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The notion of monotone dependence, which has played
a key role in reliability theory, is generalized to that of
"stochastically monotone dependence." The idea here is
that since two lifelengths are dependent or independent
based on the disposition of a conditioning variable, they
are unconditionally stochastically dependent or indepen-
dent. A measure of stochastic dependence is introduced
and the measure used for comparing the correlations of
pairs of random variables which can now be described
as being "highly stochastically correlated" or "weakly
stochastically correlated." Extensions to the multivari-
ate case are possible and the ideas illustrated via exam-
ples. This paper is expository; its purpose is to propose
a natural idea and to explore its ramifications.

1. Introduction and Motivation. An important, though little noticed,
principle of probability theory is that the notions of dependence and independence
are conditional, the conditioning being done on some observable or unobservable
quantity, say Θ. It is common to think of Θ as a "parameter" and this is the point
of view that we adopt. A consequence of the above is that unconditionally the
notions of dependence and independence must be stochastic. That is, one should
not make an unqualified judgment that lifelengths X\ and X2 are dependent or
independent—rather one may talk in terms of the probability that they are depen-
dent or independent This is contrary to current thinking although the literature
on artificial intelligence [cf. Pearl (1989)] appears to be taking cognizance of this
fact. In this paper, we explore the ramifications of the above formulation, and in
the sequel raise questions pertaining to the everyday used notions of covariance
and correlation.

By way of some motivation, consider a system of two components with life-
lengths Xι and X<ι, operating in an environment which is characterized by an
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abstract (idealized and unobservable) parameter Θ £ R. Suppose that 7χ, /2, and
J3 partition the real line R such that I\ U h U h = R, and suppose that when
Θ € / i , the operating environment is classified as being "average" or "normal"
whereas when Θ € I2 of I3 the operating environment is classified as being "mild"
or "harsh," respectively. Now it is possible to conceive of a situation in which
Xι is independent of X2—denoted henceforth as X1ULX2—whenever θ G / i , and
that X\ and X2 are positively or negatively dependent whenever Θ £ I2 or J3
respectively. In any particular application, the exact disposition of Θ will be un-
known or will change—from the point of view of an analyst—and so the nature of
dependence between X\ and X2 is stochastic, depending on the probability that
Θ belongs to Ii912, or 73.

Other scenarios which motivate the thesis of this paper arise from the biological
sciences in which the nature of dependence between the lifelengths of two organs
depends on the stochastic behavior of a conditioning covariate, such as the "life-
style" of an individual.

Whereas the rationalization of positive dependence under common environmen-
tal conditions is relatively straightforward, see for example Lindley and Singpur-
walla (1986), the rationalization of independence and negative dependence, partic-
ularly the latter, is more difficult. One possible argument is to suppose that under
harsh conditions there may be a tendency to devote more resources and mainte-
nance to the more important components of the system with the result that such
components perform better than expected than those components which receive
less attention. Such a policy would result in negative dependence.

Latent variable methods (cf. Holland and Rosenbaum (1986)) consider the con-
cept of the distribution of a set of random variables given the latent variable.
Such models consist of a set of "manifest variables" and the "latent or parametric
variable." The manifest variables which are real or integer valued can be observed
directly while the latent variable is unobservable. A basic assumption of the model
is that the manifest variables are conditionally independent given the latent vari-
able. Certain classes of latent variable models imply that the manifest variables
exhibit stronger forms of positive dependence with the latent variable. However,
these models do not incorporate the notion that the dependence of the manifest
variables may change with a change in the latent variable.

In view of the preceding arguments it is necessary to reconsider the various
notions of monotone dependence and their resulting bounds and inequalities. In
this paper we define a new concept of dependence between random variables. Two
variables are not unconditionally dependent or independent but are probably de-
pendent or independent, depending on the disposition of the conditioning variable.

2. Stochastic Monotone Dependence. Let A be a σ-field of events gener-
ated by a sample space X and P be a family of probability measures defined on
A{y i = 1,2,..., the elements of A. Let X and Y be two vector valued random
variables, of dimension p and q respectively, defined on X\ assume for now that
p = q> 1.
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The notation ((X_LLY)|0) means that X is independent of Y given 0, where
0 is an s-dimensional vector of parameters. Without any loss of generality assume
that 5 = 1.

2.1 Stochastic Dependence and Independence. Suppose we have a partial or-
dering on R p such that for vectors a = (αχ9 α2,.. , ap) and b = (δi, &2> > bp) in
R*>

a < b means αt < 6t , i = 1,2,... ,p

and suppose that the elements A, are open upper sets, i.e., A, is an upper set if
a G At , and a < b implies b G At (Shaked (1982)).

DEFINITION 2.1. The random vectors X and Y are independent given 0,
denoted by {(Xi_LY)|0} if

P{X G Ai\Y G Aά, 0} = P{X € At |0}, VAt , A, , 0, and any P € P.

Suppose that 0 takes values in R, and suppose that the Borel σ-field generated
by R is endowed with a family of probability measures P. Let Iχ, J2, and I3 be
members of the Borel σ-field generated by R and let P £ P.

DEFINITION 2.2. The random vector X is θ 6 /1 conditionally independent of
Y and 0 g /1 conditionally dependent on Y, denoted by {(X_LLY)|0 G /1, φ}, if

i) P{X € Λί|Y € Ah θ € h} = P{X G At |0 G /1},

ii) P{X G Af |Y G A, , θϊh}φ P{X G A{|0 ^ /x}, and VAt , A, , 0.

DEFINITION 2.3. The random vectors X and Y are unconditionally indepen-
dent, denoted by (Xl lY) if

Jθ 3 P{X G Ai\Y G Ajy 0} φ P{X G At |0}, VAt , A, .

The subjective nature of the notion of independence is revealed in Definition
2.3 if one interprets ^0 as being the nonexistence—to a probability assessor—of a
0.

LEMMA 2.1. //{Xϋ_Y|0 G /1, φ}} and if{θ G h} is the only event for which
X and Y are conditionally independent, then

P{X±LY} = P{0 G /1}.

PROOF. From Definition 2.3 we see that
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P{X±1Y} = Ptfθϊ P{X € Ai\Y € Aj, θ) φ P{X € Ai\θ}}

= \-{P{$θ3 P{X € Ai\Y e A, , 0} # P{X € A, |0}}

= 1 - (1 - Π(0)) = Π(0),

where Π(0) = P(0 e i i) .

A strengthening of Definition 2.2 is given next.

DEFINITION 2.4. The random vector X is θ £ I\ conditionally independent
of Y, and is 0 £ 7χ conditionally positively (negatively) dependent on Y, denoted

, if

i) P{X € A, |Y € Aj, θ € Ii} = P{X € A<|β € Ji}, and WLt , A j ; 0,

ii) P{X € Ai\Ύ G A i ? θ i Ji} > (<)P{X € Λ, |0 ^ /x}.

For convenience we denote P{X € Aj|Y G Aj, 0 ^ lx} > P{X € A, |0 g A} by
Xl l ' + ^Y, and by Xl±(~)Y when the above inequality is reversed.

LEMMA 2.2. J/{(XϋY) |0 G Ix, > (<)}, and θ is unique, then

P{XHY} = Π(0) and

= 1 - Π(0).

PROOF. Follows from Lemma 2.1 and the fact that it is not possible to have
both P{Xll(+)Y} and P{XU_(-)Y}.

A further strengthening of Definition 2.4 is given next.

DEFINITION 2.5. The random vector X is θ 6 I\ conditionally independent of
Y, and is θ € h{h) conditionally positively (negatively) dependent on Y, denoted
by {(XHY)Kβ € Λ, > θ € h, < θ e J3)}, if

i) P{X € Ai\Y € Aj, θeh} = P{X € A{\θ € / i } ,

ii) P{X € A, |Y G Aj, Θel2}> P{X G A, |0 € J2}, and

iii) P{X € il<|Y € A,, 6> G J3} < P{X € Λ | 0 € / 3 } , VA;, A i t 0.

We may now state

LEMMA 2.3. //Π, (0) = P{θ G /,-},
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P{XHY} =

P{XJJ_(+)Y} = Π2(β), and

= Π3(0).

2.2. Equivalent Conditions and Definitions. Assume that p = q = 1. Definition
2.5 can also be stated in terms of the joint and the marginal distribution functions
of X and Y. Let

F(x,y\θ) = P{X < x, Y < y\θ]

G(x\θ) = P{X < x\θ}, and

H{y\θ) = P{Y<y\θ).

Then Definition 2.5 is equivalent to:

DEFINITION 2.6. The random vector X is θ G h conditionally independent of
Y and is θ e fyh) conditionally positively (negatively) quadrant dependent on Y,
denoted by {(X1LY)\Θ € h, > θ € I2, < θ € J3)}, if

i) F(x,y\θ e h) = G(x\θ G h)H(y\θ e h),

ϋ) F(x, y\θ e h) > G(x\θ e I2)H(y\θ e I2), and

iii) F(x, y\θ e h) < G(x\θ € h)H{y\θ G /3)

Using a lemma by Hoeffding (1940), we are able to state Lemma 2.5.

LEMMA 2.4. (Hoeffding) If F denotes the joint, and G and H the marginal
distribution functions of X and Y respectively, then

E{XY) - E(X)E(Y) = / / [F(x, y) - G(x)H(y)]dx dy,
J—oo J—oo

provided the expectations exist.

LEMMA 2.5. If conditions i), ii), and iii) of Definition 2.6 hold and if the
conditional expectations E(XY\Θ), E(X\Θ) and E(Y\Θ) exist, then Definition 2.6
implies that

i) E(XY\Θ e h) = E(X\Θ € h)E(Y\θ e h),

ii) E(XY\Θ e h) > E(X\Θ G I2)E(Y\Θ e h), and

iii) E(XY\Θ e h) < E(x\θ e h)E{Y\θ e i3).
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It follows then that

LEMMA 2.6. {(X1LY)\Θ G Iu > 0 G / 2 , < θ G 4

J2) > 0,

in) COV(X,Y\θeI3)<0.

EXAMPLE 2.1. As an example illustrating the intent of Lemma 2.6, suppose
that X and Y have a bivariate normal distribution with mean μ = (μi,μ2) and
covariance

1
/>σiσ2 σ\where /> is the coefficient of correlation. Then p is our conditioning variable and as

is well known {(Xl±Y)\p = 0}, and X and Y have positive (negative) dependence
when p > (<)0.

To describe the operational implication of the above, suppose that we are

asked to make a prediction of X when Y = y has been observed. To simplify

matters suppose that μ = (0,0) and that P(p φ 0) = Πi. Assuming that the

penalty of poor prediction is described by the squared error loss, we would specify

E(X\y9 p = 0) = 0, or E(X\y, p φ 0) = />σij//σ2. Operationally, we would toss a

coin whose probability of heads is Πi, and bet on pσχy/σ2 if the coin lands heads,

and on 0 if it lands tails.

A strengthening of Lemma 2.6 is

LEMMA 2.7. Let j and g be nondecreasing functions of X andYf respectively.

If X andY satisfy Definition 2.6, then

ii) COV(f(X),g(Y)\θ € h) > 0, and

Hi) COV(f(X),g(Y)\θ G J3) < 0.

PROOF. This follows by an extension of a proof due to Lehmann (1966).

When ii) holds, we shall say that X and Y are conditionally θ G h positively

associated; and when iii) holds, we shall say that X and Y are conditionally θ G I3

negatively associated.

Our motivation for a consideration of the above material is the introduction of

the notion of stochastic covariance and correlation. This is discussed next.
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2.3. Stochastic Linear Dependence. The notions of covariance and correlation
appear in everyday use of probability and statistics. In sample theory statistics, the
covariance and correlation have been viewed as fixed but unknown quantities. In
Bayesian statistics, all unknown quantities are to be assigned a prior distribution
to reflect one's uncertainty about them. To see this, note that the conditional
nature of Definition 2.6, and its implications prompt us to generalize the notion
of covariance and make it stochastic. The situation here is not unlike that of
hierarchical modelling [c.f. Good (1983)].

Suppose that p = q = s = 1, so that X = X, Y = y, and θ = θ. Then from
Definition 2.6, it follows that COV (X,Y\Θ € (/i U I2)) > 0, where

COV (X, Y\θ e (h U J2)) = E {XY\Θ € (/i U J2))

Using an argument analogous to that of Lemma 2.1, we see that unconditionally
P{C0V(X,Y) > 0} = P{θ € (/iU/2)}. Thus a prior distribution on the covariance
would depend on the nature of the parameterization of the probability model for
X and Y, and our uncertainty about the disposition of the parameter. If θ 6 /i,
or if θ G h, that is, if we judge (XJLLY) or (XJ_lJ+)Y), and if θ is unique, then
P{COV(X, Y) > 0} = 1. Thus P{C0V(X, Y) > 0} gives us a measure of the
strength of the linear relationship between X and Y.

The above motivates us to consider the quantity Π(α) = P{|C0V(X, Y)| > α},
a > 0, for characterizing the strength of linear dependence between X and Y.

DEFINITION 2.7. To simplify matters, suppose that E(X\Θ) = E(Y\Θ) = 0 and
that VAR (X\θ) = VAR (Y\θ) = 1, for all values of θ: then COV (X, Y) = />(X, y),
the correlation coefficient between X and Y. Let Π(α) = P{|C0V(X,y)| > a} =
P{|/>(X, y) | > α}; we refer to Π(α) as the correlation survival function.

It is clear that Π(α) j α, Π(0) = 1, and Π(l+) = 0. A plot of Π(α) versus α,
0 < a < 1, for Π(α) = 1 — α, is given on the following page.

EXAMPLE 2.2. As an example of the above, let X and Y be binary with
P{X = 1} = Px, P{Y = 1} = py, and P{X = 1, Y = 1} = pxy. Clearly,
p{x = l, y = oy^ps-psy, P[X = o, Y = 1} = Py -Pxy9 P{X = 0, y = 0} =
1 - Px - Py + Pχy> a n d thus 0 < pxy < mhι(px,py).

Suppose that px and py are specified, but the disposition of pxy is unknown.
Then it can be verified that

y/PxPy(l-Px)(l-Py)

from which it follows that
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B 1

Π(α)

Region of HSC

\P(X,Y)\

Figure 2.1. The correlation survival function when Π(α) = 1 - α

Π(o) = 1 -

where Δ( ) is the cumulative distribution function of pxyj for 0 < x < mm(pX9py).
To characterize the strength of linear dependence between X and Y via Π(α),

we first note that the strongest case for linear dependence is when P{p(X, Y) =
1} = 1; that is, when we are absolutely sure that the values of X and Y match
perfectly. When this happens P{\p(X9Y)\ > α} = Π(α) = 1, for all 0 < α < 1;
that is, the correlation survival curve is the locus BAC in Figure 2.1. The worst
case for linear dependence is when P{\p(X, Y)\ > ά) = 0 for all α > 0. For this
case the correlation survival rate is the locus BOC. Thus, any correlation survival
function which is closer to the locus BAC is to be preferred, in the sense that the
variables are more highly correlated, to the one which is closer to the locus BOC.
The above considerations prompt us to suggest the following as a plausible criteria
for describing a high stochastic correlation.

DEFINITION 2.8. Random variables X and Y are said to be highly stochastically
correlated (HSC) if

P{|C0V(X,y)| >a} = P{\p{X,Y)\ > a} > 1 - α,

0 < OL < 1; otherwise they are weakly stochastically correlated (WSC).

EXAMPLE 2.3. Suppose that in Example 2.2, that pxy has a uniform distribu-
tion on [0,min(2>a.,pJ/)]. Then,
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T T , N , (JpXPy( - Pχ)(l - Py))

Π(α) = 1 *

The binary variables X and Y are HSC if Π(α) > 1 - α; i.e., if

1 y/PPy( P)( - Py)

2 ~

In order to compare the strength of linear dependence between two pairs of
random variables, we introduce the following definition.

DEFINITION 2.9. Random variables (X,Y) are stochastically more (less) cor-
related than (X 1 ,^ 1 ) if

P{\p(X,Y)\ >*}> ΉPMX^Y1)] > α}, 0 < a < 1.

We shaU denote the above writing p(X,Y) > (^

Definition 2.9 provides a basis for comparing the strength of the linear de-
pendence between (X, Y) and (X1, Y1) when their respective correlation survival
functions do not cross. To characterize linear dependence when the correlation
survival functions do cross, we need the following.

DEFINITION 2.10. Random variables (X, Y) are more (less) correlated in ex-
pectation than (X1, Y1) if

/ Πχ,y(α) da > (<) / ΊLxitYi(a) da
Jo Jo

where

Πjc,y(α) = P{\P(X,Y)\ > a} and Π χ l , y l ( α ) = P{ |p(X\Y 1 )! > a}.

E E

We shall denote the above by writing p(X, Y) > (<)p(X1

y Y1). It is obvious
from the above that

PROPOSITION 2.1. p(X9Y) > (<)p(X x,Y1) = » />(X,Y) > ( I ^ X 1 , Y 1 ) .

EXAMPLE 2.4. The survival function of Marshall and Olkin's bivariate expo-
nential distribution is given as

where we suppose λi and λ2 known but λ is unknown. Then {XllY |λ = 0, >
λ £ (0, oo)}; i.e., X and Y are independent if λ = 0, and otherwise always positive
dependent.
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The coefficient of correlation is

from which it follows that the correlation survival function is

Π(α) = P{p(X,Y) > a} = 1 - Δ ( γ ^ l λ i + XM

where Δ( ) is the cumulative distribution function of λ, for λ > 0.
If λ has an exponential distribution with parameter λ', then the correlation

survival function is

Π(α) = exp{- α ^ β

So X and Y are HSC if

that is, if

exp{ \ _ Q Ί > 1 - <*,

λ ' < -J—%— log( l -α) , for alia, 0 < a < 1.
a(λi + λ2)

An extension of the above ideas to the multivariate case together with notions
of higher order stochastic dependence are discussed in Brady (1988).
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