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In this paper described is a novel method of generation
of nonnegative random variables T\,..., Tn which may
be dependent and which have an absolutely continuous
joint distribution. In this method first min(Ti,..., Tn) is
generated and then one of the indices 1,..., n (ji, say)
is chosen and Tjλ, is determined. Once 7} x,..., Tjk have
been determined, then nήRje{it...tn}-{jlt...tjk}(Tj) is gen-
erated and one of the remaining indices (jk+i, say) is
chosen and Tjk+1 is determined. The novel method has
a clear intuitive meaning, mainly for applications in re-
liability theory. The new method is applied to obtain
stochastic comparisons of two absolutely continuous ran-
dom vectors consisting of nonnegative random variables.
Also, the use of the new method is illustrated in obtain-
ing some multivariate aging properties and positive de-
pendence properties of vectors of random lifetimes.

1. Introduction. Consider an absolutely continuous nonnegative random
variable T with distribution function .F, survival function F = 1 - F and hazard
function Λ = — log F. The random variable Γ can be thought of as a lifetime of a
device. The hazard rate (or the instantaneous failure rate of the device) at time t
is defined as

where / = -^F is the density function of Γ. It is well known (and easy to verify)
that T is stochastically equal to (that is, has the same distribution as) the time
of the first epoch of a nonhomogeneous Poisson process on [0, oo) with intensity
function λ. Thus, in order to generate a random variable f which has the same
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distribution as T, one can generate a nonhomogeneous Poisson process with inten-
sity function λ and let T be the time of the first epoch in that process. This can
be done by generating a standard exponential random variable S and define T by

T = mi{t : Λ(<) > S} = Λ-^S);

see, e.g., Lewis and Shedler (1979), Ross (1985), and Shanthikumar (1986).

The purpose of this paper is to give a multivariate analog of this univariate
result. This is done in Section 2 where we introduce a method (called the dynamic
construction) which, for every nonnegative absolutely continuous random vector
T = (Γi,.. . ,T n), constructs a random vector T = (TΊ,.. .,Tn) of times of first

epoch of some nonhomogeneous Poisson processes such that T = T (in this paper
st
= denotes stochastic equality).

A random variable X is said to be stochastically smaller than a random variable
st

Y (denoted X < Y) if, for every t, P{X > t} < P{Y > t}. A random vector
X = (-XΊ,.. .jXn) is said to be stochastically smaller than a random vector Y =

st st
(YΊ,..., Yn) [denoted X < Y] if #(X) < g(Y) for every increasing Borel measurable
real function g. A function g is called increasing if g(xi,..., xn) < g(yi> >Vn)
whenever (xi, . . . ,x n ) < (yi? >ί/n) [In this paper 'increasing' and 'decreasing'
are not used in the strict sense. For vectors x = ( # i , . . . , xn) and y = (yi,. . ., yn)

st
we denote x < y to mean xt < j/i, i , . . . , n.] It is well known that X < Y if and
only if

(1) Eg(X) < Eg(Y)

for every increasing Borel-measurable real function g for which the expectations
st

exist. Another condition which is equivalent to X < Y, is

P{XeU} < P{YeU}

for every Borel set U which has an increasing indicator function [such sets are
called increasing (or upper) sets].

If X and Y are nonnegative absolute continuous random variables with hazard
rate functions μ and 77, respectively, then it is well known (and easy to verify) that

(2) [μ(t) > η(t), t>0]=>X< Y.

It follows that if X = (Xχ,...,Xn) and Y = (Yi,...,Yn) are vectors of inde-
pendent nonnegative absolutely continuous random variables such that the hazard
rate functions of X{ and Y{ are μι and 77;, respectively, i = 1,..., n, then

(3) [μi(t) > Vi(t), ί > 0 , t = l , . . . , n ] = » X < Y .
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It is not hard to show that the converse of (2), and hence also of (3), is false.

In this paper we extend (3) to random vectors X and Y which may have
dependent components. This is done in Section 3 where random vectors X and
Y are constructed simultaneously (on a common probability space), using the

dynamic construction, such that X and Y satisfy: X = X, Y = Y and P{X <
Y} = 1. The results are similar to those of Shaked and Shanthikumar (1987a),
but the proofs are different.

The rest of the paper (Sections 4 and 5) consists of applications of the results of
Section 3. In Section 4 we identify some conditions on the hazard rates of a random
vector T (the hazard rates are defined in Section 2) which imply that T satisfies
the MIHR| T% property of Arjas (1981a). In Section 5 we show that another set of
conditions on the hazard rates imply that T has the WBF (weakened by failures)
property of Arjas and Norros (1984). In particular, such random variables are
associated in the sense of Esary, Proschan, and Walkup (1967).

In this paper, for f* > 0, we will consider nonhomogeneous Poisson processes
on [/*,oo) with intensity function λ defined on [t*,oo). By this phrase we mean
nonhomogeneous Poisson processes which start counting at time £*, or, equiva-
lently, nonhomogeneous Poisson processes with intensity 0 on [0,ί*) and intensity
λ on [t*,oo).

2. The Dynamic Construction. For the purpose of generating a random
Λ stvector T, such that T = T for some given T, two alternative constructions have

been used. They are the standard construction (see, e.g., Arjas and Lehtonen
(1978)) and the total hazard construction (see, e.g., Norros (1986) and Shaked and
Shanthikumar (1986a, 1987b)). If T is n-dimensional, then each of these construc-
tions requires n uniform random variables in order to generate T. The dynamic
construction, described below, requires more than n uniform random variables
but it has an intuitive meaning which has theoretical and practical advantages,
especially in reliability theory.

In the dynamic construction, the random variables Ti, . . . ,Γ n , are thought
of as the lifetimes of n components numbered 1,2, . . . ,n . The dynamic point
of view can be described as follows: Let t > 0 be zero or an observed time of
failure of one of the components. Assume that at that time 2, it is known which
components are still alive and the failure times of the components which fail before
or at time t. Given this information, the dynamic construction considers then
the conditional distribution of the time to next failure, t' say (tf > t), and the
conditional probability that this next failure is of a particular component of those
still alive at time t. The time t1 is a new starting point at which the conditional
distribution of the following failure and the identity of the next failed component
are considered. This is done inductively until all n components have failed.

Given that t > 0 is a failure time of a component and that components i i , . . . , ύ
are still alive then [if t = 0 then k = n and {ti,...,ϊn} = {l,...,n}], the next
failure time is min(Tj1,.. . ,Tίfc) and, in the dynamic construction below, this time
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is described (as in the univariate case, see Section 1) as the time of the first
epoch of a nonhomogeneous Poisson process, starting at time tf, with intensity
function depending on the observed 'history' up to time t. Once min(T t l,.. .,T t fc)
is observed, at time /', say, the identity of the failed component (which must be one
of i i , . . . , ik) is chosen according to the conditional distribution [on {ii,..., ik}] of
the component identities given in the history up to time t' - and that a failure has
occurred at time tf.

For example, in the bivariate case there are two components, 1 and 2, which
start to live at time 0. First consider the distribution of min(Ti,T2) with hazard
rate function λ, say, on [0, oo). It is the distribution of the time of the first epoch
in a nonhomogeneous Poisson process with intensity function λ. Next, given that
min(Ti,T2) = t, say, choose an i from {1,2} according to the probability p<(i),
i = 1,2, where pt(i) is the conditional probability [given min(TΊ,T2) = t] that
component i fails at time t [that is, that in fact min(Γi,Γ2) = T{]. Note that
Pt(l) + Pt(2) = 1 for all t. This way, one of the Tt's (the smallest of the two)
is stochastically represented as the time of the first epoch of a nonhomogeneous
Poisson process. Finally, given that min(Tχ,T2) = t and that min(Tχ,T2) = T{ for
some ze{l,2}, let Xz^i (which may depend on t) be the (conditional) hazard rate
function of the surviving component on [ί, oo). The random variable T^-i can also
be stochastically represented as the time of the first epoch of a nonhomogeneous
Poisson process (with intensity function λ3_t ). It is not hard to see that the func-
tions λ( ), p.(l), P (2), λi( ) and λ2( ) determine the distribution JP of (TΊ,T2)
[see, e.g., Cox (1972) or Shaked and Shanthikumar (1986b)]. In the bivariate case
these functions (and similar ones in the case n > 2) will be the building blocks of
the dynamic construction described below.

In general, let T = (Γi,...,Tn) be a nonnegative absolutely continuous ran-
dom vector to be thought of as a vector of lifetimes of n components. For
/ = {ii,..., ύ } C {1,..., n}, let t/ denote (ί,^,...,Uk). The complement of I will
be denoted by 7 = {1,.. .,n} —/ and if / = {jΊ,.. .,jn_fc} then t j = (tjx . . . , Jjn_fc).
Let e = ( 1 , . . . , 1). The length of e will vary from one formula to another, but it
will always be possible to determine it from the expression in which e appears.

We will often consider the conditional distribution of T/ given that T j = tj
and that T/ > te for some t j > Oe and t > \fiejU = max{^ : ieϊ}. Then, for icJ,
the conditional density of Tt , at time £, given the above information, will be called
the conditional hazard rate of Tt (or the conditional instantaneous failure rate of
component i) at time t. It will be denoted by λt (* | Tj = tj, T/ > te). Formally,
for ieJ,

λi(t |Tj = tj, T/>ίe)

(4) = lim -r-P{t <Ti<t + At\Tj = tj, T/ > te}.

The absolute continuity of T ensures that this limit exists. To save space we
sometimes suppress the condition T/ > te and just write λi(t \ T j = t j , •) but
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the reader should keep in mind that '•' means T/ > te with t being the same as the
first argument of λ, . The function λt ( | T j = t j , •) will be of interest to us only
on the (random) interval πnax^j l j , minie/Γ, J, however, to avoid a discussion
of such random hazard rate functions [such a discussion can be found in Arjas
(1981b)] we do not emphasize this point here. Note however, that λ( | T j = t j , •)
of (4) is well defined for almost every t > Vje/ '̂

The absolute continuity implies that, with probability one, no two failures can
occur at the same time. Thus, for / > Vte/*«>

(5) λ, (< I T j = tj, T , > ίe) = Σ λ (< I T I ̂  */» T/ > ίe)
iel

is the conditional hazard rate of min, £j(Γ, ) at time t. For iel, denote

( | j j )

A, (t|Tj = t7, Tj>ίe)

~ λ/(ί|Tj = tj, T/>ίe)

(6) = p | i n m Γ i = Γt | T j = t Γ , T/ > ίe, ηm(Tj) = ί j .

In the sequel we will also suppress sometimes the condition T/ > ίe in (5) and (6)
and just write λ/(ΐ | T j = t/, •) and pt(i \ Ύj = t j , •). Note that for t > \Jjjtj,
ΣidPt(i I T j = t j , •) = 1 and that

(7) λi(t I T j = t j , •) = pt(i I T j = t j , )λ/(ί I T j = t j , •)•

For a nonnegative random vector (TΊ,...,Tn) the dynamic construction of

(Ti,. . . , Γn), such that (TΊ,..., fn) = (Γi,.. ., Γn), consists of the following n
steps:

1: Consider n independent nonhomogeneous Poisson processes on [0, oo) in-
dexed by ic{l,..., n} with intensity function λ, (/ | T > ίe), t > 0, i = 1,..., n.
If Process jΊ yields the first epoch (out of all the n processes) then let the time of
this epoch be Tjx.

Step 2: Given that Step 1 resulted in Tjx = tjx, consider n — 1 independent
nonhomogeneous Poisson processes on [tjx, oo) indexed by iel = {1,..., n} — {jΊ}.
For iel let the intensity function of Process i be λt (/ | Tjx = tjx, T/ > te), t > tjx.
If Process J2(d) yields the first epoch (out of all the n — 1 processes) then let the
time of this epoch be Tj2.

Step k + 1: Given that Steps l,...fc resulted in f^ = ί j j,.. . , ί j Λ = £?fc, let
/ = {l,...,n} — {ii? •?.?&} and consider n — k independent nonhomogeneous
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Poisson processes on [Vje/fή °°) indexed by iel. For iel let the intensity function
of Process i be λt ( | T j = t j , •) on [Vjtjtj, oo). If Process jk+ι(el) yields the first
epoch (out of the n — k processes) then let ΓjΛ+1 be the time of this epoch.

Step n: Given that Steps 1,..., n - 1 resulted in fjλ = tjx,..., ί j n - 1 = ί j n - 1 , let
/ = {in} = {l? ?n} ~~ {ii? ?in-i} and consider a nonhomogeneous Poisson
process on [Vic/'ή00) wi*h intensity functions λjn(ί | T j = t j , Γjn > t). Let the
time of the first epoch of this process be fjn.

The verification that ( ί i , . . . , fn) = (Γi,..., Tn) is straightforward. It follows
from the following representation of the joint density / (* !„ . . . , tn) of (Γi,..., Tn):
For 0 < ίi < •••< t n ,

/ ( ί i , . . . , ί n ) = λαίίx I T > /ie)exp{-Λ { 1_ n }(^)}
n

x{Πlλ<(<< I τ{i,..,«-i} = t{i,...,t -i}. 0

X exp{-(A{,v..)n}(ii I T{1>...,, _ 1 } = t{1,...,, _ 1 } , T{ i,...,n} > ΐi-ie))}]},

and similar expressions are valid when 0 < ίπM\ < < tπrn\ for any permutation
π of ( 1 , . . .,n) [see, e.g., Cox (1972) or Lemma 1.1 of Shaked and Shanthikumar
(1986b)]. Here Λ{1)...>n}(ί) = /0* λ { l i... ) n }(u | T > ue)du, for t > 0, and A/(< | T j =
t j , T/ > (V,£J*.)e) = /w t. λ/(u'| T 7 = t j , T/ > ue)du for / C {1,..., n} and

V iel *

< > WielU
For some purposes the following modified dynamic construction is more useful

than the dynamic construction described above:
Step 1: Consider a nonhomogeneous Poisson process on [0, oo) with intensity func-
tion λ{lf_ϊn}(t I T > ίe), t > 0. At the time θ, say, of the first epoch, choose an
index i with probability P{the index i is chosen} = ps{% \ T > θe), i = 1,.. .,n.
If the chosen i is jΊ then let Tjj = s.

Step k + 1: Given that Steps l,...,fc resulted in Tjx = tjΎ,.. ,,Tjk = £jfc let
/ = {l,...,n} — {ii,.. .,ifc} Consider a nonhomogeneous Poisson process on
(Vie/^?00) with intensity function λ/( | T/ = */?*)• At the time θ, say, of the
first epoch, choose an index from / with probability ps(i \ Ύj = t j , •), iel. If the
chosen index i is j'^+i then let Tjfc+1 =
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Step n: The last step is the same as in the dynamic construction.

3. Stochastic Ordering Via Conditions on the Hazard Rates. Let
X = (-XΊ,..., Xn) and Y = (YΊ,..., Yn) be two nonnegative absolutely continuous
random vectors. For any set / C {1,..., n} and fixed t j > Oe, / > \l jjtj and iel,
let the conditional hazard rates of X{ and Y{ be defined (as in (4)) by

μi(t I Xj = <j, Xj > te) = μi(t I Xj = *j,.)

(8) = Urn -τ-P{t <Xi<t + Δt\Xj = tj, Xj > te}

Vi(t I Yj = ίj, Y/ > te) = m(t I Yj = tj,

and

(9) = Δlimo ±P{t < Y, < * + Δt I Y 7 = <j, Y/ > ίe}.

In this section we find sufficient conditions on the μ 's and r/z 's which imply
st

that X < Y. The following main result of this section is a multivariate analog of
(2). Here, and in the remainder of the paper, for / C {1,..., n} and tj > Oe, we
denote M(t/) = Vίc/*« where \fieiU = 0 if / = 0. Similarly, for (not necessarily
disjoint) sets /, J, ϋf, ••• C {l,...,π} and t/ > Oe, t j > Oe, tjζ > Oe,..., we
denote M(tj, t j , t κ , . . . ) = (Vίe/ U) V (V jcj «i) V (VkzK **) V - -

THEOREM 3.1. Ze£ X αndΎ have conditional hazard rates as in (8) and (9). If
for all disjoint sets I,J C {1,..., n} such that IU J φ 0 and for all fixed t j > Oe,
the following holds:

/i*(M(tj,tj) + tt I Xj = tj, Xj = tj, X ^ > (M(tj, h) + u)e)

(10) > ηk(M(tj, t/) + u I Yj = t7, Yj > (M(tj, tj) + t*)e)

st

whenever t j < t j , u > 0 and fee/ U J (J may be the empty set), then X < Y.

REMARK 3.2. Roughly speaking, the events on which the failure rates are
conditioned in (10) are two histories of the same length M(tj,t j). The history on
the left hand side of (10) has more failures than the history on the right hand side,
and, for components which failed in both histories, the failure times in the former
are earlier than in the latter. Condition (10) says that whenever the histories of
X and Y can thus be compared, then the failure rate, under the law of X, of each
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surviving component in the history of X, is larger than the failure rate of the same

component under the law of Y.

REMARK 3.3. If X and Y are vectors of independent random variables with
hazard rate functions satisfying the condition in (3) then (10) holds. Thus Theorem
3.1 contains Result (3) as a special case.

The proof of Theorem 3.1 is given in the Appendix.

In Sections 4 and 5 we need a slight generalization of Theorem 3.1. We will
need to compare random vectors X = (Xi,. . . ,X n ) and Y = (YΊ,..., Yn) where
Y is nonnegative and absolutely continuous on [0,oo)n, but X may have some
components which are identically zero, that is, X is of the form [relabelling com-
ponents if necessary] X = (0,. . . , 0, X^+i,..., Xn) for some £e{0,1,..., n — 1},
where (X^+i,.. .,Xn) is nonnegative and absolutely continuous on [0, oo)n~^. We
will condition on events of the form {Xj = t/, Xj > te} t > M(tj) where
/ D {1,.. .,£} and t{1)## ^y = Oe. For ieJ, the conditional hazard rate at time t of
Xz , given X/ = t/ and Xj > te, denoted by μi(t | Xj = t/, Xj > te), t > M(tj),
is well defined as in (8). Condition (10) then is well defined for every / D {1,..., £}.

THEOREM 3.4. Let X and Y be as described above. If for all disjoint sets I,

J C {l,...,π} such that ( / U J ) D {1,...,^} and IU J φ 0 and for all fixed tj,
st

condition (10) holds whenever t/ < t/ [t{lι#β#f/j = Oe], and kel U J, then X < Y.

The proof of Theorem 3.4 is similar to the proof of Theorem 3.1. Instead of
starting with Step 1 one defines X\ = = Xι = 0 and then starts the construction
(described in the proof of Theorem 3.1) in step (£ + l).l. We omit the details.

4. Hazard Rates and the MIHR| Tt Property. Let Γi , . . . ,T n be non-
negative random variables to be thought of as lifetimes of components numbered
1,..., n. Let Z{ be the life indicator of component t, that is,

Zi(t) = lift<Ti,

= 0 if t>T{.

For t > 0, let Tt be the σ-field generated by {Zi(s) : 0 < s < t, i = 1,..., n}, that
is,

(11) Tt = σ{Zi(s) :0<s<t, 1 < t < n ) .

We will condition on sets in Tt of the form

At = {T/ = t 7 , T j > te},

where / C {1,..., n} and / > M (tj). Thus At is an observed history of components

1,.. . ,n until time t. It describes which components are still alive at time t and

the failure times of the components that are already dead at time /.
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Let θt denote a shift by / in time and define

θtTi = (Ti - <)+ = max(Γ t - t, 0), i = l , . . . , n , t > 0.

Denote T = ( 2 \ , . . . , Tn) and 0 t T = (0,Ti,. . . , θtTn).
Arjas (1981a) considered the class of multivariate increasing hazard rate (MIHR)

random vectors described in the following definition.

DEFINITION 4.1. The random vector ( Γ i , . . . , T n ) is called MIHR relative to
(Ft)t>o [denoted by MIHR| (.?i)t>o or just by MIHR| JFt] if for all t < t' and all
Borel upper sets U in jRn,

(12) P{θtTeU I Tt} > P{θt,ΎeU \ Γt,} a.s.

For the random vector T let the conditional hazard rates be defined as in (4).

THEOREM 4.2. Suppose that the conditional hazard rates ofT satisfy:

(i) For disjoint sets I, J C {1,..., n}} J φ$ and fixed t/yj > Oe,
t/ > Oe, kel U J,

λib(M(tj, t/, t j ) + u I T/ = t/, T j = t j , •)

(13) > λ fc(M(tj, t j , t j) + u I T/ = t 7 , . ) , u > 0.

(ϊi^ For disjoint sets J, J C {1,..., n} and fixed kel U J, t < f, t/ < te, tj > te
and tj > te such that tj — te > t j — t'e,

λk(t' + M(tj) - ί + ti I T/ = t/, Tj = t j , •)

(14) > λib(M(tj) + u I T/ = t/, Tj = t j , •), ti > 0.

ΓΛenT isMIHR\Ft.

REMARKS 4.3.

(a) Condition (i) means that the smaller is the working set, the larger are the
instantaneous failure rates of the surviving components.

(b) In Condition (ii) two histories are compared. The 'future' of one starts at
M(t j) = t + M(tj) - t and the future of the other starts at t' + M(tj) -
t. In both histories t/ are identical. The (known) T j may be different,
however the (known) T j in the respective histories satisfy θtlj > θtιtj.
Condition (ii) states that then ^ M (t J )

T /Uj (which are the 'future' of one
history) have smaller instantaneous failure rates than Θtt+Ma Λ-t [ ^ i h
are the 'future' of the other history].
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(c) Substituting t = 0, t j = t j , / = 0 in (14) we see that for every set
J c { l , . . . , n } and every ί' > 0 and fceJ,

(15) > Xk(M(tj) + u I T j = t j , -), t* > 0.

That is, all the conditional hazard rate functions are increasing between
failures. Our condition (ii) requires more than this local IHR property.

(d) In the proof of Theorem 4.2, Condition (i) is used to compare two conditional
hazard rates given (two) histories in which different numbers of components
are known to have failed already. In contrast, Condition (ii) is used to com-
pare two conditional failure rates given (two) histories in both of which the
same components (indexed by iel U J) have already failed and the compo-
nents indexed by iel U J are still alive.

(e) If Ti,.. ,,Tn are independent, absolutely continuous IHR random variables
then it is easily seen that (i) and (ii) hold. Thus Theorem 4.2 agrees with a
result of Arjas (1981a) which states that independent IHR random variables
are MIHR| Tx.

PROOF OF THEOREM 4.2.: Fix t and tf (tf>t> 0). Let

(16) Dt = {Tj3 = t β , T f i > t e }

(17) Ef = {TB = t B , TC = t σ , T-^jc >

where 5, C C {l,...,n} are disjoint and tβ < *e, te < tc < *;e. Denote the
cardinality of B by n(< n). Notice that given Dt [respectively, Eft], θtTβ = 0e
[respectively, flfTjg = 0e]. Let V [respectively, W] be an h-dimensional random
vector distributed according to the conditional distribution of θtTg given Dt [re-
spectively, 0fT£ given Eft]. We will show that

st
(18) V > W

and then (12) follows.
Notice that when C φ§ then, with probability one, We = 0e whereas

Oe. Hence in order to prove (18) we will use Theorem 3.1 when C = 0 and Theorem
3.4 when C φ 0.

Given, for some / C J5, that Vj = s/ and Vj j^ > se (where se > sj), the
conditional hazard rate of Vk at s (where kεl U B) is

ηk(s I V7 = sj, V ^ j > se)

(19) = λ*(ί + s I TB = t B , Tj = sj + te, •), s > M(sj),
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where λ^ is the conditional hazard rate function of Tk as defined in (4). Similarly,
given, for some i C B U C, that W 7 = s7 and W / U j B u C > se (where se > s7), the
conditional hazard rate of Wk at s (where kel U B U C) is

I W/ = s7, W B u C u / > βe)

= λ]fe(ί' + 5 I TB = t f l , T α = t c , T/ = s/ + ί'e,

In order to prove (18) we will show that the 77̂ 's and μ '̂s defined in (19) and
(20) satisfy the n-dimensional version of (10), that is, for all disjoint sets /, J C JB,
such that B Π (I I) J) φ 0 and (/ U J) D C,

μ*(M(tj, tj) + t* I W/ = t/, Wj = tj, WgjjTϋj > (M(tj, tj) + n)e)

(21) > ηk(M(tj, t/) + u I V/ = t/, %jy > (M(tj, t/) + tι)e),

whenever t/ < t j , w > 0 and kel U J U B.
Two cases will be considered.

Case 1: C = 0. First we show that (21) holds when J φ 0. Let / and J be as in
(21) and let t j < t/, t* > 0 and A*/ U J U 5 . Then, from (19) and (20) [here LHS
and RHS stand for 'left hand side' and 'right hand side'],

LHS(21) = λJb(Af(t/e + t j ,

Tj = tj + *'e, .),

RHS(21) =

Hence

RHS(21) < λk(M(t'e + tj,*'e + t/) + u \ TB = t 5 , T/ = t/ + ίe, •)

(22) < LHS(21),

where the first inequality follows from (15) and the second from (13).
Now we show that (21) holds also when J = 0 (recall that we still assume

C = 0). Let IcS,

(23) t 7 < t j ,

and kelΌB. Then

LHS(21) = W ( M ( t 7 ) + u I W 7 = t/, W ^ > (M(t7) + tt)

(24) = λ*(M(/'e + t 7 ) + t* I T B = t B , T 7 = t'e +17, •),
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RHS(21) = ηk{M{h) + ti | Vj = t/, Vj^ > (M(t j ) + u)e)

(25) = Xk(M(te + t j) + t* I T B = t s , T/ = ίe + t j , -),

Now, in (14) plug:

J9 in place of J,

/ in place of J,

t/ + ί'e in place of t j ,

(26) t/ + ίe in place of t j .

The resulting LHS (14) is equal to (24) and the resulting RHS (14) is equal to (25).
By assumption, (14) holds if/, t', t j and tj there (in (14)) satisfy tj-te > t j - i ' e .
This inequality translates (through substitution (26)) to t/ < t/ here (in (24) and
(25)); the latter is true by (23). Thus, from (ii) we obtain that LHS (21) [i.e., (24)]
> RHS (21) [i.e., (25)].

Case 2: C φ 0. Let /, J C B be disjoint sets such that B Π (ΓCΓj) φ 0 and
(/UJ) D C. In LHS (21) we only have to condition on W / n ^ and W J n ^ because
We = 0. Let line > 0e, t J n £ > Oe, lInΰ > tInΰ > Oe, u > 0 and fee/ U J U 5 .
Then

( ( J c u \

TB = t β , Ύc = t σ , T / ne = t / n C + ί'e,

(27)

LHS(21) = Xk(M(tJnΰ •+

TB = t B , T c = t σ , T/ Γ

RHS(21) = λ fc(M(tj

+ίe) + u | T B = T B

• * e» * m e +

1(5 = t / n C +

>nc + *e, t J r

, T/ = t/ +

re) +
ί'e,

<e, •)•(28)

If J φ 0 then in LHS (21) [of (27)] it is given that more components have
already failed than in the condition given in RHS (21) [of (28)]. So the fact that
(27) > (28) follows from (15) and (i) as in (22).

If J = 0 then in both (27) and (28) it is given that the same number of
components have failed (though possibly at different times). For this case the
proof of (27) > (28) uses (ii) and is similar to (though notationally somewhat
more involved than) the proof of (24) > (25). We omit the details. ||

REMARK 4.4. Condition (i) of Theorem 4.2 looks simple (see Remark 4.3 (a))
but it is stronger than what is really required. A careful study of the proof of
Theorem 4.2 shows that the following condition (which is weaker than (i) and (ii)
combined) implies that T is MIHR| Tt\
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(iii) For disjoint sets J, J, L C {1,..., n} and fixed kel U J U L, t < t\ t/ < te,

t j > te, t j > te and t^ > te such that tj - te > t j — ί'e ( i may be empty),

λk(t' - t + M(t j , t L ) + u I T/ = t/, T j = t j , T L = t L , •)

(29) > λ*(Λf (t j , t L ) + u I T 7 = t/, T j = t j , •), u > 0.

To see that indeed (iii) is weaker than (i) and (ii) combined, note that if L φ 0
then (29) follows from (13) and (15). If L = 0 then (29) is the same as (14).

5. Hazard Rates and the WBF Property, Let Ti,.. .,Tn be nonnegative
random lifetimes as in Section 4. Fix t > 0, 5 C {1,..., n) [such that 5 ^ 0 ] , ^ei?
and tβ < te. Consider the two histories

(30) D = {TB= t * , T 5 > <e},

(31) E = {TB = tB,Tt = t, Tg_w > te}.

Let V [respectively, W] be distributed according to the conditional distribution of
θtTβ given D [respectively, E]. Arjas and Norros (1984) studied random vectors
T = (Ti,..., Tn) which have the property given in the following definition.

DEFINITION 5.1. The random vector T = (Ti,.. .,Tn) is said to be weakened
by failures (WBF) if for all t > 0, B C {1,.. .,n} [such that B φ 0], leB and
tβ < te, the random vectors V and W satisfy

/ x S t

(32) V > W.

THEOREM 5.2. Suppose the conditional hazard rates ofΎ satisfy (i) of Theorem
4.2 and

(iυ) For every set I Q {1,..., n} and fixed t/, t/ [such that t/ < t/] and keϊ,

λ*(M(t/) + u I T 7 = t 7 , .) > λib(M(t/) + u I T/ = t j , .), u > 0.

ΓΛen T Λα5 ίΛe WBF-property.

REMARK 5.3. In Condition (iv) two histories of the same length and with the
same number of failures are compared. The history with the earlier failure times
yields higher failure rates for the surviving components.

PROOF OF THEOREM 5.2: Suppose the cardinality of B is h{< n). Since

Wι = 0 with probability one, whereas Vι > 0, use will be made of Theorem 3.4.

For / C ί , given V/ = s/ and Vpjβ > se (where s > M(sj)), the conditional

hazard rate of Vk at time 5, where keB U /, is
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(33) ηk(s I V/ = s/, V ^ > se) = λk(t + s \ TB = t B , T/ = s/ + te, •)>

where λ^ is defined as in (4). Similarly, for / C B U {̂ }, given W/ = sj,
- 5 e (where 5 > M(s/)), the conditional hazard rate of Wk at s, where

keB U / U {1} is

μ*(* I W/ = s/, W B u f u f f l > se)

(34) = Xk(t + s\TB = tB,Tt = t, T/ = s/ + te, •)•

In order to prove (32) we will show that the ηk's and μ^s defined in (33) and
(34) satisfy the n-dimensional version of (10) required in Theorem 3.4. That is,
for disjoint sets /, J C B, such that B Π (/U J) φ 0 and lei U J,

μk{M(tj,h)) + u I W 7 = t 7 , Wj = t j , WBUJΪJ > (M(tj , t 7 ) + ιι)e)

(35) > ηk(M(tj, t/) + u I V/ = t 7 , V^^y > (M(tj, tj) + u)e),

whenever t/ < t/, w > 0, kel U J U J?. Since ^ 7 U J, the LHS (35) is well defined
only if tt = 0, tέ > 0.

Ίftgl then J ^ 0 because ^£J. Then from (i) it follows that

λ*(M(tj, t/) + < + u I T β , = tβ, T/ = t/ + *e, T 7 = t j + ίe, -)

(36) > λ*(M(tj,t/) + ί + ti I T β , = t β , T/ = t/ + ίe, -)•

But in this case [J φ 0] (36) is equivalent to (35).
If lei and J φ 0 then, in a similar manner, one can again obtain (35) using (i).
If J = 0 (then of course lei) then (35) is equivalent to

λ*(M(t/) + * + tt I ΎB = tβ, T/ = t/ + <e, •)

(37) > λjb(Af(t/) + < + u I Tβ = tβ, T/ = t j + te, -)•

But (37) follows from (iv). _ _
Thus (35) holds for every choice of /, J C B [such that B Π (/ U J) φ 0 and

ie(I\JJ)]j t/ < t j , tt > 0 and fee/ U J U 5 and the stochastic comparison (32) now
follows from Theorem 3.4. ||

From Theorem 1 of Arjas and Norros (1984) it follows that if an absolutely
continuous T has the WBF property then T is a vector of associated random vari-
ables (in the sense of Esary, Proschan, and Walkup (1967)). Thus from Theorem
5.2 we obtain:
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THEOREM 5.4. Suppose the conditional hazard rate functions ofT satisfy (i)
of Theorem 4-2 and (iυ) of Theorem 5.2. Then T is a vector of associated random
variables.

REMARK 5.5. In the proof of Theorem 5.2, Condition (i) is applied only with
t/ < t/. Thus the conclusions of Theorems 5.2 and 5.4 are valid under the following
condition (which is weaker than (i) and (iv) combined):

(v) For disjoint sets /, J C {l,...,rc} and fixed t j , t j , t j [such that t/ < t/]
and kel U J (J may be empty),

λ*(M(t/,tj) + u I T/ = t 7 , T j = t j •)

> λjb(Af(tz, tj) + u I Tj = t j , •), * > 0.

The results of Sections 4 and 5 can be applied to various stochastic models.
We will not give details of the applications here because they are similar to the
applications given in Section 6 in Shaked and Shanthikumar (1987a).

Appendix: Proof of Theorem 3.1. Using the dynamic construction de-
scribed in Section 2 we will construct simultaneously two random vectors X and
Y on a common probability space such that

(38) X = X,

(39) Ϋ = Y,

and

(40) X < Y with probability one.

Then, for every increasing Borel measurable function g,

Eg(X) = Eg(X) < Eg(Ϋ) = Eg(Y),

provided the expectations exist, and the desired result then follows from (1).
We describe the construction of X and Y according to the steps (Step 1 through

Step n) of the construction of X.

Step 1: Consider n independent nonhomogeneous Poisson processes on [0, oo) in-
dexed by ic{l,..., n} with intensity functions μi(t \ X > Ze), t > 0, i = 1,..., n. If
Process j \ yields the first epoch (out of all n processes) at time tjx, say, then let this
time be X^. Also, with probability ηjx{tjx \ Y > tj^/μήitjx \ X > tjie) ^e t this
time, tjτ, be also Ϋjx and with probability 1 - η^ (tjx \ Y > tjτ e)//^ {tjλ \ X > tjλ e)
delay the determination of Ϋjx for a later step. If X^ = Yjx then go to Step 2.2.
If Ϋjλ has not yet been determined then go to Step 2.1.
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The proof of Theorem 3.1 continues after Remark A.I.

REMARK A.I.

(a) For Step 1 to be sensible it is required that

%i('ii I Y ^ *iie)/A*ji(*ii I x > *jie) < *> b u t this follows from (10).

(b) At the conclusion of Step 1, X^ has been determined (and perhaps also Ϋjt)
and

(*.l) Xjλ < Ϋjλ with probability one,
because either Yjλ = Xjx or Yjx is going to be determined at (and then be
equal to) some time after tjx.

(c) The next steps will be indexed by a pair ml (I < m). For 1 < ί < m < n,
Step m.ί produces one of the following:

(α) Generates just the ra-th X (and the procedure then proceeds to Step
(m+l)l).

(β) Generates just the 4-th Ϋ (and the procedure then proceeds to Step

(7) Generates both the rn-th X and the l-th. Ϋ (and the procedure then
proceeds to Step (m + 1).(£ + 1)).

For ί = ra€{l,.. . ,n} , Step m.m produces either (α) or (7). For I < m =
w + 1 , Step (n + 1).^ produces only (/?). The procedure ends upon entrance
to Step (n + l).(w + 1) which is vacuous.

PROOF OF THEOREM 3.1 (continued):

Step 2.1: It is given, for some j i€{l , . . . , n} and tjλ > 0, that Xjλ = tjx, X{i,...,n}-{ji}
> tjxe and Ϋ > t^e. Consider (n — 1) + 1 independent nonhomogeneous Poisson
processes on [^,00). Let the first n — 1 processes be called processes of type 1
and call the last one a process of type 2. The n — 1 type 1 processes are indexed
by iel = {1,..., n) - {ji}. For iel let the intensity function of the type 1 process
i be μi(t \ Xjλ = tjχJ X/ > te), t > tjx. Let the intensity of the type 2 process
be ηjx{t I Y > /e), t > tjx. If the type 2 process yields the first epoch (out of
all n processes) at time tjλ, say, then let the time of this epoch be Y^ and go to
Step 2.2. If the type 1 process J2(εl) yields the first epoch (out of all n processes)
at time tj2, say, then let the time of this epoch be Xj2. Also, in this case, with
probability ηh(th \ Y > the)/μh(th \ Xh = tjl9 X/ > tJ2e) [which is < 1 by (10)]
let the time of this epoch, /j2, be also Ϋj2 and go to Step 3.2. With probability
1 ~ Ήh^'32 I Y ^ tj2e)/lJ'J2(tj2 I Xh = îi5 X/ ̂  ^J2e) delay the determination of
Yj2 for a later step and go to Step 3.1.
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Step 2.2: It is given, for some ji£{l,..., n) and fixed tjλ < tjτ, that Xjx = tk, Ϋk =
tj19 X{i,...,n}-{ji} ^ *?Ίe a n d Y{i,...,n}-{ii} > *?ie Consider rc - 1 independent
Poisson processes on [ίj19oo) indexed by iel = {l,...,n} — O'i}. For iel let
the intensity function of Process i be μt (/ | ~Kk = t^, X/ > tfe), t > tjx. If
Process 22 yields the first epoch (out of all the n - 1 processes) at time tj2, say,
then let the time of this epoch be Xj2. Also with probability ηj2 (tj2 \ Yjx = ϊjx,
Y/ > tj2e)/μj2(tj2 I Xj2 = tk, Xj > tj2e) let the time of this epoch also be Ϋj2 and
with probability 1 - ηJ2(th J Yh = tjl9 Y/ > the)/μJ2(th \ Xh = i J 2, X/ > ί^e)
delay the determination of Yj2 for a later step. Again, the last sentence is sensible
because, by (10), ηh(tJ2 \ Yk = ϊh, Y/ > the)/μh(tJ2 \ Xk = tjl9 X/ > the) < 1.
If Xj2 = ί}2 then go to Step 3.3. If Ϋj2 has not yet been determined then go to
Step 3.2.

The proof of Theorem 3.1 continues after Remark A.2.

REMARK A.2. After the conclusion of Step 2 (that is, just after the last step
of the form 2.i, for some z€{l,2}, has been executed) Xk and Xj2 (and perhaps
also Ϋk and Ϋj2) have been determined. In addition to (*.l) we also have

(*.2) Xj2 < Ϋj2 with probability one.

PROOF OF THEOREM 3.1 (continued):

STEP (m + l).{ί + 1) [for ί < m < n, ί < n): It is given, for some / =
{ii, ,i/} C {l,...,n}, J = βi+i,...Jm} C {l,...,n} [such that / Π J = 0]
and for some fixed Oe < t/ < t/ and t j > Oe, that Xj = t/, Y/ = t/, Xj = t j ,
X7ϋ7 ^ (M(tj,t/))e and Y/ > (M(tj,t/))e [note that if I = m then J = 0 and if
ra+1 = n+1 then / U J = 0]. Consider (n—m) nonhomogeneous Poisson processes
of type 1 indexed by kel U J and (m - ί) nonhomogeneous Poisson processes of
type 2 indexed by jeJ. All processes are independent and on [M(tj,t/),oo). For
kel U J let the intensity function of type 1 process k be μk{t \ X/ = t/, Xj = t j , •).
For jeJ let the intensity function of type 2 process j be ηj(t \ Y/ = t j , •). If type 2
process jt+\eJ yields the first epoch (out of all n — l = (n —m) + (m — )̂ processes)
at time £?/+1, say, then let the time of this epoch be Yji+1 and go to set (m + 1).
(£+2). If type 1 process jm+i€l U J yields the first epoch (out of all n—l processes)
at time /Jm+1, say, then let the time of this epoch be Xjm+1. Also, in this case,
with probability τ/jm+1(*jm+1 I Y/ = t/, O/^im+ii'im+i I Xj = t j , Xj = t j , •)
[which is < 1 by (10)] let the time of this epoch, ίjTO+1, be also i j m + 1 and go to
Step (m + 2).(* + 2). With probabiUty 1 - τ? j m + 1(^m + 1 | Y/ = t/, )/μjm+1(tjm+i. I
X/ = t/, Xj = t j , •) delay the determination of ί j m + 1 for a later step and go to
Step (m + 2).(i+l).

If m < n - 1, then at the conclusion of Step m + 1 (that is, just after the
last step of the form (m + l).i for some i€{l, . . . ,m + 1} has been executed)
Xk,..., Xjm+1 (and some of Ϋk,..., ί jm + 1) have been determined. In addition
to (*.l), (*.2),..., (*.ra) we also have
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(*.m+l) Xjm+i ^ ?̂m+i w ^ ^ probability one.

Executing all the steps in sequence (the last step must be the one before en-
trance to Step (n + l).(n + 1)) we obtain (*.l), . . . ,(*.n). From this it follows
that (40) holds. Notice that at the conclusion of Step m, the ra-th Xj has been
determined as described in the dynamic construction in Section 2 , r a = l , 2 , . . . , n .
That is, X and X have the same instantaneous failure rates. Hence, by Lemma
1.1 of Shaked and Shanthikumar (1986b) we have (38). Using well known results
about thinning of nonhomogeneous Poisson processes (see e.g. Savits (1988)) it is
seen that for each I, just after the last step of the form i.ί, the £-th Yj have been
determined as described in the dynamic construction in Section 2. Hence, again
by Lemma 1.1 of Shaked and Shanthikumar (1986b), we have (39).
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