIp - B{p-2)p-χIp. (20)
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Combining (10), (16) and (20), one gets (14). The proof of (15) is immediate
from (14) by writing £2(0, a) = triQL^Θ, a)].

Remark 2. Taking Q as a matrix with its (ί, i) element equal to 1 and the rest
zeroes, it follows that the i component of 0££ dominates Xi when one compares
their Bayes risks. This co-ordinatewise Bayes risk dominance of (rfcfe over X
appears in Efron and Morris (1973). One can derive (15) from their work by
using an orthogonal transformation. The dominance of θftβ over X under the
matrix loss L-^ has not been pointed out before, but the approach appears in
Reinsel (1985) for a more complex EB problem.

Remark 3. Efron and Morris (1973) found it convenient to define the concept of
relative savings loss (RSL). Denote the given prior by ξ and the Bayes risk of an
estimator e of θ under the prior ξ and the loss L2 by r(f, e). The RSL of (r^fe
with respect to X is defined by

RSL(Θ% X) = [r(ξ, & - riξ, θB)]/[riξ, X) - rtf, βB)\

= 1 - [r{ξ, X) - r{ξ, θ<£l)]/[riξ, X) - riξ, ΘB)]. (21)

This is the proportion of the possible Bayes risk improvement over X that is
sacrificed by using θ^ rather than the ideal estimator ΘB under the prior ξ. It
follows from (11), (15) and (16) that RSL(Θ^ X) = 2/p for an arbitrary n.n.d.
non-null matrix Q. Efron and Morris (1973) proved the result when Q = Ip as
well as when the (i, i)th element of Q is 1 and the rest zeroes (i = l,...,p). For
the matrix loss Lv the RSL concept of Efron and Morris (1973) can be
generalized to get

| g i X) = [riξ, X) - r{ξ, θB)]\r{ξ, $B) - riξ, ΘB)]

= (BIp)-\B(2/p))Ip = (2/p)Ip. (22)

Suppose now we consider a HB approach in this case, where conditional
on θ and A, X ~ N(θ, / ), and conditional on A, θ ~ N(μ, AI). Also, let A
have marginal pdf go(A). Then, the joint pdf of X, θ and A is

Λx, θ, A) α e ^ - i | | ? - ^ | | 2 ] A~& txp[-\ A'^β - μ\f\ go(A). (23)

As before, the conditional distribution^ of θ given x and A is
N((l-B)x 4- Bμ, (l-B)I\ where B = (Λ+1) . But integrating with respect to
£, the joint pdf of X and A is

z, A) α (A+l)-?P expt- ̂ J J ||x - μ\\^ 90(A). (24)
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Since B = (A+l) , the joint pdf of X and B is of the form

J{x, B) oc &V ex^- i B I\x - μ| |2] ί(B). (25)

The HB approach of the above type was first proposed by Strawderman
(1971), and was later generalized by Faith (1978). Assuming the Type II Beta
density for A, namely go(A) oc Am"1(l+Af^m+n\ where m ( > 0) and n ( > 0),
it is easy to see that

j(x, B) oc & v + n ~ \ l - B ) m ~ l « p [ - \B\\x- HI 2 ] . (26)

Now, using the iterated formula for conditional expectations,

ggi = £(g|i) = E(E[Θ\B, x] I ϊ) = (1 - % + Bμ, (27)

where

έ = E(B\x) = / ' ^ " ( l - B ) " 1 " 1 ex^-i 5 | | j - μ\\2] dB

1 ex^-1 B\\x - μ\\2] dB. (28)

Strawderman (1971) considered the case m = 1, and found sufficient conditions
on n under which the risk of 0wf> is smaller than that of X. His results were

generalized to a certain extent by Faith (1978).
We consider also the case m = 1, and interpreting (26) as the posterior

pdf of B given £, find the posterior mode of B as

BM0 = mm((ί+2«-2)/| \x - μ\ \\ 1). (29)

Substituting this estimator of B in (1), one gets the estimator

BMOμ = X- BM0(X- μ) (30)

of θ. The special choice n = 0 leads to the positive part James-Stein estimator
which is known to dominate the usual James-Stein estimator (see Lehmann,
1983, p. 302). This is intuitively very clear since the usual James-Stein estimator
substitutes the UMVUE of B in (l), and this UMVUE can take values exceeding
1 with positive probability while 0 < B < 1. This deficiency is rectified by
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Case IΠ. The model is similar to the one in Case I, except that now μ (real) and
A ( > 0) are both unknown. Recall that marginally X ~ N(μ\ , B~1I) where B

= (A+ίf1. Hence, (X Σ,(xr^f) ί s complete sufficient, so that the UMVUE's
1 _ V _ 2

of μ and B are given respectively by X and (p-S)/ Σ (^Γ^O Substituting these

estimators of μ and 5 in (1), the EB estimator of θ is given by

(31)

This modification of the James-Stein estimator was proposed by Lindley (1962).
Whereas, the original James-Stein estimator shrinks X towards a specified point,
the modified estimator given in (31) shrinks X towards a hyperplane spanned by

The estimator (rfefi is known to dominate X for p > 4. Its Bayes risk
under the Lχ and L2 losses are not known however. We now prove a theorem to
this effect quite in the spirit of Theorems 1 and 2.

Theorem 3

Assume the model and the prior given in Theorem 1. Then, for p > 4,

(32)

& Φ v-
xJf)). (33)

Proof. First write

E[LM &) = ̂ ( g , ΘB)] + E(Θ<§1 - βB)(θ§i - ΘB)τ. (34)

We write

ίίl -ΘB = \B- / " 3 _ \x - XI,) + B(X - μ)\ (35)
V Σ(XrX)V

Now using the independence of X - XI and X, and using the fact that X ~
N(μ, (Bp)'1), one gets from (35), ~
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= E
- 1

B2(Bp) Jp. (36)

Next using the independence of {X-Xlv){X-X\v)
T j Σf(

xCX) w i t h

X) (again by applying Basu's Theorem) and the facts that

E[(X-Xίv)(X-Xlv)
T] = B-\l-p-χJX whilelp)(XXlp)

from (36) that for p > 4,

B ^ l ' i 4 f o l l o w s

^ ) - 2B(p-3)(p-l)~\lp-p-1Jp)

(37)

Combining (10), (34) and (37), one gets (32). The proof of (33) is immediate
from (32).

We now proceed to find the HB estimator of θ. Consider the model
where (i) conditional on 0, μ and 4̂, X ~ N(θ, I); (ii) conditional on μ and ̂ 4,
θ ~ N(μl , AI)] (iii) marginally μ and A are independently distributed with μ
uniform on (-oo, oo), and A has uniform improper pdf on (0, oo). Then the joint
(improper) pdf of X, 0, μ and A is given by

x, g, /i, Λ) oc ezp [-11| x - θ |f] ̂ P exp [ - i 10 - /ilp | 2 ] . (38)

Now integrating with respect to μ, it follows from (38) that the joint (improper)
pdf of X, θ and A is

δg, A) oc A 2(p ' W f ^
(39)
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where D is defined after (6). Recall IT1 = (l-B)Ip + Bp~τJp. Hence,

conditional on x and A, θ ~ N[(l-B)x + Bx\v, ( l -#)/ p + BfxJ^. Also, inte

grating with respect to θ in (39), one gets the joint pdf of X and A given by

ex

Since B = (^4+1) , it follows from (40) that the joint pdf of X and B is given by

j{x, B) α lfcr~1) exp U B Σ ( * Γ ϊ ) 2 l

It follows from (41) that

E(B\x)= I

y i{ p-5 )ex^-i5Σ(xΓl)2jrf5; (42)

f r (43)
o L i J

One can obtain V(S|x) from (42) and (43), and use these to obtain

E(θ\x) = x- E(B\x)(^-xlpy, (44)

V(θ\χ) = V[E(Θ\B, x)\ x] + E[V(Θ\B, x)\ x)

= V\x- B(?-xlp)\ x] + E[(\-B)lp + Bp-χlp\ x)

= V(B\ x){x-χ\){x-χλ)T +L- E(B\x)(T - p~%). (45)
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Also, one can obtain a positive-part version of Lindley's estimator by substituting

(p - 5) / Σ(^γ-^0 , 1 in (l) Morris
1 l J

(1981) suggests approximations to E{B\x) and E(B2\x) involving replacement of

/ by / both in the numerator as well in the denominator of (42) and (43).
0 0 / v

The resulting approximations turn out to be £(i%) = (i>~3) / Σ(XΓX)
I ( V 2 1 2 X

E(B2\x) = (p-l)(p-3) /\Σ(xΓx) >, so that V(B\x) =

2
an

2

Morris (1981) points out that the above approximations amount to putting a
uniform prior to A on (-1, oo) rather than on (0, oo). Note that with Morris's
approximations

E(Θ\X) = X- / ~ 3 (X- Xίp) = flgi (46)

which is Lindley's modification of the James-Stein estimator, while

m® - /Λ2(HLV* (χ-χιp)(χ-nP)τ

:LL-(L-P~1L) (47)

Morris (1981) considered a slightly more general version of the model where
conditional on £, μ and A, X ~ N(θ, σ2/ ), while the distributions of 0, μ and A
remain the same. If one redefines B = σ2/(σ2+>ί), the only change that is
needed in the calculations is that conditional on x and A,
θ - N((l-B)x + Bxlp, σ\l-B)lv + ^p" 1 JJ), while the conditional pdf of 5
given £, and accordingly #(i%) and V(B\x) are modified by putting B/σ2 in
place of B in the exponents.

We now revisit the famous baseball data of Efron and Morris (1975).
They considered the batting averages of 18 baseball players in 1970 after each
had batted 45 times. Based on these batting averages, they estimated (in fact,
predicted) the players' batting averages for the remainder of the season. We used
formulas (42) and (43) with B/σ2 replacing B in the exponents to get the exact
expressions for E(θi\x) and V(θi\x). Also, we used Morris's approximations which
are obtained by modifying (46) and (47). The results are given in Table 1. In
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TABLE 1. The True Values (0, ), the Maximum Likelihood Estimates (Y, ), the

Hierarchical Bayes Estimates (0, jjβ), the Hierarchical Bayes S.D.'s (s, /

Morris's Approximate Estimates (0, jy), and Morris's Approximate S.D.'s (s- ^)

i θi Yi θi,HB si,HB [θi,HBΓ2si,HB' θi,M si,M [θi,M~2si,M

1 0.346 0.395 0.308 0.046 [0.216,0.400] 0.293 0.073 [0.147,0.439]

2 0.300 0.375 0.301 0.044 [0.213,0.389] 0.288 0.071 [0.142,0.430]

3 0.279 0.355 0.295 0.043 [0.209,0.381] 0.284 0.069 [0.146,0.422]

4 0.223 0.334 0.288 0.042 [0.204,0.372] 0.280 0.067 [0.146,0.414]

5 0.276 0.313 0.281 0.041 [0.199,0.363] 0.275 0.066 [0.143,0.407]

6 0.273 0.291 0.281 0.041 [0.199,0.363] 0.275 0.066 [0.143,0.407]

7 0.266 0.269 0.274 0.040 [0.194,0.354] 0.271 0.066 [0.139,0.405]

8 0.211 0.247 0.267 0.040 [0.187,0.347] 0.266 0.066 [0.134,0.398]

9 0.271 0.247 0.260 0.040 [0.180,0.340] 0.262 0.067 [0.128,0.396]

10 0.232 0.247 0.260 0.040 [0.180,0.340] 0.262 0.067 [0.128,0.396]

11 0.266 0.224 0.252 0.040 [0.172,0.332] 0.257 0.068 [0.121,0.393]

12 0.258 0.224 0.252 0.040 [0.172,0.332] 0.257 0.068 [0.121,0.393]

13 0.306 0.224 0.252 0.040 [0.172,0.332] 0.257 0.068 [0.121,0.393]

14 0.267 0.224 0.252 0.040 [0.172,0.332] 0.257 0.068 [0.121,0.393]

15 0.228 0.224 0.252 0.040 [0.172,0.332] 0.257 0.068 [0.121,0.393]

16 0.288 0.200 0.244 0.041 [0.162,0.326] 0.252 0.070 [0.112,0.392]

17 0.318 0.175 0.236 0.043 [0.150,0.322] 0.247 0.073 [0.101,0.393]

18 0.200 0.148 0.227 0.045 [0.137,0.317] 0.241 0.077 [0.087,0.395]
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what follows the true values θfs refer to the baseball players' actual batting
averages for the remainder of the season. Also, θi HB and θi M denote respectively
the HB estimate of θi and Morris's approximate estimate of 0t . The standard
errors associated with θ^ Hβ and 0f ^ are denoted respectively by st Hβ and s, ^.
It turns out that

Γ0.) =0.976,

(18σ2) ]Γ (0 HB - θ^ = 0.299,

and
(18σ2) £ (θi)M-θi) =0.286

so that Morris's approximations serve well as point estimates. However, Morris's
(1981) approximations to the s.d.'s are consistently larger than the actual ones,
leading thereby to wider confidence intervals. It appears that Morris (1981) has
reported that flt //#'s and st HBs in his Table 1, p. 31, but his notations seem to
suggest that these are 0,^'s and siM

9s.

So far we have considered only the case when the sampling variance σ2 is
known. In a more realistic set up, σ2 is unknown. In such instances, one
approach is to first find the Bayes estimator of θ assuming σ2 to be known. Next
find an estimator of σ2, and substitute this estimator in the Bayes estimator
found earlier. Berger (1985) discusses this approach. A slightly different classical
EB approach can be found in Ghosh and Meeden (1986) or Ghosh and Lahiri
(1987). These methods do not take into account the uncertainty involved in
estimating σ . This deficiency can be rectified by putting a prior distribution
(often non-informative) on σ2 as well.

One important example is the unbalanced one-way ANOVA model. We
propose a HB analysis with an unknown σ as well as unknown parameters
involved in the prior distribution of θ. We find it convenient to reparametrize
into σ = r and A = (λr)"1. The remainder of this section is an adaptation of
the arguments of Ghosh and Lahiri (1988).

Assume that

(a) conditional on 0, TO, λ and r, the random variables XV...^X and U

are mutually independent with Xi ~ M^v (rni) )

(i = l,...,p), while U ~ fxτ&_? (N= Σf=i«i);

- 1
(b) conditional on m, λ and r, θ ~ Mmlp (λr) lp\

(c) marginally, Λf, Λ and R are independently distributed with M ~
uniform(-oo, oo), R has pdf g(r) ex r~2, while Λ has pdf A(λ) oc λ .
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Remark 3. Note that we have changed the notation from μ to m. If one assigns
the noninformative prior g(A, σ ) oc (σ ) * , then noting that r = (σ ) and λr
= A"1, one gets the prior on R and Λ as given in (c). It is possible to assign
gamma priors (informative or noninformative) on R and KR as in Ghosh and
Lahiri (1988), but we have decided to sacrifice that generality.

To identify the above model with an unbalanced one-way random effects
ANOVA model, write V = m + τi + e (j = l,...,nt ; i = l,...,p). Here, r '̂s and
e 's are mutually independent with r t 's iid N(0, (λr)""1) and e 's iid i\Γ(0, r"1).

Write ff. = m + r , X = 7- = n T 1 ^ ^ (f" = 1 - ^ ) a n d ^ =

Σ L i Σ j i i ( ^ i Γ ^ » ) 2 Clearly, (X l v..,X p, D) is minimal sufficient with joint
distribution given in (a).

Under the above model, the joint pdf of Xv...,X_, U, θ, Af, R and Λ is
given by

ΛS «, g, m, r, A) « kexp [- I p ^ ' ^ - θf] MN~p)

x {Xrfttxp [- IλrΣ =i(^ " m)2\\r)'\ (48)

Integrating with respect to m in (48), one gets the joint pdf of X, U, θ, R and Λ
given by

Ah ft g, r, λ) oc tdN+r~1)rJ2exp [- ir(^ΓZ)^ - 2 ί Γ G ? + xτGx + «

(49)

where G = ΰiα^nj,...,^), Z) = G + λ(/ p - p'1^). Next integrating
with respect to r in (49), it follows that the joint pdf of X, U, θ and Λ is

Λδ «- δ. λ )

OC
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~ D~lQx)TD{θ - D^Gx) + xT{G- GΣgΠGfc+ J *
N+p-3)

(50)

It is clear from (50) that the conditional pdf of θ given x, u and λ is
multivariate-< with location parameter D~1Gx, scale parameter
(N-iy^iG - GD~1G)x+ u)ΣΓι and degrees "of "freedom N-ί. On
simplification, one gets

D'1 = K + λ( Σufa + X)-1) KJK
v » = i ' H

x [κ=Diag[{nι + XfK.^n, + A)"1]);

^ ί ^ + λ)-\...,np(np + λ)"1)

(51)

v « = 1

- 1

Γ1,...,»,(n, + A)-1]; (52)

(53)

- 1 .

Σ ni(ni + λ)"αJ ί Σ n,(»i + λ)~lχi) Further after much

simplifications, one can write

xτ{G-GD-ιG)x

= λ{ Σ»%i»i + λ)"xx? - ( Σ«,(«,. + A)"1)-^ gn,<n, + A)"1^)2}

= Qχ(x) (say). (54)

Integrating with respect to θ in (50), one finds the joint pdf of X, U and Λ given
by
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Λ * «, λ) oc

| i (55)

Using |Z>| oc { Π ( n i + λ ) Y Σ n »< n ί + λ Γ X \ ^ follows from (55) that the
1 ! = 1

conditional pdf of Λ given a: and u is

j,«) « ^ n

x { .Σ ».<»< + A)" 1 }* Wλ(x) + «Π ( Λ f ~ 3 ) . (56)
v ί = l J

From the properties of multivariate-ί, it follows that E(θ\x, u, λ) = ΣΓ^Gx, given
in (53), and V(θ\x, u, λ) = (N-3)~ι[Qχ(x) + u]^'1. One obtains now ~E(θ\x, u)
and V(Θ\X) u) by using (56) and the formulas

E(θ\x, u) = E[E{θ\x, tι, A)|x, u];
(57)

(ei^ u) = * T O * . « , A)|χ,«] + £[v(g|χ,«, A)|χ,«].

As noted already, the posterior mean of £ is given by (53) for known λ.
Ghosh and Meeden (1986) used a classical EB procedure to estimate λ and used
this estimator of λ in (53) to obtain an estimator of θ. Although, the resulting
estimator of θ was quite satisfactory for point estimation purposes (see Ghosh
and Lahiri, 1987), the method suffered from the earlier criticism of not modelling
the uncertainty in λ. The Ghosh-Meeden procedure was not particularly suitable
for the construction of credible intervals or sets.

Shrinking Towards Regression Surfaces

In the preceding section, the sample mean was either shrunk towards a
specified point or a subspace spanned by the vector 1 . The present section
generalizes the ideas of the preceding section by shrinking the sample mean
towards an arbitrary regression surface. This can be achieved by using either an
EB or a HB approach. The HB approach is discussed in detail in Lindley and
Smith (1972) with known variance components. Morris (1983) provides a
thorough discussion of the EB procedure. We attempt a synthesis between the
two, and argue that Morris's EB procedure is indeed an attempt to approximate
a bonafϊde HB procedure, and is clearly superior to a naive EB procedure.
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We begin with Morris's set up, except that we assign distributions on the
unknown hyperparameters, rather than estimate them on the basis of the
marginal distributions of the observations. The following model is proposed.

(A) Conditional on 0, b and α, let Xv...,Xp be independently distributed
with Xi ~ N^i, Kj ), i = 1,.. ?P» where the V̂  's are known positive
constants;

(B) Conditional on b and α, θ l v . . , Θ are in- dependently distributed with
Θ, ~ N(zfb, a) (* = lv )P)i where zv...,z are known regression
vectors of dimension r and 6 is r x l .

(C) B and A are marginally independent with B ~ uniform(Rr) and A
~ uniform(0, oo). We assume that p > r+3. Also, we write Z =

j^,) and assume rank (Z) = r.

Now the joint (improper) pdf of X = (X l v . . ,X p ) τ , θ = (<θv...,θp)
T, B

and A is given by

Λx, g, 6, α) α exp [-i( rg) ^ ( H ) ] «"^exp [-± \\ θ - Zb f ] . (58)

Integrating with respect to b in (58), one finds the joint (improper) pdf of X, θ
and A given by

Rh ί> a)

oc a~ϊ{p~r)exp {-^(^Θ)TG-\^Θ) - ±θτ[lp - Z(ZTZy1 Zτ]θ). (59)

Write E~x = GΓ1 + α " 1 ^ - Z(ZTZ)~1ZT\ Then, one can write

(x-θ)τGΓ\x-θ) + a'^fr - Z(ZτZ)-1Zτ)θ

= f¥xϊ - HτG~ιχ + XJG~1X

= {θ- EG~1x)τE~1(θ - EG~lΐ) + ΐT(G~1 - G~1EG~1)x. (60)

From (59) and (60) it follows that

£•(611, α) = ECΓ1! V(θ\x, a) = E. (61)

Write «, = VV(β+V, ) (ί = 1,. ,P), and D = Diag(l-uv...,l-up). Then, on
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TDZ)~XZT

simplification, it follows that

E = a(Ip -D) + (Ip

EGΓ1 = D+ (Ip- D)Z{ZTDZ)XZTD;

EG-χx=[{\-u1)x1 + u1zfb,...,(l-up)xp + upzfb]τ,

where b = {ZTDZ)~1{ZTDx). Then,

G~ι - G~ιE(fι = a

Hence,

»=l »=l

(62)

(63)

(64)

(65)

= <?.(*) (say). (66)

Combining (59), (60) and (66), the joint pdf of X and A is given by

(67)J[x,a) oc \E?a

Writing F= G~x + a 1 / p , and using Exercise 2.4, p. 32 of Rao (1973), one gets

Zτ a(ZτZ)

oc (68)

It is clear from (67) and (68) that
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fia\x) oc k {ft (« + V f*} I Λ s P e x p [-£<?.(*)} (69)

Now writing £/,• = ^/(Λ. + V,) (i = l,...,ί>), using (69), and the iterated
formulas for conditional expectations and variances, one gets

ilx] = E[E(Θi\x, A)\x] = £[(1-U,H + U.ifllϊ]; (70)

V[Θ, |?] =

Λ L*]; (7i)

fa - zjb), Ufa - zjb)\x] + E[A U^zJizjD^zJx], (72)

Morris (1983) provides approximations for l?(θt |:r) and V(Θi\x), i = 1,. >P H e

estimates the parameter α from the marginal distribution of X^.^X by
employing some non-Bayesian method, and substitutes this estimate in the
expressions for Efθjx, a] and V[ΘJx, α] instead of finding posterior expectations
and variances of functions involving A. Thus, using Morris's method, ϋ^ΘJz] is

approximated by (1 - «,•)#,• + u^zjb = xi - ύ^x^ - zTV), while V(Θ, |;r) iis

approximated by vt{x{- zfb) + Vt{l - ύt)[ί + ΰizJ{ZΓΌZ) zj, i = l,...,p. In

the above t>, = [2/(j»-f-2)]«?(V4-α) -̂ (V, +ά), i = l,...,p, V= ? 1

,p, Σ
( i ) » = l?iα^(l-ttlv..,1-tίp), and b is obtained from 6 by

substituting the estimator of a. The t;t 's are purported to estimate V(Ui\xYs. It
is not clear whether such an approximation can be justified very rigorously since

b also involves the «t 's and u^ is not distributed independently of the x - zjb.

We examine now how formulas (70) and (71) work in estimating the
batting averages of Ty Cobb during 1905-1928. Morris (1983) took a similar
undertaking except that his major emphasis was to examine whether Ty Cobb
was "ever a true .400 hitter". To make our results comparable to those of Morris
(1983), we fit a quadratic to Ty Cobb's batting averages, that is we take b =
(bv b2, b3)

T, Xj = (1, i, i 2 ) Γ , i = 1,...,24. In the average year 1 refers to 1905,
and year 24 refers to 1928. We provide in Table 2 the actual batting averages
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TABLE 2. The Actual Batting Averages of Ty Cobb (Yt ), the Number of

Times He Was at Bat (nχ ), the HB Estimates (θiffB), the Corresponding

S.D.'s (siHB), Morris's Approximate Estimates (0t M ) , and the Corresponding

S D.'s (*,- M ) .

t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ni

150

350

605

581

573

509

591

553

428

345

563

542

588

421

497

428

507

526

556

625

415

233

490

353

Yi

.240

.320

.350

.324

.377

.385

.420

.410

.390

.368

.369

.371

.383

.382

.384

.334

.389

.401

.340

.338

.378

.339

.357

.323

θi,HB

.298

.325

.344

.337

.366

.373

.393

.391

.384

.379

.379

.381

.386

.385

.385

.364

.383

.385

.355

.350

.362

.342

.342

.322

%HB

.020

.015

.013

.014

.014

.014

.016

.015

.015

.015

.014

.014

.013

.015

.014

.016

.014

.015

.014

.014

.015

.016

.015

.015

θi,HB+2si,HB]

[.258, .338]

[.295, .355]

[.318, .370]

[.309, .365]

[.338, .394]

[.345, .401]

[.361, .425]

[.361, .421]

[.354, .414]

[.349, .409]

[.351, .407]

[.353, .409]

[.350, .412]

[.355, .415]

[.357, .413]

[.332, .396]

[.355, .411]

[.355, .415]

[.327, .383]

[.322, .378]

[.332, .392]

[.310, .374]

[.312, .372]

[.290, .352]

KM

.303

.327

.345

.339

.366

.373

.393

.391

.385

.379

.380

.381

.386

.385

.385

.365

.383

.384

.356

.351

.361

.342

.342

.322

si,M

.026

.018

.015

.015

.015

.015

.017

.015

.015

.016

.014

.015

.014

.015

.014

.018

.014

.015

.015

.014

.016

.018

.017

.019

[ W 2 5 -,Λ/,
hM2siM

[.251, .355]

[.293, .363]

[.315, .375]

[.309, .369]

[.336, .396]

[.343, .403]

[.359, .427]

[.361, .421]

[.355, .415]

[.347, .411]

[.352, .408]

[.351, .411]

[.358, .414]

[.355, .415]

[.357, .413]

[.329, .400]

[.355, .411]

[.354, .414]

[.326, .386]

[.323, .379]

[.329, .393]

[.306, .378]

[.308, .376]

[.284, .360]



BAYES ESTIMATION 173

^ ) of Ty Cobb, the number of times he was at bat (n, ), our estimated batting
averages (0, HB), the corresponding standard errors (si HB), Morris's approxima-
tions (0t jj) for these batting averages, and the corresponding approximate
standard errors (Sj ^ ) . Following Morris, we took Vt = (.367)(.633)/nt , i =

It follows from Table 2 that Σ2χi\Φi}HB " YiΫ = -007377 and

Σ i = i ( ^ j ~ Θ%,M)2 = -008244. Thus, Morris's approximations lead to about a

11.0% increase in the overall mean squared error. Also, the st- ̂ f's though mostly
very close to st JJBS can lead upto a 30% increase. More important, our two
standard deviation confidence intervals around the posterior means are usually
mugh tighter than the corresponding ones given in Morris (1983). However, as
mentioned earlier, Morris's EB procedure is much superior to a naive EB
procedure, since the latter can seriously underestimate the actual standard errors.
This is evidenced in our actual calculations which are not reported here. We
should also point out that both [θiHB ± 2st-#g]'s and [θiM ± 2sίΛίj's cover the
true y, 's 23 out of 24 times which is approximately 95.8%. Also,
\9i,HB ^ si,HB^s a n c * \9%,M ^ 5»,Λ/ΓS c o v e r the true Yt 's 17 out of 24 times which
is approximately 70.8%. Thus a normal approximation to the posterior distribu-
tion is not totally out of the way.

One of Cobb's greatest claims to fame is that he has the highest lifetime
batting average of any baseball player in the modern era. Ty Cobb's actual
overall batting average in 1905-1928 is .367. Also, ΘHB = Σ2itinβ i HBI Σ2it\ni

= .366 and ΘM = Σ ? = i n A , M / Σ i i i n , = -366. This shows that both the HB

and EB estimates of the overall batting average of Ty Cobb essentially match the
reality.

It is instructive to look at the special case of equal variances, that is,
when Vι = ... = Vp = V. Then uλ = ... = up = V/(V+a) = u (say). In this

case D = (l-u)Ip, ZTDZ = (l-u)ZτZ, b = (ZjZf^Zjx, = 6, the usual least

squares estimate of 6. Moreover, a + V = Vu~ι so that a = V(l-u)/u, Qa(x) =

α"1(l-w)55£', where SSE = Σ *1 ~ (Σ *.*;) {ZTZ)~HΣ *,*Λ the usual
_ί=i v i=i ' v v - ~β V ,=i ' V

error SS. Since \da/du\ = Vu 2, it follows from (69) that the conditional pdf of

U given x is

J{u\x) oc

(73)
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It follows from (70) and (71) that

, |x) = *, - E{ %)(*,- - zjb); (74)

jϊ) = V{U\x){Xi - zjbf + V- VE(U\x)(ί - zT(ZτZ)-\^ (75)

If one adopts Morris's approximations as in the second section, then one
estimates E(U\x) by

b= Γi{v~r'2)exJκ-^SSE)du/ Γu
0 0

= V(p-r-2)/SSE

and E(U2\x) by

2 22

Accordingly, V{U\x) is approximated by 2V2(p-r-2) -f (SSE) = [2/(p-r-2)]U .
These calculations suggest that E(Θi\x) should be approximated by

xi - U(xi - zf 6) and V^θ,!^) should be approximated by

(76)

The expression s\G does not agree with the expression s\ given in (4.1) of Morris
(1983) (with the obvious changes in his notations). It seems to us that Morris's
(4.1) uses his (1.17) which involves a slight oversight. We shall discuss this point
now.

Morris (1983) starts with an EB approach, where he assumes conditions
(A) and (B) with Kx = . . . = V = V (say). With this formula for known b and
α, the Bayes estimator of θ is given by

ΘB = (1-tc)* + uZb, u = V/( V+a). (77)

If b and u are unknown, Morris (1983) estimates them by b and a respectively,
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where b = (ZTZ)~ιZ X, the least squares estimator of b and it = (p-ιr-2)V/SSE,

SSE = £ (XczJΪ) > t h e e r r o r ss- N o t e t h a t & i s t h e UMVUE of u since

marginally SSE ~ Vu χ
p-r

Morris (1983) proposes the EB estimator θβB = $ι ββi"">θp EB) °̂  ->
where

Then,

E{h,EB ~ Oif = E(θ{ - θitB? + Eψi,B ~ h,EB?

= V(l-u) + E [(u-u)(XΓzJb) + uzT(b-b)f. (79)

Using the marginal independence of Xi - zjb and zj6, and noting that V{b) =
Vu~1{ZτZ)~1, it follows from (79) that

$βi,EB ~ θif = K M + E [(u-u)2(XΓzJb)2] + VuzJiZ/^z, (80)

Since (6, 55^) is complete sufficient for (6, w) and (Xt-zjb)2/SSE is ancillary,

they are independently distributed by Basu's (1955) theorem. Now using

E(XrzJbf = Vu~x(l - zJ{ZjZ)Xz)j and SSE - Vu~x

X

2 ^ it follows on

simplification that

- gtfT®\) - Vu ̂ { l - zJ{?Z)\). (81)

Combining (80) and (81), it follows that

E(h,EB ~ 0>)2 =V- Vψl ( l - zJ{ZτZ)\^ u. (82)

In Morris's (1.17), zf(ZTZ)~~1zi = r/p for every i which does not seem to be the
case.
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