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Abstract

The Pitman closeness criterion is an intrinsic measure of the comparative
behavior of two estimators (of a common parameter) based solely on their joint
distribution. It generally entails less stringent regularity conditions than in other
measures. Although there are some undesirable features of this measure, the past
few years have witnessed some significant developments on Pitman-closeness in
its tributaries, and a critical account of the same is provided here. Some
emphasis is placed on nonparametric and robust estimators covering fixed-sample
size as well as sequential sampling schemes.

Introduction

In those days prior to the formulation of statistical decision theory
(Wald, 1949), the reciprocal of variance [or mean square error (MSE)] of an
estimator (T) used to be generally accepted as an universal measure of its
precision (or efficiency). The celebrated Cramer-Rao inequality (Rao, 1945) was
not known that precisely although Fisher (1938) had a fair idea about such a
lower bound to the variance of an estimator. The use of mean absolute deviation
(MAD) criterion as an alternative to the MSE was not that popular (mainly
because its exact evaluation often proved to be cumbersome), while other loss
functions (convex or not) were yet to be formulated in a proper perspective. In
this setup, Pitman (1937) proposed a novel measure of closeness (or nearness) of
statistical estimators, quite different in character from the MSE, MAD and other
criteria. Let Tχ and Γ2 be two rival estimators of a parameter θ belonging to a
parameter space Θ C R. Then Tχ is said to be closer to θ than T2, in the
Pitman sense, if

PΘ{\TX-Θ\ < \T2-Θ\} > 1/2, Vί G θ, (1)

with strict inequality holding for some θ. Thus, the Pitman-closeness criterion
(PCC) is an intrinsic measure of the comparative behavior of two estimators.
Note that in terms of the MSE, Tχ is better than Γ2, if

Eθ(Tχ-θ)2 < EΘ{T2-Θ)2,VΘ e θ, (2)

with strict inequality holding for some 0; for the MAD criterion, we need to
replace EΘ(T-Θ)2 by E^T-Θ\> In general, for a suitable nonnegative loss
function L(a,θ):RxR-> Λ+, Tx dominates T2 if
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Ύ, θ)} < E{L{T2, θ)\ V ί 6 θ , (3 )

with strict inequality holding for some θ. We represent (1), (2) and (3)
respectively as

Tx y PC Tv Tχ y MSE T2 and Tχ y L T2. (4)

It is clear from the above definitions that for (2) or>(3), one needs to operate the
expectations (or moments), while (1) involves a distributional operation only.
Thus, in general, (2) or (3) may entail more stringent regularity conditions (per-
taining to the existence of such expectations) than needed for (1). In this sense,
the PCC is solely a distributional measure while the others are mostly moment
based ones, and hence, from this perspective, the PCC has a greater scope of
applicability (and some other advantages too). On the other hand, other
conventional measures, such as (2) or (3), may have some natural properties
which may not be shared by the PCC. To illustrate this point, note that if there
are three estimators, say, Tv T2 and T3, of a common parameter 0, such that

Eθi^-θf < EΘ(T2-Θ)2

and
EΘ{T2-Θ)2 < EΘ(T3-Θ)\VΘ e θ , (5)

then, evidently, EΘ(TX - θ)2 < EΘ(T3 - 0)2, V θ G θ . Or, in other words, the
MSE criterion has the transitivity property, and this is generally the case with
(3). However, this transitivity property may not always hold for the PCC. That
is, Tj may be closer to θ than T2, and T2 may be closer to θ than T3 (in the
Pitman sense), but 7^ may not be closer to θ than T3 in the same sense!.
Although a little artificial, it is not difficult to construct suitable examples
testifying the intransitivity of the PCC (Blyth, 1972). Secondly, the measure in
(2) or (3) involves the marginal distributions of Tχ and T2, while (1) involves the
joint distribution of (Tv T2). Hence, the task of verifying the dominance in (1)
may require more elaborate analysis. This was perhaps the main reason why in
spite of a good start and notable contributions by Geary (1944) and Johnson
(1950), the use of PCC remained somewhat skeptical for more than thirty years!
In fat, the lack of transitivity of the PCC in (1) caused some difficulties in
extending the pairwise dominance in (1) to that within a suitable class of esti-
mators. Only recently, such results have been obtained by Ghosh and Sen (1989)
and Nayak (1990) for suitable families of equivariant estimators. We shall
comment on them in a later section. Thirdly, in (1), when both T^ and T2 have
continuous distributions and T2 - Tχ has a non-atomic distribution, the < sign
may as well be replaced by < sign, without affecting the probability inequality.
However, if T2 - Tχ has an atomic distribution, the two probability statements
involving < and < signs, respectively, may not agree, and somewhat different
conclusions may crop up in the two cases. Although this anomaly can be
eliminated by attaching suitable probability (viz., 1/2) for the tie
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(12*! - θ\ = \T2 - 0|), the process can be somewhat arbitrary and less convincing
in general. Fourthly, the definitions in (1) through (3) need some modifications
in the case where θ (and T) are |>-vectors, for some p > 1. The MSE criterion
lends itself naturally to an appropriate quadratic error loss, where for some
chosen positive definite (p.d.) matrix Q, the distance function is taken as
| |Γ-g | |g , and given by

| |Γ-g|P =(T-Θ)'Q(T-Θ) (6)

9

The use of the Fisher Information matrix %Q as Q leads to the so-called
Mahalanobis distance. Recall that

f
9

= Trace\QEΘ{(T-θ)(T-O)'}] (?)

so that (2) entails only the computation of the mean product error (or dispersion)
matrix of Tχ and T2. On the other hand, if instead of \Tχ - θ\ and \T2 - θ\, in
(1), we use II Tj - 0|L and II T2 - 0|L, the probability statement may be a more

involved function of the actual distribution of (7\, T2)
 a n c^ °f * n e Q- Although

in some special cases this can be handled without too much of complications (see
for example, Sen, 1989a), in general, we may require more stringent regularity
conditions to verify (1) in the vector case. In the asymptotic case, however, an
equivalence of BAN estimators and Pitman-closest ones may be established under
very general regularity conditions (viz., Sen, 1986), so that (1) and (2) may have
asymptotic equivalence. But, in the multiparameter case, best estimators, in the
sense of having a minimum value of (7) may not be BAN. A natural reference is
the so-called Stein paradox (viz, Stein, 1956) for the estimation of the mean
vector of a multivariate normal distribution. For p, the dimension of the
multivariate normal law, greater than 2, Stein (1956) showed that the sample
mean vector [although being the maximum likelihood estimator (MLE)] is not
admissible, and later on, James and Stein (1962) constructed some other
estimators which dominate the MLE in the light of (2) [as amended in (7)]. Such
Stein-rule or shrinkage estimators are typically non-linear and are non-normal,
even asymptotically. Thus, they are not BAN. So, a natural question arose: Do
the Stein-rule estimators dominate their classical counterparts in the light of the
PCC? An affirmative answer to this question has recently been provided by Sen,
Kubokawa and Saleh (1989), and we shall discuss this in a later section. Fifthly,
we have tacitly assumed so far that we have a conventional fixed-sample size
case. There are, however, some natural situations calling for suitable sequential
schemes, so that one may also like to inquire how far the PCC remains adoptable
in such a sequential scheme. Some studies in this direction have been made very
recently by Sen (1989a), and we shall discuss some of these results in a later
section. Another direction in which the PCC has proven to be a very useful
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avenue for comparing estimators is the employment of more general loss
functions (instead of the Euclidean norm or the usual quadratic norm) in the
definition in (1). In the context of estimation of the dispersion matrix of a
multivariate normal distribution and parameters in some other distributions
belonging to the exponential family, one may adopt the entropy (or some related)
loss functions which when incorporated in (1) lead to a more general formulation.
This has been termed the generalized Pitman nearness criterion (GPNC) (viz.,
Khattree, 1987, for the dispersion matrix estimation problem). We shall review
some of the developments in this area in the last section.

As has been mentioned earlier, for nearly four decades, there were not
much activities in this general arena, while the past ten years have witnessed a
remarkable growth of the literature on the PCC. This renaissance is partly due
to the work of C.R. Rao (1981) who clearly pointed out the shortcomings of the
MSE or the quadratic error loss and explained the rationality of the PCC (which
attaches less importance to large deviations). The work of Efron (1975) also de-
serves a special mention: the feasibility of an estimator dominating the classical
MLE of the univariate normal mean in the light of the PCC clearly points out
the adaptability of the PCC in a more general situation where other forms of
admissibility criteria may not work out well. A somewhat comparable picture in
both the works of Efron (1975) and Rao (1981) might have been based on the
MAD criterion which attaches less importance to large deviations than the MSE
criterion. However, in the general multiparameter case, the MAD criterion may
lose its appeal to a greater extent. This is mainly due to the following factors:
(i) lack of invariance under suitable groups of transformations usually employed
in multiparameter estimation problems, (ii) complexity of the definitions and (iii)
need for the estimation of nuisance parameters (such as the reciprocal of the
density functions) in the definition of the norm itself which usually requires really
large sample sizes! One might also argue in favor of some other criteria. Hwang
(1985) has considered the stochastic dominance criterion based on the marginal
distributions with an arbitrarily chosen cut-off point, and this in turn introduces
some arbitrariness in the adaptation of his measure; the dominance may not hold
uniformly in the choice of such a cut-off point. Brown, Cohen and Strawderman
(1976) advocated the use of some non-convex loss functions. We have no definite
prescription in favor of the PCC, MAD, such non-convex loss functions or the
stochastic dominance criterion, although the PCC may have some natural appeal.
In passing, we may remark that some controversies have been reported in Roberts
and Hwang (1988), although it is very hard to endorse fully the views expressed
in this report. We would like to bypass these by adding that let the cliff fall
where it belongs to\ In our opinion, in spite of some of the shortcomings of the
PCC, as have been mentioned earlier, the developments in the past decade have,
by far, been much more encouraging to advocate in favor of the use of PCC (or
the GPNC) in a variety of statistical models which will be considered here in the
subsequent sections. We also refer to a recent Panel Discussion on Pitman
nearness of statistical estimators at the International Conference on Recent
Developments in Statistical Data Analysis and Inference (in honor of C.R. Rao)
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at Neuchatel, Switzerland (August 24, 1989), where some of these issues have
been discussed critically, and a report of these findings is accounted in Mason,
Keating, Sen and Rao (1990). As with any other measure, there are pathological
examples where the PCC may not appear to be that rational, but in real appli-
cations, we will rarely be confronted with such artificial cases. On the other
hand, in the conventional linear models and in multivariate analyses, some
theoretical studies (supplemented by numerical investigations) made by Mason,
Keating, Sen and Blaylock (1990) justify the appropriateness of the PCC, even
when a dominance may not hold for the entire parameter space. Finally, in the
asymptotic case where the sample size is large enough to justify the usual
regularity conditions needed to use simplified distribution theory for the
estimators, for a wider class of nonparametric and robust estimators, we may
justify the adaptation of the PCC on a very broad ground. We shall stress this
point in the subsequent sections. All in all, we welcome the renaissance of the
PCC and look forward to further developments in this fruitful area of statistical
research.

PCC in the Single Parameter Case

In this section, we stick to the basic definition in (1) and examine the
Pitman-closeness of a general class of statistical estimators. According to (1),
rival estimators are compared two at a time, while (2) or (3) lends itself readily
to suitable classes of estimators. This prompted Ghosh and Sen (1989) to
consider Pitman closest estimators within reasonable classes of estimators. In
this context, we may remark that under (2), the celebrated Rao-Blackwell
theorem depicts the role of unbiased, sufficient statistics in the construction of
such optimal estimators. Ghosh and Sen (1989) have shown that under
appropriate regularity conditions, a median unbiased (MU) estimator is Pitman-
closest within an appropriate class of estimators. Recall that an estimator T of θ
is MU if

PΘ{T < Θ} = PΘ{T > « } , Ϋ 9 G θ , (8)

and To is Pitman-closest within a class of estimators (C), if (1) holds for I\ = To

and every T2 £ C. In many applications, To is a function of a (complete)
sufficient statistic and T2 = To -f Z, where Z is ancillary. Then, note that

To-0\ < | Γ 2 - ]

&\2Z{TO-Θ) + Z2 > o], (9)

while by Basu's (1955) theorem, To and Z are independently distributed. Since
Z2 is a nonnegative random variable, the MU character of To ensure that the
right hand side of (9) has probability > 1/2, V θ G θ . This explains the role of
MU sufficient statistics in the characterization of the Pitman - closest estimators.
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However, the following theorem due to Ghosh and Sen (1989) presents a broader
characterization.

Theorem 1.

Let T be MU-estimator of θ and let C be the class of all estimators of the
form U = T + Z, where T and Z are independently distributed. Then
^{1 T-θ\ < I U-θ\} > 1/2, for all θ G Θ and U G C.

Theorem 1 typically relates to the estimation of location parameter (θ) in
the usual location-scale model where the class C relates to suitable equivariant
estimators (relative to appropriate groups of transformation). Various examples
of this type have been considered by Ghosh and Sen (1989). In the context of the
estimation of the scale parameter, the PCC has been studied in a relatively more
detailed manner. Keating (1985) considered a general scale family of
distributions, and confined himself to the class (C°) of all estimators which are
scalar multiple of the usual MLE; however, he did not enforce any equivariance
considerations to clinch the desired Pitman-closest property. Keating and Gupta
(1984) considered various estimators of the scale parameter of a normal
distribution, and compared them in the light of the PCC. Again in the absence
of any equivariance considerations, their result did not lead to the desired
Pitman-closest characterization. The following theorem due to Ghosh and Sen
(1989) provides the desired result.

Theorem 2.

Let C* be the class of all estimators of the form U = Ί\l + Z), where T
is MU for θ and is nonnegative, while Γ and Z are independently distributed.
Then, Pθ{\ T-θ\ < I U-θ\} > 1/2, V θ G Θ, U G C*.

Both these theorems have been incorporated in the PC characterization
of BLUE (best linear unbiased estimators) of location and scale parameters in the
complete sample as well as censored cases (Sen, 1989b); equivariance plays a
basic role in this context too. Further note that if T has a distribution
symmetric about 0, then T is MU for θ . This sufficient condition for T is easy
to verify in many practical applications. Similarly, if the conditional distribution
of T, given Z, is symmetric about 0, then in Theorem 1, we may not need the
independence of T and Z. The uniform distribution on [θ - i#, θ + ^δ], δ > 0,
provides a simple example of the latter (Ghosh and Sen, 1989).

We shall now discuss some further results on PCC in the single
parameter case pertaining to the asymptotic case and to sequential sampling
plans. The current literature on theory of estimation is flooded with asymptotics.
Asymptotic normality, asymptotic efficiency and other asymptotic considerations
play a vital role in this context. An estimator (Tn) based on a sample of size n is
termed a BAN (best asymptotically normal) estimator of θ if the following two
conditions hold:
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n2(Tn - θ) is asymptotically normal (0, σ2

τ)

[which is the AN (asymptotically normal) criterion], and

σ\ — j-j where %$ is the Fisher information of θ

[which is the B (bestness) criterion]. Let us now consider the class
estimation { Un} which admit an asymptotic representation of the form:

± as n oo,

(10)

(11)

A o f

(12)

function ψθ( ) may depend on the method of estimation and the
, ) = 0 and Enψl(x:) = σ2

π < oo. Recall that for a BAN estimator
where the score
m o d e l ; E θ φ θ ^ rffaj y
of 0, we would have a representation of the form (12) where $#. Φβ(x{) =
fθ(xϊ θ)/ftxϊ 0)> Λ") ιs t n e probability density function and fθ is its first order
derivative w.r. to θ. Note further that ^ { [ ^ ( ^ θ)/^; θ)]2} = }θ, so that for a
BAN estimator, Eθ{ψθ(x1)fθ(x1)/J{x1] θ)} = 1, V θ. Thus, if we let

(13)

then for a BAN estimator Tn, we have under the usual regularity conditions that
as n —• oo,

4-1

1 h

Consider now the class C of all estimators {ί7n}, such that as n —> oo,

(14a)

»2(Un-°)>tn
σ\ 1

1 3*
(14b)

where σ2^ > l^1, and the equality sign holds whenever Un is a BAN estimator of
θ. Note that the ^-consistency of Un entails the unit covariance term. As such,
by an appeal to Theorem 1 of Sen (1986) we conclude that the BAN estimator
satisfying (14a) is asymptotically (as n —• oo) a Pitman-closest estimator of θ
(within the class C°).

Note that this characterization is localized to the class of asymptotically
normal estimators. In the context of estimation of location (or simple regression)
parameter, incorporating robustness considerations (either on a local or global
basis), various other estimators have been considered by a host of workers.
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Among those, the Λf-, L- and R-estimators deserve special mention. The M-
esiimators are especially advocated for plausible local departures from the
assumed model, and they retain high efficiency for the assumed model and at the
same time possess good local robustness properties. The ϋ-estimators are based
on appropriate rank statistics and possess good global robustness properties. L-
estimators are based on linear functions of order statistics with a similar
robustness consideration in mind. In general, these Λf-, L- and Λ-estimators
satisfy the AN condition in (10) through appropriate representations of the type
(12), where ψβ(x) = ψ(x-θ)\ see for example, Sen (1981, Ch. 8). From consid-
erations of bestness based on the minimum (asymptotic) MSE, the optimal M-,
L- and Λ-estimators all satisfy the bestness condition in (11). Hence, we conclude
that an Λf-, L- or R- estimator of θ having the BAN character in the usual sense
is also asymptotically Pitman-closest. This places the PCC in a very comparable
stand in the asymptotic case. Note that being a completely distributional
measure, the PCC does not entail the computation or convergence of the actual
MSE of the estimators, and hence (14a) requiring the usual conditions needed for
the BAN property, also leads to the desired PCC property.

We consider now some recent results on PCC in the sequential case (Sen,
1989a). Note that for the estimation of the mean of a normal distribution with
unknown variance σ2, generally a sequential sampling plan is advocated to ensure
some control on the performance characteristics (which can not be done in a fixed
sample procedure). In this setup, the stopping number N is a positive integer
valued random variable such that for every n > 2, the event [N = n] depends
only on {s2, k < n}, where s^ is the sample variance for the sample size A, k >
2. It is known that {X& k > 1} and {s|, k < n} are mutually independent,
and hence, given N = n (i.e., the s|, k < n), Tn = Xn satisfies the conditions of
Theorem 1, so that X^ has the Pitman-closest character. This simple observa-
tion can be incorporated in a formulation of the PC characterization of sequential
estimators. Let {X^ t > 1} be a sequence of independent and identically
distributed (i.i.d.) random variables (r.v.) with a distribution function (d.f.)
FQ(X), x G R, θ G θ C R. For every n > 1, consider the transformation:

(Xv.. .,Xn) - (Tn, Vn, Wn) ( Vn could be vacuous) (15)

Wn is a (n-k-lVvector and Vn is a k-vector, where k is a nonnegative integer.
Let tyψ' and Ϊ B ^ be the sigma sub-fields generated by Tn and Wn, respectively,
for n > 1,

[N = n] is Φ$-measurable, (16)

Tn is MU for 0, (17)

Zn = vn( Wn) is ΈB^-measurable and

Tn and Wn are independently distributed. (18)
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As in Theorem 1, let C° be the class of all (sequential) estimators of the form
UN= TN+ ZN. Then, under (16), (17) and (18),

Pθi\ TN~Θ\ < I UN-Θ\) > 1/2, V ^ € C oand0 G Θ. (19)

A similar extension of Theorem 2 to the sequential case works out under (16) -
(18).

The characterization of PC of sequential estimators made above is an
exact one, in the sense that it holds for an arbitrary stopping number (N) so long
as N satisfies (16). In the context of bounded-width confidence intervals for θ or
minimum risk (point) estimation of θ (and in some other problems too), the
stopping number N is indexed by a positive real number d (i.e., N = Nj), such
that Nd is well defined for every d > 0 (and Nd is usually J, in d). In this setup,
one considers an asymptotic model where d [ 0. Often, there exists a sequence
{n^} of positive integers (n^ is J. in rf), such that rPd —• oo, as d { 0, and further,

(n°dy
l Nd Λ 1, as d j 0.

In such a case, we may extend the PC characterization to the class of BAN
(sequential) estimators, without necessarily requiring (16). Consider the BAN
estimators treated in (10) through (14), but now adapted to the stopping number
{Nd}. Suppose that the Un [in (12)] satisfy an Anscombe-type condition
[Anscombe (1952)] that for every e > 0 and η > 0, there exist a δ > 0 and an
integer n0, such that

This Anscombe-condition holds for the £ n in (13) under no extra regularity
conditions. On the other hand, (20) is also a byproduct of (weak) invariance
principles for the i7n, which have been studied extensively in the literature [viz.,
Sen (1981), Ch. 3-8]. Thus, we may replace {UN , TN } by {U 0 , T 0 } , as

d d nd nd

d I 0, and then make use of (14) to characterize the desired PC property of the
sequential BAN estimators. Note that, in general, M-estimators of locations are
not scale-equivariant (so as to qualify for the class C in Theorem 1), and L- and
Λ-estimators of location may not also belong to this class. Thus, in finite sample
case, the PC characterization may not apply to these estimators. But, in the
asymptotic case (sequential or fixed-sample size setup), the PC characterization
holds in spite of the fact that these estimators may not belong to the class C or
that (16) may not hold.

To sum up the main findings on PCC in the uniparameter case, we
observe that the MU property (along with ancillarity and sufficiency) provide us
with the desired tool for finding the Pitman-closest estimators in the fixed-sample
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as well as sequential cases. In the asymptotic case, BAN estimators enjoy the
PC-property, and this naturally raises the question: What is the relationship of
the PCC and the (asymptotic) variance of an estimator? Following the lead of
Rao et al. (1986) and Keating and Mason (1985), Peddada and Khattree (1986)
studied this problem; however, their main results pertain to two estimators, say,
Tj and T2, which are distributed independently of each other, and hence, the
conclusions derived from these results may not apply to an usual situation where
the two rival estimators of a common parameter θ are not independently
distributed. Moreover, as they were assuming normality in most of the cases
(treated by them), more general results for such models can be obtained from Sen
(1986).

PCC in the Multiparameter Case

There has been a lot of research work on the PCC in the multiparameter
case, including shrinkage and sequential estimators. Let us consider the case of a
vector θ = (0iv j0«)' of parameters, where θ G Θ C i£*\ for some p > 1. Let
T = ( T l v . . , T Y be an estimator of θ. First, we need to extend the definition of
the distance \T- θ\ in (1) to the multiparameter case. Although the Euclidean
norm is a possibility, since the different components of T may have different
importance (and they are generally not independent), a more general quadratic
norm is usually adopted. We may define

\\df9 = d'Qd, d G Rp, (21)

where Q is a given p.d. matrix. It is not uncommon to use some other metric
(viz., entropy, etc.), so that we may as well take a general

X(T, 0), satisfying the usual properties of a 'norm'. (22)

In the last section, in the context of estimation of dispersion matrices of
multivariate normal distributions, we shall use such norms. As an extension of
(1) and following the lead of Peddada (1985), we consider the following
generalized Pitman nearness criterion (GPNC): An estimator Tχ is GPN closer
than T2 if

PO{L(TVΘ) < L{T2A)} > 1/2, V0 G Θ. (23)

In the context of multivariate location models and in other situations
too, it is quite possible to identify a class of estimators similar to that in
Theorem 1. However, this would rest on plausible extensions of the notion of
median unbiasedness in the multiparameter case. Since the components of T
may not be all independent and Q in (21) may not be a diagonal matrix, the MU
property for each coordinate of f may not suffice. For our purpose, under (21),
it seems that the following definition of multivariate MU property may suffice.
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We say that T is MU for 0, if

i'{T- θ) is MU for 0, for every I € Rv,θ € θ. (24)

In passing, we may remark that if T has a distribution diagonally symmetric
about 0, then (24) holds, although the converse is not necessarily true. Recall
that T has a diagonally symmetric d.f. around 0 if T - 0 and Θ-T both have the
same d.f.

Theorem 3.

Let T be a MU-estimator of 0 [in the sense of (24)], and let C be the class
of all estimators of the form U = T + Z, where T and Z are independently
distributed. Then for any arbitrary p.d. Q,

T-Θ\\Q < || U- Θ\\Q} > 1/2, V ί G θ , ^ C , (25)

The proof is simple (Sen, 1989a) and is omitted. As a simple example
illustrating (25), consider the case where Xv...,Xn are i.i.d. r.v.'s having the
multinormal distribution with mean vector 0 and dispersion matrix Σ. Then Tn

= IΓ^^Xi is MU in the sense of (24). Further, for known Σ, Tn is sufficient
for 0, and the class C consists here of all estimators of the form Tn + Zn where Zn

is ancillary; this rests on the group of affine transformations X —* a + BX^ B
nonsingular and a arbitrary. Thus, by Theorem 3, within the class of such
equivariant estimators of 0, the sample mean Tn (MLE) is the Pitman-closest
one. By using the classical Helmert transformation for the multivariate normal
vectors, it can be shown that the conclusion remains true in the case of unknown
(but nonsingular) Σ. Moreover, the interesting feature of this example [or (25)] is
that the construction of T or the class C does not depend on Q in (21). In the
multiparameter case, we shall study the GPNC for the Stein-rule or shrinkage
estimators, and in that context, it will be seen that neither these estimators
belong to the class C nor their dominance may hold for all Q (i.e., for a given Q,
the construction of PC Tn may generally depend on Q, and this Tn may not
retain its optimality simultaneously for all Q, possibly different from the adapted
one). For the time being, we refrain ourselves from generalizing Theorem 2 to
the vector-case; we shall make comments on it in the last section. Perhaps, it
will be to our advantage to discuss the sequential analogue of Theorem 3, i.e., a
multi-parameter extension of (19). Let us consider the same model as in (14) -
(18) with the exception that in (15), Tn is a vector and in (18), Zn is a vector
too. Then the following result is proved in Sen (1989a):

Under (16), (18) and (24), for the class C° of (sequential) estimators of
the form UN = TN -f ZN, we have
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> 1/2, V g € θ, j7jv € (26)

for any arbitrary (p.d.) Q.
Again as an illustration, we may consider the multinomial mean vector

(θ) estimation problem when the covariance matrix (Σ) is arbitrary and
unknown. Ghosh, Sinha and Mukhopadhyay (1976) and others have considered
suitable stopping numbers (N) which are based solely on the sample covariance
matrices {Sn; n > p), so that (16) and (18) hold (for Tn = Xn, n > 1).
Further, (24) follows from the diagonal symmetry of the d.f. of Xn (around 0), V
n > 1. Hence, (26) holds.

Let us next consider the asymptotic case parallel to that in the previous
section. As in (10) - (11), a BAN estimator Tn is characterized by its asymptotic
(multi-) normality along with the fact that the dispersion matrix of this asymp
totic distribution is equal to J^1, where $Q is the Fisher information matrix. The

representation in (12) also extends readily to this multiparameter case, and (13)
relates to a stochastic p-vector which has the dispersion matrix J^. Consider then
the class C° of all estimators { Un} for which

(27)

where v - $~Q is positive semi-definite, and the ^"n-consistency of Un entails the

identity matrix / in (27); for a BAN estimator Tn, v = J^1. Finally, in (21), it

seems quite appropriate to let Q = }θ. Then, by Theorem 1 of Sen (1986) we

conclude that within the class C° of estimators which are asymptotically multi-
normal and for which (27) holds [with J^1, being replaced by the asymptotic

dispersion matrix of n1^2(Un - 0)], the BAN estimators are Pitman-closest with
respect to the norm in (21), where Q = $β.

The interesting feature is that we are no longer restricting ourselves to
the class C of estimators (which are generally equivariant), but the Pitman-
closest property depends on the adaptation of Q = Jβ. For an arbitrary Q, this

property may not hold. The asymptotic theory of Pitman-closeness of sequential
estimators runs parallel to that in the concluding part of last section, and hence,
we do not repeat these details.

In multiparameter estimation problems, the usual MLE may not be
admissible (in the light of quadratic error loss functions). Stein (1956) considered
the simple model that X has a multi-normal distribution with mean vector 0 and
dispersion matrix, say, / , for some p > 1. He showed that though X is the
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MLE of θ for all p > 1, it is inadmissible for p > 3. James and Stein (1962)
constructed a shrinkage version which dominates X in quadratic error loss.
Sparked by this Stein-phenomenon, during the past twenty-five years, a vast
amount of work has been done in improving the classical estimators in various
multiparameter estimation problems by suitable shrinkage versions; these
improvements being judged by the smallness of appropriate quadratic error loss
function based risks. Coming back to the multivariate normal law, such
shrinkage or Stein-rule estimators do not belong to the class C considered in
Theorem 3! Thus, the characterization of PC made in Theorem 3 is not appli-
cable to such shrinkage estimators. This raises the question: Does the usual
Stein-rule estimator have the PC property too? The answer is affirmative in a
variety of situations, and moreover, this PC dominance may hold even under less
restrictive regularity conditions.

Rao (1981) initiated renewed interest in the PCC by showing that some
simple shrinkage estimators may not be the Pitman closest ones! He actually
argued that the usual quadratic error loss function places undue emphasis on
large deviations which may occur with small probability, and hence, minimizing
the mean square error may insure against large errors in estimation occurring
more frequently rather than providing greater concentration of an estimator in
neighborhoods of the true value. Since, typically, a Stein-rule estimator is non-
linear and may not have (even asymptotically) multi-normal law, Rao's criticism
is more appropriate in this context. Actually, Rao, Keating and Mason (1986)
and Keating and Mason (1988) have shown by extensive numerical studies that
for the p-variate normal distribution, for p > 2, the James-Stein estimator is
closer (in the Pitman sense) than the MLE X. The quadratic error loss criterion
may also cause some difficulties in the usual linear models when the incidence
(design) matrix is nearly singular; in such a case, a ridge regression estimator is
generally preferred. In this context too, one may enquire whether such ridge
regression estimators have the Pitman closeness property. This issue has been
taken up by Mason, Keating, Sen and Blaylock (1990), and both theoretical and
numerical studies are made. So long as the incidence matrix is non-singular, a
ridge estimator may not dominate the classical least square estimator in the
PCC, although it fares well over a greater part of Θ. The lack of dominance
arises mainly due to the fact that as θ moves away from the pivot, the
performance of a ridge estimator may deteriorate, so that the inequality in (23)
may not hold for all θ belonging to θ, although it generally holds for all
£ : II ? II < C» where C is related to the factor k ( > 0) arising in the construction
of a ridge estimator. Their study also covers the comparison of two arbitrary
linear estimators in the light of the PCC.

The interesting fact is that the PCC may not even need that p is > 2
(comparable to p > 3 for the quadratic error loss)! Even for p = 1,
X ~ Jf (0, 1), Efron (1975) showed that for

δ = X - Δ(-X); Δ(*) = i [roin{«, Φ(-x)}\ x > 0, (28)
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[A(-x) = -Δ(x), x > 0 and Φ( ) is the standard normal d.f.], (1) holds for 7\ =
δ and T2 = X. He made some conjectures for p > 2. For the multivariate
normal mean estimation problem, a systematic account of the PC dominance of
Stein-rule estimators is given by Sen, Kubokawa and Saleh (1989). Consider first
the model that for some positive integer p, X has a p-variate normal distribution
with mean vector θ and dispersion matrix σ2K, where V is known (and p.d.),
while θ and σ2 are unknown. Also assume that s2 is an estimator of σ , such
that (i) ms2 /σ2 = χ^, a r.v. having the central chi square distribution with m

( > 1) degrees of freedom (DF), and (ii) s is distributed independently of X. [In
actual application, X may be the sample mean vector or a suitable linear
estimator (of regression parameters, for example) and s2 is the residual mean
square (with m = n - q, for some q > 1]. Keeping in mind the loss function in
(21), we may consider a Stein-rule estimator of the form

δφ = [l- Φ(X, *ι)4Xtg,y?11Γ1'$, (29)

where φ(x, s2) is a nonnegative r.v. bounded from above by a constant cp

(depending on p) (with probability one), and U^IΓ^y = X'V1^1^1^. Note

that estimators of this type with a different bound for φ( ) (and for p > 3) were
considered by Stein (1981), and hence, we regard them as Stein-rule estimators.
Then, we have the following result due to Sen et al. (1989).

Theorem 4.

Assume that p > 2, and

0 < Φ(& s2) < (p - l)(3j> + l)/(2p), for every (X, s2) a.e. (30)

Then δψj given by (29), is closer than X in the Pitman sense [i.e., (23) holds for

Γi = S*> Ϊ2 = ̂ a n d L(T> θ) = II T- Φ-
If σ2 were known, then in (29) and (30), we would have taken φ(X, σ2)

instead of φ(Xy s2). In this sense, the classical James-Stein (1962) estimator is a
special case of (29). We may take φ(X, s2) = a : 0 < a < (p - l)(3jp + l)/2p,
and consider the following versions:

^ ^ (31)

δ+ = X - min{as2\\ X\gγ, X1 Γ 1 J | UQ, V} Q'1 Γ 1 ^, (32)

so that δa is a James-Stein estimator and δ* is the so-called positive-rule version.

Then again (23) holds with Tx = ί+,~Γ 2 = ίβ, ί (T, θ) = | | Γ - g | | g and
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0 < a < (p - l)(Άp + l)/2p. Thus, the positive rule version dominates the
classical James-Stein version in the light of the PCC as well. It may be remarked
that for the quadratic error loss dominance, Stein (1981) had p > 3 and 0 < a
< 2(p - 2), while here p > 2 and 0 < a < (p - l)(3j> + l)/2p. For

P € [2, 5], (p - \){Zp + ΐ)/2p > 2(p - 2). For p > 6, in (30), we may as well
replace (p - l)(3p + l)/2]> by 2(p - 2). The main motivation of the upper bound
in (30) was to include the case p = 2 and to have a larger shrinkage factor for
smaller values of p.

The proof of Theorem 4 depends on some intricate properties of
noncentral chi square densities which may have some interest on their own.
Basically, to verify (23) for Tχ = δφ and T2 = X, it follows through some
standard steps that a sufficient condition is

p\{xl\ > λ + cXm} > 1/2, V λ > 0, m > 1, p > 2, (33)

where c = (p - l)(3/> + l)/(4pm), χ^ λ has the noncentral chi square d.f. with p
DF and noncentrality parameter λ ( > 0), and χ ^ has the central chi square d.f.
with m DF, independently of χ^ λ . The trick was to show that the left hand side
of (33) in λ ( > 0) and that as' λ -> oo, it converges to 1/2. Sen et al. (1989)
also considered the case of X ~ JSΓ_(0, Σ), Σ arbitrary (p.d.),
S ~ Wishart(Σ, p, m) independently of X with m > /), and considered the
usual shrinkage estimator

δ* = X-(m-p+ 1)-^(X, ^ C I I ^ I Γ A ^ 1 ^ (34)

where dm = chmin(Q S) and φ(x, S) has the same bound as in (30). Then, for

every p > 2, (23) holds for Tχ = ί J and T2 = X.
Let us now consider the asymptotic picture relating to the Stein-rule

estimators under the PCC. Generally, we have a sequence {Tn} of estimators,
such that as n —* oo,

^Kp(q,Σ),Σp.d., (35)

and, also, we have a sequence {Sn} of stochastic matrices, such that

Sn —> Σ, in probability, a s n - ^ o o . (36)

Thus, a suitable test statistic for testing the hypothesis of a null pivot is

K = nϊntiTn, (37)

so that an asymptotic version of (34) is

f sn)dm^q'^τn. (38)
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This form is of sufficient generality to cover a large class of {Tn}, both of

parameter and nonparameter forms. In particular, for R- and Λf-estimators, for

Ln in (37), instead of Tn, suitable rank or M-statistics may also be used. Also, in

(38), a null pivot has been used; the modifications for a general ΘQ are straight-

forward. Now, if θ φ 0, then n'1ln Λ 0'Σ"1*?, as n -> oo, so that l"£ Λ 0, as

n —• oo. Thus, for any fixed θ φ 0,

Vn| Γ β - «J,%||9 Λ 0, as » — oo, (39)

so that asymptotically the Stein-rule version becomes stochastically equivalent to
the classical version. For this reason, the asymptotic dominance picture has been
considered in the case where θ belongs to a Pitman-neighborhood of the assumed
pivot (0). Thus, we may consider a sequence {Kn} of local (Pitman-)
alternatives

Kn : θ = θ(n) = n"2λ, A G Rp. (40)

Further, by virtue of (36), we may replace Sn by Σ, and appeal to Theorem 4
(where s2 is taken as 1 and V = Σ). As such, we obtain that for every φ( ),
satisfying (40),

^ 1 \ \ | Γ.J > 1/2. (41)

Thus, the usual robust and nonparametric Stein-rule estimators enjoy the Pitman
closeness property in the asymptotic case (and for Pitman-alternatives) under less
restrictive regularity conditions (than in the conventional case of quadratic error
losses).

Let us now consider sequential Stein-rule estimators and discuss their
dominance in the light of the PCC. Consider a simple model: {X^ 1 > 1} are
i.i.d.r.v. with Np((?, <^2/J d.f.; θ and σ2 are unknown. Let s2

n =

(»jO" l Σ !=i(£i~?n) ' x ( ^ t - ^ n ) ; ^n = n~lΣΓ=i^i> a n d consider a stopping

number JV, such that for every n > 2, [N = n] depends only on {s|, k < n}.
Let then

N ^ ( i \ ή } (42)
where

0 < b < (p-l)(Zp+l)/(2p),p > 2. (43)

We may even allow b to be replaced by φ(X^ s2

N), where φ( ) satisfies (40).
Again note that [N = n] Ό> [s|, it < n], so that by virtue of the independence of
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{Xn} and {s^}, given [N = n], Xn has a multinormal distribution (0, jjΣ), inde-

pendently of the s\, k > 2. However, the shrinkage factor (^^(^II^IP)" 1 ) i n

(42) depends on all the r.v.'s (JV, XN and s^). Hence, the simple proof for (26)
may not be adaptable in this more complex situation. Nevertheless, it has been
shown by Sen (1989a) that by virtue of certain log-concavity property of the
noncentral chi square density and the non-sequential results in Sen, Kubokawa
and Saleh (1989) the following result holds.

Theorem 5.

For the class of Stein-rule estimators in (42), whenever the stopping
number N satisfies (16) [with Wn = (s\,..., βj), n > 2], for every b 6
( 0 ( ) ( 3 ) / r i

l A Vgσ. (44)

In passing, we may remark that a parallel dominance result under a
quadratic error loss has been proved by Ghosh, Nickerson and Sen (1987). In the
fixed-sample size case, the PC dominance of δt in (44) has been established for
an arbitrary (p.d.) Σ. On the other hand, for arbitrary Σ, the sequential case
either in terms of the PCC or a quadratic error loss has not yet been resolved.

The asymptotic theory of sequential shrinkage estimation in the light of
the PCC has been worked out systematically in Sen (1987a, b; 1989c, d). The
basic idea is to incorporate (19) for the proposed stopping rules, verify (20) as
amended in the multivariate case, and then by appeal to (35) through (41)
completing the proof. Although, in the cited references, suitable quadratic error
losses were used, our (35) through (41) ensure that the results remain adaptable
in the PCC as well. Further, in this asymptotic setup, the covariance matrix Σ
can be quite arbitrary (p.d.). In the case of a quadratic error loss, the actual
asymptotic risk functions were replaced by asymptotic distributional risk
functions, so that the desired dominance results could be obtained under less
restrictive regularity conditions. In the case of PCC, this replacement makes no
difference in the asymptotic picture, and therefore, there is no need to assume
additional regularity conditions under which the asymptotic limits of the actual
quadratic error loss based risks exist. In the case of shrinkage estimation, there is
a technical problem in finding an asymptotically optimal stopping time, and this
has been discussed in detail in Sen (1989d).

GPNC and Estimation of a Dispersion Matrix

To motivate, let us consider the problem of estimating the dispersion
matrix Σ (p.d. but arbitrary) of a multinormal distribution. An unbiased
estimator of Σ is § = (n - 1 ) " " ^ = 1 ( ^ . - X^{X{ - XJ\ where Xv...,Xn are
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i.i.d.r. vectors and Xn = n ^ Σ ^ X . Note that A = (n-l)5 ~ Wishart(Σ, n-1, p).
One possibility is to take θ = t ec(Σ) and the class Cj of equivariant estimators
T = vec(cj4)> c > 0, under the quadratic error loss function Z(T, 0) as in (21) -
(23). But the natural appeal for such a quadratic error loss function is not so
convincing in this setup, and other forms of loss functions have been considered
by various workers (viz., Haff, 1980, Sinha and Ghosh, 1987, and others). A
popular choice is the so-called entropy loss function:

1(5, Σ) = triSΣ'1) - log \ SΣ'^ - j>; (45)

a second one

L(S, Σ) = iris?1 - i)2 (46)

also deserves mention. [For the estimation of the precision matrix ΣΓ , 5" is a
natural choice, and in (45) or (46), we may replace S and Σ by 5" and Σ,
respectively.] Consider the class of estimation (Cj) of the form

{cA : c > 0 and (n - 1)5 - W(Σ, n - 1, p)}. (47)

Also, consider the GPNC in (23). Then the following result is due to Khattree
(1987).

Theorem 6.

Let 0 < a2 < aχ < 1 and a{A 6 Cv i = 1, 2. Also, let cpn =
m e^{x«ίn-i^ Then aλA > GPN a2A under the loss function in (45) if and only
if V '

plog(aι/a2) > (a1-a2)cpn. (48)

Also, let c* n = τned{τp} where τp = [triψψ)] -f [tr{Wj\ and W -
Wishart(l n-1, p). Then, under (46), aχA > GPN a2A iff

c p , n < 2 ( α l + a 2 ) ' ( 4 9 )

Thus, if we let aQ = p/cpn and α£ = l/c*)7l, then within the class C1 of

estimators of Σ, aQA (or a^A) is a unique best (in the GPNC sense) estimator of
Σ under the entropy loss [or (46)], and this can not be improved within this class

It may be noted that Cj is the class of equivariant estimators under the
(full affine) group of transformations:

X —* Q + BX, A —> BAB\ B nonsingular, a arbitrary. (50)

Sinha and Ghosh (1987) and Sinha (1988) also considered a larger class C2 of the
form:
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C2 = {TQ? :A=T? ~ W(Σ, n-1, p);

Q = Diag(qv.. .,qp), g; > 0, for j = 1,.. .,j>j, (51)

and established the inadmissibility of the class Cj relative to the class C2, under
various loss functions. A natural question arises in this context: Are the
estimators in the class C2 admissible in the GPN sense? To address this problem
properly, we may note that the entropy loss in (45) was first introduced in the
univariate case by James and Stein (1961); in this special case, Cχ = C2 contains
the class of scalar multiples of the sample variance, and hence, the PC of an
estimator can as well be judged by using the usual quadratic error loss. This was
accomplished by Ghosh and Sen (1989) (from the PCC point of view). This
equivalence result does not, however, hold generally for the multivariate case, and
hence, a different approach is needed. The class C2 is too big, and although for
suitable subclasses of C2 (defined by imposing additional partial ordering),
admissibility of estimators in the GPN sense can be established, such a result
may not generally hold for the entire class C2. This is being explored in detail
(viz., Sen, Nayak and Khattree, 1990). The following results are worth
mentioning in this context:

(i) Within the class C2, no estimator of Σ is GPN-optimal!

(ii) Let D2 = Diag(d2l,..,,d2p) with <Γ2) = med(χ2

n+p_2j), for

j = l,...,j>, and let Σ 2 = TD2Ί*. Also, let

C3 = {A £ C2 : Q - D2 = positive semi-definite (p.s.d.)}; (52)

C4 = {A e C2 : D2 - Q = p.s.d.}. (53)

Then, within the subclass C3, Σ 2 is GPN-optimal. Within the
subclass C4, no estimator of Σ is GPN-optimal.

(iii) Let Dχ = Diag(dn.. .,rflp) with dχj = (n + p - 2j)"\ for

j = 1,...,]>, and let Σ χ = TD^. Then, Σχ is the James-Stein esti-
mator of Σ, and its properties have already been studied by Sinha
(1988). The usual estimator of Σ is Σ o = ( n - I)" 1 A Then,
although there is no GPN-optimal estimator of Σ within the class
C2, both Σχ and Σ 2 dominate the classical estimator Σ o in the
GPN-sense.
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