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Abstract

The basic theory of the prequential approach to data analysis is
described, and illustrated by means of both simulation experiments and
applications to real data-sets.

Introduction

The prequential approach to the problems of theoretical statistics was
introduced by Dawid (1984). It is based on the idea that statistical methods
should be assessed by means of the validity of the predictions that flow from
them, and that such assessments can usefully be extracted from a sequence of
realized data-values, by forming, at each intermediate time-point, a forecast for
the next value, based on an analysis of earlier values. The main emphasis is on
probability forecasting, requiring that one describe current uncertainty about the
predictand by means of a fully specified probability distribution. However, point
forecasts, or other forms of prediction, can also be accommodated.

The purpose of the above paper was to indicate the fertility of the
prequential point of view for furthering understanding of traditional concerns of
theoretical statistics, such as consistency and efficiency. However, the prequential
approach is essentially data-analytic. As such, it is particularly well suited to
empirical investigation of the structure and properties of real-world observations,
and their sources. In this paper, we shall discuss some of the ways in which
prequential assessment may be applied in practical problems, including goodness-
of-fit, model choice and density estimation. These methods are illustrated, by
means of simulation experiments and applications to real data.

Prequential Assessment

Let Y = (Y1? Y2,. ) D e a potentially infinite sequence of observables,
and p ' = (Y^ Y2,. > Yjj. We consider methods of forming, for each
k = 1, 2,..., a prediction, y,, for Yk, based on past data p *' = yi^1); or, more
generally, of deciding on an action ak on the basis of sA*""1), when subject to a
loss Lk(y, a) if Yj. = y and ak = a. Such a method M having been applied for k —
1 to n, and resulting in actions (av α2,...,αn), its performance might be assessed
by means of its total prequential loss

t
which measures the success of its earlier forecasts; and comparison amongst
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methods on this basis provides a guide (albeit imperfect) as to their likely relative
future performance.

Starting from a parametric family of such methods, Jk = {M#: θ £ ί } ,
with Mβ specifying ak = ak(y(k); 0), each 0-value is thus assessed by

θ)).

The optimizing strategy Jk based on Jk then uses, for selection of αn_j_i, M^ ,

where θn minimizes £*(0) (n — 0, 1,...; modification for small n may be
required). This itself needs to be assessed by its prequential loss

which will typically exceed Z*(#n)
Prequential assessment of past predictive performance is very close in

spirit to the method of cross-validation (Stone, 1974) but bases its prediction for
Yk on all previous outcomes, rather than on all outcomes distinct from Yk. In
both methods, the intention is to avoid the bias involved in letting Yk contribute
to its own prediction, and so to produce an honest assessment of uncertainty.

Probability Forecasting

One way to choosing the action α̂ ., after observing p λ' = 2/(̂ Γ~1), is to
specify a predictive distribution Pk for Yk, and to choose ak to minimize the
predictive expected loss

J Lk(yk, a)dPk(yk).

Specification of such a sequence of predictive distributions (Pfc), for any data,
constitutes a probability forecasting system (PFS), and is equivalent to choosing a
joint distribution P for the sequence Y. Under broad regularity conditions, it
then follows that, with P-probability 1, Urn sup(Lt(M) - Lt,(Mf)) < oo, where

M is given by the above method, and λf is an arbitrary method. Thus if Nature
is regarded as generating Y from P, then using P as a PFS to construct an action
sequence will be optimal, for any loss function.

A PFS P for 7, or its associated sequence (Pk) of predictive distributions
of Yk given p *' = ί/ί^"1), can be assessed directly if we take the action ak to be
the choice of a distribution Qk for Yk, and use a proper scoring rule Sk(y, Q^}, i.e.
such that, for any distribution Pk for Yki EpλSk(Yk, QJ\ is minimized in Qk

when Qk = Pk (Dawid, 1986). Then the optimal sequence of actions is just the
sequence (Pj.). The assessment becomes particularly simple if we use the
logarithmic scoring rule Sk{y, Pk) = -log fk(y), /» being the density of Pk. We
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then obtain L%{P) = -log J{y(n))^ /being the implied joint density for pn' under
P. That is, we can, and henceforth shall, assess and compare PFS's by means of
their prequential log-likelihoods.

It is interesting to note that, if the distributions P and Q for Y are
mutually absolutely continuous, then L$(P) - Lt(Q) will (with probability 1
under either P or Q) remain bounded, and may oscillate between positive and
negative values. In this case we shall never achieve an ultimate preference for
either PFS, and it seems that we remain forever in a quandary as to which to use
for further forecasts. However, a result of Blackwell and Dubins (1962) shows
that, in this case, the forecasts produced by P and Q will be asymptotically
indistinguishable, so that the choice is unimportant. This is an instance of
Jeffreys's Law (Dawid, 1984): observationally indistinguishable statistical ap-
proaches must be in essential agreement on their assertions about observables.

If *3P = {Pθ: θ £<$} is a parametric family of PFS's, with predictive
densities f.(y.; θ), the optimizing strategy Φ based on Φ describes Yn+i as having
density /n+1vy»+i5 ^n); θn being the maximum likelihood estimator based on data
y(n). The success of this plug-in MLE strategy must itself, however, be judged by
means of its own prequential log-likelihood, viz.

rather than n

jlfa )

Similarly we can judge any other such statistical forecasting system (SFS), based
on the same model or on another. A SFS might involve plugging-in some
estimate of θ from past data, as above; Bayesian or fiducial elimination of θ; or
any other suitable (standard or ad hoc) procedure. However, any such strategy
will itself always be describable as a PFS, and hence as a joint distribution for Y.
This allows standard probability theory to be applied in theoretical studies of the
performance of a SFS for data generated from PQ E 3P, and opens up a fresh
approach to the traditional problems of statistical theory (Dawid, 1984). In
general, (efficient-estimate) plug-in and Bayesian SFS's are asymptotically
optimal. The latter yield prequential likelihoods expressible in the form

j{y(n); θ)π{θ)dθ, which has computational advantages, as well as being

insensitive to reordering of the data.

w r "

Empirical Assessment

Sometimes an absolute assessment is required as to whether a PFS P
adequately describes data y. If the Yi are continuous real variables, and F,
denotes the distribution function of Yt under P, , then U = ({71? t^v )? where U^

,), should be independently uniform on [0,1] if Y arises from P, and so a
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variety of tests can be based on the observed values u. To assess uniformity, we
might examine the w-plot, i.e. the empirical c.d.f. of the w's, which should be
close to the line of unit slope. This could be tested formally using, say, the
Kolmogorov-Smirnov statistic. One should also inspect the (tt; ) for any sign of
non-independence, trend, or dependence on omitted variables. A simple indicator
of trend is provided by the uniform conditional test (Cox and Lewis, 1966) or y-

plot, which forms the empirical c.d.f. of (y), where y. = Σxi/ Σ3xjί with xi =

-log{l - tίj ). These y's are uniform order-statistics under P, and this can again be
tested formally.

If the Y, are 0-1 variables, we can form calibration plots in which, for
various π G [0, 1], the observed relative frequency of Y, = 1 over the set of
occasions having Π, = π (where Π, = PjiY% = *)) 1S plotted against π. This
should give an approximate diagonal line. More formally, we can construct test-
statistics such as Z = Σ(Yt - Πt )/[ΣΠt (l - Π,)] 1 ' 2 , the sum possibly being
restricted to a suitable subset of the data. Under very weak conditions, not
requiring independence, Z and similar standardized statistics will be
asymptotically standard normal under P (Seillier and Dawid, 1987) and inde-
pendent of statistics based on disjoint subsets. An observed value z can thus be
referred to standard normal tables, or a sum of squares of z's based on k disjoint
subsets to chi-square tables with k degrees of freedom.

It is noteworthy that all the methods described above are applicable
given only the two sequences, of outcomes and of their probability forecasts, and
make no reference to the structure of P over outcomes not observed. This is in
accord with the Prequential Principle (Dawid, 1984).

If P is itself constructed as a SFS based on a parametric model ΈP =
{/#}, it turns out, again under mild conditions, that the asymptotic distributions
of the test-statistics considered above continue to hold under any P$ G P̂
(Seillier et al., 1988). Consequently, these methods can be used to test the
overall goodness-of-fit of a parametric model.

If the distribution or model being used fails to describe the data, it may
be possible to massage it to provide a better fit. Thus suppose that the (wt)
above look like a random sample, but from a non-uniform distribution. This
distribution could itself be estimated, either parametrically or nonparametrically
(as in Density estimation below). If the estimate based on «(w) is (7n, then Yn+\
could be forecast by requiring that Fn+\{Yn+\) has distribution Gn, rather than
uniform. Alternatively, serial correlation, or other suspected structure, in the (u^
could be estimated and allowed for. In the ( 0 - 1 ) case, if previous occasions on
which the same probability forecast as p . ̂  was issued had resulted in a
proportion q of Γs, then p .1 might be replaced by q. Such adaptive
recalibration methods can improve the performance of a badly chosen initial
model, although there can be no guarantee that they will, since the recalibration
is based on the past but applied to the future.
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Model Choice

Given a choice between two competing models, say 9* = {Pθ} and Q =
{QΘ}, we can first replace each of these by an appropriate SFS, say P and Q,
respectively. We might then optimize the choice between these at each time-
point. Thus if it were P, say, rather than Q, that gave the larger prequential
likelihood (or smaller total prequential loss) to the data y(k) at time ib, the
probability forecast for Yk+i would be that based on P. Of course, such a two-
stage optimization strategy needs assessing afresh in its own right. The method
extends to more stages, and to an arbitrary collection of models at each stage,
but clearly less trust can be placed in prequential analyses iterated to more
stages: even though the prequential approach avoids obvious bias at each stage,
no finite set of data can support more than a certain amount of investigation
without throwing up misleading messages.

In place of repeated optimization, one can take a Bayesian approach,
assigning prior weights a and 1 - α to 9 and Q. After observing y(k), with
prequential joint density j{y(fy) under P and g(y(k)) under Q, a is replaced by α^

+ (1 - ot)g(y(k))], and the forecast density for Yk+X is then

the mixture <2J/J. , χ + (1 - <*k)9k+V ^ e o v e r a ^ prequential likelihood for this

strategy is simply aj{y(n)) + (1 - a)g(y(n)). Again the method extends simply to
more models and more stages.

If one has a finite or countable collection of alternative models, and the
data arise from some distribution in one of these, either of the above methods
will be consistent and asymptotically optimal, in the sense that their forecasts
will tend to those given by the true distribution, and at the fastest possible rate.
However, for finite data-sets, the forecasts under the two methods may look
rather different. In either case, if the true distribution is contained in a model of
high-dimensionality, early analysis will generally tend to favor incorrect models
of low dimensionality. This is intuitively sensible, since, early on, the mis-
modelling bias may well be less of a problem than the imprecision involved in
trying to estimate many parameters.

As an alternative to allowing such transient behavior to be entirely data-
driven, as above, one might build it in directly, by setting out with a strategy for
choosing, at each stage, the complexity of the model to be fitted and how it is to
be used for prediction. Different strategies, all yielding consistent estimates of
the true model (and which use each fixed model efficiently) will all be
asymptotically equally good. However, their transient behaviors, which may be
long-lasting, can be very different, with some yielding much larger prequential
log-likelihoods (or, more generally, much smaller prequential losses) than others
even though these discrepancies will be bounded as the sample size goes to
infinity. More empirical and theoretical work is needed to indicate good forms
for such strategies. A sensible super-strategy could be built up from a low-
dimensional parametrized family of such strategies, using optimizing or Bayesian
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methods. This could combine good transient behavior with sensitivity to the
data and avoidance of data-mining.

Non-parametric Approximation

Many non-parametric problems, such as density estimation or fitting a
stationary time-series, can be approached through a sequence of finitely
parametrized methods, such as fitting histogram or kernel density estimates with
adjustable bin width, or autoregressive models of various finite orders. One can
then apply the techniques of the previous section, even though none of the models
used is now expected to contain the distribution generating the data. The
component models will generally each be characterized by some quantity, such as
kernel width (w) or autoregressive order (p), which controls the balance between
over-fitting (tracking noise in the data) and over-smoothing (not picking up the
signal). Prequential choice of such a quantity will start out with a preference for
smoothing (large w, small p), and then, as the data-sequence grows longer and
can support more detailed modelling, gradually move towards fitting the past
data more and more closely (w —• 0, p —• oo). Such a method will often be
prequentially consistent for a wide range of generating distributions, and can
provide sensible answers based on finite data-sets, by making the predictively
optimal compromise between fitting and smoothing.

Investigation of the structure of good strategies, for choosing the model
to fit at each stage, is still more vital in this context, since the behavior described
as transient in the previous section now extends to infinity! Again, much further
empirical and theoretical work is required to illuminate this problem area.

Simulations

1. Time-series modelling.

Autoregressive models of varying order k (0 < k < 8) were fitted to
several simulated time-series of 500 observations, and their prequential
likelihoods calculated using both optimization (plugging-in current least-squares
estimates) and Bayesian methods (using a non-informative prior), always
excluding the first 15 observations. Results were as follows.

(i) Independent standard normal variates: Yt = ct; Prequential Log-Likelihoods

k - . 0 1 2 3 4 5 6 7 8
Optimization : -715.5 -717.1 -721.0 -724.0 -728.0 -728.7 -735.1 -739.1 -740.5
Bayes : -712.8 -713.9 -717.6 -719.4 -722.0 -722.4 -726.0 -728.4 -730.1

The strategy of optimizing over k chose k = 0 at all points, except one,
beyond the 57th observation, and chose k = 1 at all the exceptional points. This
strategy itself had a prequential log-likelihood of -714, better than that for any
fixed k.
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The Bayes strategy (using equal prior probabilities) finished by assigning
probability 0.75 to k = 0 and 0.25 to k = 1. Its prequential log-likelihood too
was -714.

(ii) Autoregression: Yt = 0.1
Likelihoods

+ 0 .27^ + et; Prequential Log-

k : 0 1 2 3 4 5 6 7 8
Optimization : -723.9 -725.3 -705.5 -700.1 -701.2 -701.3 -704.4 -708.6 -709.3
Bayes : -722.8 -724.1 -703.5 -698.3 -699.1 -700.6 -702.7 -705.9 -707.6

There is a clear preference for the true order, with under-fitting being
more heaving penalized than overfitting. Optimizing over k chose k = 2 up to
observation 40, k = 3 thereafter. This strategy had a prequential log-likelihood
of -700, indistinguishable from that of k = 3. The Bayes strategy ended by
assigning probability 0.63 to k = 3, 0.29 to k = 4 and 0.07 to k = 5, and itself
had a prequential log-likelihood of -700.

(iii) Moving average: Yt = 0.5ê  - 0 . 2 ^ ; Prequential Log-Likelihoods

k : 0 1 2 3 4 5 6 7 8
Optimization : -370.1 -354.8 -355.3 -357.7 -355.5 -356.9 -358.7 -360.3 -364.5
Bayes : -368.9 -353.4 -353.2 -355.7 -353.2 -355.3 -357.1 -359.1 -362.2

The true process can be expressed as an infinite-order autoregression: Yt

= -0.47*-! - 0.167^2 - 0.0647^-3 - ... + 0.5^. The optimal autoregressive fit
to 500 observations, however, gave k = 1 (optimization) or k = 2 (Bayes), closely
followed by k = 4 (for which the estimated coefficient of lag 4 was -0.139,
compared with the true value of -0.026). Optimizing over k gave k = 1 at all
points, except for observations 16 to 33 (for which k was 0) and most points
between observations 460 and 486 (with k = 4). This strategy had prequential
log-likelihood of -355.5. The Bayes strategy assigned probabilities 0.27 to k = 1,
0.33 to k = 2, 0.03 to k = 3, 0.32 to k = 4, and 0.04 to k = 5, and itself had a
prequential log-likelihood of -354.3.

2. Density estimation.
Simple histogram-type density estimators were constructed from data-

values in [0,1], based on a division of the unit interval into k equal sub-intervals.
For each initial sub-sequence of data, the current density estimate was used to
forecast the next observation. This was repeated for 1 < k < K.

(i) A random sample of size 1000 from the uniform distribution on [0,1] yielded
the following overall prequential log-likelihoods (up to K = 10);
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k : 1 2 3 4 5 6 7 8 9 10

log-likelihood : 0 -3.7 -6.4 -8.8 -12.5 -16.0 -18.8 -22.3 -25.1 -32.4

The deterioration in performance when fitting more intervals than needed
(viz. 1) is clear.

The optimizing strategy, formed by selecting, at each point, that value
for k yielding the highest prequential likelihood to date, always chose k = 1,
except at a number of points up to the 52nd observation, for which k = 2 was
chosen.

(ii) A random sample of size 3000 was generated from the symmetric unimodel
density

fτ(x) = jτβin(iri) (0 < x < 1).

With K = 20, the optimal k based on all the data was 14, the prequential log-
likelihoods for k = 10 to 15 being, respectively, 399.3, 389.2, 401.3, 396.9, 402.2
and 399.0. When optimizing over k at all points, the first and last appearances
of various values, and their frequencies, were:

k : 1 2 3 4 5 6 7

First used

Last used

Frequency

k

First used

Last used

Frequency

: 1

: 20

: 18

: 8

: 1423

: 1423

: 1

6

43

6

9

400

2133

1118

21

154

109

10

1457

2335

434

77

138

16

11

-

-

0

229

388

46

12

1435

2915

892

148

395

182

13

-

-

0

319

842

39

14 >14

2856 -

3000 -

139 0

The general message of the above simulations would seem to be that,
even for large data sets, it is generally far more effective to fit a very simple
model that is approximately true, rather than one which contains the true
distribution (or comes close to doing so), but is of highish dimension.

Applications

1. Weather forecasting.

Jain (1983) analyzed a 53-year sequence of daily precipitation records
from Morogoro, Tanzania, as discussed in Stern and Coe (1984). The model 3*
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for the conditional probability p% of rain on day t (coded as Yt = 1), given past
outcomes, was a non-stationary two-state second-order generalized linear Markov
Chain:

4
logit pt(θ) = aij0 + Σ[aijk sin(ktf) + bijk cos(ki')]

where i1 = (2π*/366), i and j are the outcomes of days t - 2 and t - 1, and 0
consists of the α's and δ's. The parameters were estimated recursively, with
initial estimates fitted, using maximum likelihood, to the first 700 data-points,
and the probability forecasts pt of the resulting plug-in strategy compared with

the actual outcomes (t > 700). Calibration plots and test-statistics were
constructed for various subsets of the data, corresponding to the months of the
year, and to specified outcomes of the three previous days. Table I gives, for
each month, the overall proportion ~y of rainy days, and the average forecast

probability p. The final line gives values of the test statistic

^ = Σ(y

for assessing departure from expectation of the within-month Brier Score
Σ(y. - p.) . These should be approximately independent standard normal
variables under the model 9. The combined chi-square of 78 on 12 degrees of
freedom clearly indicates poor model fit, and closer scrutiny reveals that the
model is noticeably under-forecasting rain in April, and when the third previous
day was wet.

TABLE I

Month J F M A M J J A S O N D

-y : .21 .22 .33 .54 .31 .10 .06 .04 .09 .10 .17 .22

J : .20 .20 .36 .47 .31 .09 .05 .04 .09 .09 .16 .20

zB : 1.57 4.68 2.15 5.00 1.80 2.19 2.26 0.40 0.42 0.66 1.26 2.93

2. Medical diagnosis.

Seillier (1982) analyzed 58 cases of jaundice, caused either by hepatitis
(Y = 1) or by cirrhosis (Y = 0). Various logistic models to discriminate between
the two diagnoses were considered, using regressor variables chosen from a set of
ten symptoms (A, B, C, D, E, F, XI, X2, X3, Xj) and a location indicator Q.



122 A.P. Dawid

Each model was fitted by maximum likelihood to the first k cases
(Ar = 30, 31,...,57), and used to provide a probability forecast P^+x for Y^+i,
based on its associated regressor variables. The assessment of each model was
then based on its overall Brier score Σ(y, - p,) . The results are shown in

k * _
Table II, which also gives f>, for comparison with y = 0.29.

TABLE II

Variables

A + B +

A + B +

A +

A +

A +

A +

A +

A +

A +

A +

A +

A +

CH

CH

CH

CH

hD

hD

hD

hD

D

D

D

D

D

D

D

D

D

D

D

D

D

D

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

E

E

E

E

E

E

+ F

+ F

+

+

+

+

+ X1

+ X1

XI

XI

XI

XI

XI

XI

XI

XI

XI

XI

XI

XI

XI

XI

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

X2

X2

X2

X2

X2

X2

X2

X2

+

+

+
+

+

+

+

+

X3

X3

X3

X3

X3

X3

X3

X3

X3

X3

X3

X3

X3

X3

+

+

+

+

+

+

+

+

+

+

+

+

X4

X4

X4

X4

X4

X4

X4

X4

X4

X4

+ Q

+ Q

+ Q

+ Q

+ Q

Q

Q

Q

Q

Brier Score

4.7

3.8

4.6

3.8

4.0

3.4

4.6

3.6

3.0

2.3

3.4

3.0

3.0

2.9

4.8

4.3

5.3

5.1

P

0.25

0.36

0.24

0.36

0.22

0.39

0.32

0.38

0.23

0.31

0.24

0.33

0.25

0.39

0.24

0.37

0.22

0.36

Fitting all variables leads to poor predictions on this size data-setf as
does fitting only two or three. The most successful model, as measured by its

Brier score, is A 4- D 4- XI 4- X3 4- X4, which also has p closest to y. It is of
interest that, for any collection of symptom variables, adding in the location indi-
cator Q leads to worse predictions. This offers some empirical support for the
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arguments of Dawid (1976) that suitable diagnostic models should be robust over
a range of locations.

3. Educational scaling.

Opie (1983) conducted an analysis to see whether items in an educational
testing item-bank fitted the Rasch model, under which P(student i gets item j

α~f/?. OL-Λ β
correct) = e * 3/{\ + e * 3). The data-set contained responses to 60 test
items from 150 students. At an intermediate stage, a number of items, 1 to k - 1
say, have been accepted, and item k is under test. For m = 75 to 150, the
parameters are estimated (by maximum likelihood) from the responses of
students 1 to m on items 1 to Jfc, omitting that of student m on item k. The
fitted probability for this omitted response can then be calculated, and the
process repeated with m increased by 1. Comparison of these forecast
probabilities with the actual responses (where these were not missing) then allows
assessment of the fit of item k to the model.

For testing item 60, with all other items included, the probabilities were
grouped into 8 intervals, with counts, average probability and relative frequency
of a right answer as given in Table III.

TABLE III

Group (</)

0.0 - 0.1

0.1 - 0.15

0.15 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

0.6 - 1.0

Count(n )

14

16

11

12

8

6

4

4

Average

probability (π )

0.07

0.12

0.17

0.25

0.33

0.44

0.55

0.86

Relative

frequency (yg)

0.07

0

0.09

0.25

0

0

0.5

0.5

If the item fits the model, then Y^ng{yg-τg)
2 -f π(l-πg) should be

9

approximately distributed as chi-square with 8 degrees of freedom. The observed
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value of 15.8 is significant at 5%, suggesting a failure of calibration on this item,
and thus its non-conformity with the Rasch model.

4. Software reliability.

Littlewood et al. (1986) have made a thorough comparison of a number
of model-based prediction systems for prequential probability forecasting of the
successive inter-failure times of complex software systems. The data comprised
136 inter-failure times ranging between 0 and 6150 seconds, and the models used
all incorporated reliability growth (improved performance after each bug-fix).
Some forecasting systems used optimization, some were Bayesian, others com-
bined the two methods. The results are summarized in Table IV.

TABLE IV

System

-

—

1. JM

2. BJM

_ 3. GO

4. L

5. BL

_ 6. LNHPP

7. LV

8. KL

9. W

10. D

w-plot K-S distance
(sig. level)

.190 (1%)

.170 (1%)

.153 (2%)

.109 (NS)

.119 (NS)

.081 (NS)

.144 (5%)

.138 (5%)

.075 (NS)

.159 (2%)

y-plot K-S distance
(sig. level)

.120 (NS)

.116 (NS)

.125 (10%)

.069 (NS)

.075 (NS)

.064 (NS)

.110 (NS)

.109 (NS)

.075 (NS)

.093 (NS)

Systems 1, 2 and 3 are all based on essentially the same model, as are 4,
5 and 6. It appears that the method of data analysis is less important here than
choosing a good model. Measured by prequential likelihood, the optimal system
was 6. The authors also considered adaptive recalibration of the above systems,
as well as Bayesian and optimizing strategies for combining them, leading in all
cases to improvements in performance.
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Conclusion

The prequential method is broad in range, simple in concept, and based
on a firm theoretical foundation. However its implementation leaves plenty of
scope for variations, and is currently more art than science. Further work should
lead to an improved understanding, and give guidance on good strategies of
applying the method. Efficient computational methods or approximations will
also be essential for routine application.
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