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OPTIMAL DESIGN FOR NEURAL NETWORKS
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In this paper the statistical principles underlying hidden-layer feed-forward neural
networks are introduced and are invoked to develop strategies for the construction of
appropriate optimal experimental designs. The ideas are illustrated by means of a simple
network involving single input and output neurons and two neurons in the hidden layer.
Locally and Bayesian optimal designs are obtained for the underlying nonlinear model
and in particular it is shown that the relevant Bayesian criteria can be estimated from
samples generated using Markov chain Monte Carlo methods.

1. Introduction. Neural networks are models abstracted from certain functions
of the brain, and are proving to be valuable and exciting tools for solving problems in a
diversity of areas such as economics, medicine, and psychology. The focus of the present
paper is on hidden-layer feed-forward neural networks which are used extensively to
model regression and classification data and, in particular, on the issue of choosing
experimental data for these networks so that the fitted curve or surface is in some
sense optimal. This problem of optimal design, also referred to within the neural
network literature as "active data selection" and "query-based learning", is of some
current interest. For example, Baum (1991) and Hwang, Choi, Oh and Marks (1991)
provide heuristic procedures for sequentially selecting data, while MacKay (1992a,
b), Plutowski and White (1993), Williams, Qazaz, Bishop and Zhu (1995) and Cohn
(1996) draw closely on statistical notions to develop optimal strategies in which points
are added "one-at-a-time" to the existing data. In addition Sollich (1994) provides a
broad and fascinating framework for design within the context of statistical physics.

The aim of the present study is to construct optimal designs for nonlinear regression
models describing hidden-layer feed-forward neural networks. Some necessary statis-
tical insights are provided in Section 2 and designs for a specific example which are
optimal in a classical and in a Bayesian sense are presented in Sections 3 and 4 respec-
tively. Some broad conclusions and pointers for future research are given in Section 5.
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2. Preliminaries. Consider a set of simple regression data, (xi: j/j), i = 1,.. ., n,
with x-values taken from some design space, X. Suppose that a hidden-layer feed-
forward neural network, with an input layer comprising a neuron to accommodate the
explanatory variable, x, and a bias or constant term, a single hidden-layer comprising
two neurons with logistic activation functions together with a bias term, and a single
neuron with a linear activation function in the output layer, is invoked to fit a curve
to these data. The network, together with its connecting weights, is shown in Figure 1
and it follows immediately that the output, o, corresponding to a given input, x, can
be expressed as

( 2 1 ) ° = ^ + +
e-(70i+7iis) e-(702+7i2z) "

F I G . 1. An example of a hidden-layer feed-forward neural network. (The neurons are
displayed as circles and the connecting weights are indicated on the appropriate edges
linking the neurons. The symbol, Σ, represents summation of the inputs into a neuron
and the symbols, J and /, logistic and linear activation functions respectively.)

Suppose further that the network is "trained" or optimized by minimizing the
error sum-of-squares, Σ^=1(j/i — o^)2, with respect to the unknown connecting weights.
Then it is clear that this process involves, in effect, the fitting of a nonlinear model,
yi = Oi + Cj,i = l , . . . , n , with independent error terms, a, having mean, 0, and
constant variance, σ2, to the data using the principle of least squares, and hence that
the underlying mechanism of the neural network is that of nonlinear regression. It is
also clear however that this nonlinear model is not in anyway meaningful, but rather
that two sigmoidal curves are scaled and located, and an appropriate constant term is
added to them, in such a way as to best fit the data. The overall process is therefore,
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essentially, one of nonparametric regression. These notions are well-known and have
been extensively discussed and developed in the literature [Bishop (1995), Ripley (1996)
and Brittain and Haines (1997)].

Attention here is focused on the nonlinear regression models describing hidden-layer
feed-forward neural networks, and in particular, and for illustrative purposes, on the
model associated with the network shown in Figure 1. It is firstly important to observe
that the same model function (2.1) can be obtained by permuting the two hidden-layer
neurons and also by changing the signs of the slope and location parameters describing
the logistic functions with a concomitant and appropriate adjustment of the scaling and
constant terms. As a consequence, the parameters of the model are not identifiable
and, specifically, there is a total of 2 x 22 = 8 redundancies [see Bishop (1995), p. 133
and Ripley (1996), p. 159]. It is sensible therefore to introduce a reparametrization of
the model which involves hyperbolic tangent rather than logistic activation functions
as
(2.2) o = η(x,θ) = θ5 + θ6tΆnh{θ2(x-θ1)} + θ7tΆnh{θ4(x-θ3)},

where θ = (# i , . . . ,# 7 ) and, in addition, to assume that θ\ < #3, thereby ordering
the location of the hidden neurons, and to take the scale parameters, ΘQ and θ7, to
be positive. The problem of parameter non-identifiability can then be removed by
adopting this reparametrized and restricted model.

The information matrix for the parameters, 0, at a design point, x G X, for the
nonlinear regression model specified by (2.2) and having error terms independently
distributed as 7V(0,1) is given by

dθ J \ dθ

where dη(x,θ)/dθ is the gradient of η(x,θ) with respect to θ and where the variance
σ2 is assumed without loss of generality to be 1. It thus follows that the information
associated with an approximate design, μ, which is a measure on the space, X, placing
probabilities, μ^ at the distinct design points, x^i = l , . . . , n respectively, can be
succinctly expressed as

M{μ,θ) =

In constructing optimal designs for nonlinear models it is usual to adopt criteria which
are based on the information matrix and which are, at the same time, practically
meaningful. In the present context, the parameters of the model are essentially artifacts
in the fitting process and interest centers on the predicted response at a design point,
x, and, more particularly, on the asymptotic variance of such a prediction given by

Ί i \dη(x,θ)

dθ \ i-"-'-" L dθ

There are many criteria for optimal design which incorporate this variance, and atten-
tion here is restricted primarily to the criterion of G-optimality, for which the maximum
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value of d(x, μ, θ) over the design space, A*, is minimized, and to its Bayesian analogue.
The associated criterion of D-optimality, for which the determinant of the information
matrix is maximized and which thus, in a sense, provides the best fitting curve to the
data, is also considered.

Finally it must be emphasized that data emanating from the nonlinear regression
model describing the network, and not from an unknown model function, are discussed
in this study. At the same time the nonparametric nature of hidden-layer feed-forward
neural networks is captured in the choice of model and of optimal design criteria.

3. Classical design approach. Suppose that designs for the nonlinear model
specified by (2.2) which are G-optimal, i.e. designs for which the maximum value of the
asymptotic variance of a prediction, d(x, μ, 0), over all x G X is minimized, are sought.
Clearly the optimality criterion so invoked depends upon the unknown parameters
of the model and it is therefore sensible, following the classical approach of Chernoίf
(1953), to adopt a best guess, say θo, for the parameter values and to construct "locally"
G-optimal designs based on those values. The following Equivalence Theorem is an
important tool in the construction of such designs.

THEOREM 3.1. A design measure, μ*, for a nonlinear model with p parameters
can be equivalently characterized by any one of the three conditions:

1. μ* minimizes supxeχ d(x, μ,θ0)

2. μ* maximizes | M(μ, θ0) \

3. s u p ^ d(x, μ*, θ0) = p.

Furthermore, the support of μ* is contained in the set of values ofx for which d(x, μ*, θo) -

P

In particular, this theorem relates the precision of the predictions to those of the pa-
rameter estimates, and thus specifically G-optimality to D-optimality, and, in addition,
provides a mechanism for confirming the global optimality or otherwise of a candidate
design by means of an examination of the asymptotic prediction variances [see Silvey
(1980), p. 54 and Atkinson and Donev (1992), Section 18.2].

It is assumed throughout the present study that data from the nonlinear regression
model describing a particular neural network are readily available, and it thus follows
that the maximum likelihood estimator of the parameters, written θ and obtained by
minimizing the error sum-of-squares function, S(θ) = Σ?=i{ί/ί ~~ v(χύ θ)}2, is a natural
choice for the best guess, θo. This choice is not, however, an entirely straightforward
and unambiguous one. Typically, the model function (2.2), or equivalently (2.1), is
highly over-parametrized and the associated error sum-of-squares surface can, as a
consequence, be fraught with local minima other than those emanating from the non-
identifiability of the parameters [Ripley (1996), p. 159]. Thus there may well be a
number of distinct parameter values corresponding to values of S(θ) close to the global
minimum, S(0), which can be considered as possible choices for θo. The following
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example is now introduced to illustrate the ideas developed in this and the ensuing

sections.

EXAMPLE 3.1. Data were generated from a nonlinear regression model having
deterministic component (2.2) and normally distributed error terms. The parameter
values were taken to be θ = (-1,0.25,1, -0.5, -1.35,0.5,0.75) and σ = 0.1, and 25 x-
values, equally spaced between -12 and 12, were selected. For the error sum-of-squares
function, S(θ), local and global minima were identified by using a quasi-Newton non-
linear optimization routine with a range of initial starting values. In particular, the
maximum likelihood estimate of the parameters, corresponding to the global minimum
of 5(0), was found to be θ = (-1.829, 0.678, 0.485, -0.731, 1.360, 0.321, 0.607) with
S(θ) = 0.08411, and local minima were observed with 5(0) values of 0.09033 and of
0.08451. The parameter values corresponding to these latter minima were, however,
extremely insensitive to changes in 02 and in 06 or θ7 respectively, and, not surprisingly
therefore, the associated information matrices were found to be severely ill-conditioned.
The locally G- or, equivalently, D-optimal design for this example based on a best guess
for the parameters of θ was constructed numerically by maximizing the determinant
I M(μ,0) I and comprises 7 equally weighted support points at —12, —3.126, -1.805,
—0.680, 0.413, 1.648, and 12. This design is intuitively appealing in that it places
points at the extremes of the design space, [-12,12], thereby anchoring the corre-
sponding responses, and otherwise concentrates experimental effort around the peak
of the fitted curve where high precision for the predictions is expected to be difficult to
attain. An attempt was also made to construct G-optimal designs at parameter values
corresponding to the local minima of 5(0), but the associated information matrices
were too close to singularity for this to be achieved.

An interesting variant on the above approach to optimal design is to proceed se-
quentially and, in particular, to choose a set of design points so as to suitably augment
the existing data. Suppose that the available data emanate from a design specified by
the design measure, μ0, and comprising n points of support, and suppose further that a
single design point is to be added to these data. Then it would seem sensible, following
Silvey (1980, p. 63), to choose this additional point to maximize the determinant of
the information matrix of the augmented design evaluated at 0, i.e. to maximize

(3.1) \nM(μ0J) + M(xJ)\.

In fact, as is well-known, this single design point corresponds to the value of x for
which the asymptotic variance of a prediction, d(x,μ0, 0), is a maximum, and can
thus be regarded, in some sense, as G-optimal. It is interesting to note here that a
similar design strategy for hidden-layer feed-forward neural networks was developed,
essentially from first principles, by MacKay (1992a) and by Cohn (1996), and that
their results are in accord with those of Dykstra (1971) and Ford and Silvey (1980).

In the present study this sequential procedure was also extended to include aug-
mented designs for which the added design point is represented by a measure, μadd, on
the design space, X, and for which the information matrix is therefore given by
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Specifically, it is natural to consider designs for which the determinant of this matrix
is a maximum and to further observe that there is an Equivalence Theorem pertaining
to such designs which can be gleaned from the Bayesian design literature [Pukelsheim
(1993), Sections 11.5 to 11.8], and which is analogous to Theorem 3.1. This theorem is
particularly valuable firstly in that it relates designs for which | nM(μ0, θ)-\-M(μadd: θ) \
is a maximum to those for which the maximum of the associated directional derivative,

tr{nM{μo, θ) + M(μadd, θ)}-ι{M(x, θ) - M(μadd, §)}
{ ' ' = tr{nM(μ0, θ) + M(μadd, θ)}-ι{nM(μ0, θ) + M(x, §)} - 7,

taken over all x G X, is a minimum, and secondly in that it provides a tool for
confirming the global optimality or otherwise of a candidate design. It is interesting
to note that the derivative (3.2) can be re-expressed as an appropriately weighted sum
of asymptotic variances for predictions at the support points of the existing design,
μ0, and at the point, x G Ύ, and hence that the associated minimax designs can be
regarded, in a certain sense, as G-optimal.

For Example 3.1, the original design, μo, comprises 25 x-values equally-spaced be-
tween —12 and 12. The single design point which maximizes the determinant (3.1)
was obtained by maximizing the asymptotic prediction variance, d(:E,/io,0), over the
region, [—12,12], and is located at x = —0.677, while the corresponding optimal aug-
mented design measure maximizing (3.2) was found to comprise the three support
points, -1.818,-0.675 and 0.443, with attendant weights, 0.2878,0.3726 and 0.3396
respectively. For both of these sequential designs, the added points correspond to
predicted values close to the peak of the fitted curve.

4. Bayesian designs. The Bayesian paradigm for hidden-layer feed-forward
neural networks is proving to be both an appealing and a powerful one [Bishop (1995),
Chapter 10, Ripley (1996) Section 5.5 and Neal (1996)]. Furthermore it offers important
advantages within the present context of optimal design firstly in that the dependency
of design criteria on the unknown parameters can be countered by placing a prior
distribution on those parameters [Chaloner and Larntz (1989)] and secondly in that
the notions of sequential design are accommodated in a very natural way [Tsutakawa
(1972), Zacks (1977) and Chaloner (1989)].

For neural networks described by the model function (2.2) it is interesting to con-
sider Bayesian D-optimal designs, i.e. designs which maximize the criterion,

(4.1) / ln\M(μ,θ)\q(θ)dθ,

where q(θ) represents the probability distribution function for the parameters, #, over
some parameter space, Θ. It then follows immediately from the Equivalence Theorem
formulated by Chaloner and Larntz (1989) as a Bayesian analogue to Theorem 3.1 that
such designs also minimize the criterion,

max ί _d(x,μ,θ) q(θ)d(θ).
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It is tempting to regard this latter criterion as Bayesian G-optimality, but with the
reservation expressed by Chaloner and Verdinelli (1995) that it is does not emanate
from a utility function and is therefore not strictly Bayesian.

It is assumed in this study that observations, j/j, corresponding to the design points,
xi:i — 1,... ,n, are available and are normally distributed, and it thus follows that a
natural choice for the distribution of the parameters, θ and r, is the posterior distri-
bution based on a noninformative prior. In particular, it is sensible to consider a prior
distribution in which θ is uniformly distributed on a region of parameter space, £>,
with θι < #3, 06 > 0, and θγ > 0, thereby ensuring identifiability of the parameters,
and in which the precision, τ — 1/σ2, follows a gamma distribution with parameters
a and /?, independently of 0. This choice of prior contrasts with that of normality for
the parameters, 0, usually adopted within the neural network setting [Bishop (1995)
Section 10.1 and Neal (1996)], but would, in justification, seem to be a particularly
pragmatic one. In summary therefore, the joint posterior distribution for 0 and r is
assumed to have probability density function,

h{θ,τ) oc r f e - i Σ L i ^ - ^ W V 0 - ^ - ^ for 0 G V and r > 0,
= 0 elsewhere,

and the required distribution, g(0), is thus the marginal specified by /0°° h(θ, τ)dτ.
The Bayesian criterion, (4.1), is a multi-dimensional integral over a restricted pa-

rameter space, X>, and as such is extremely awkward to compute and, more particularly,
to maximize with respect to the design measure, μ. An approximate solution to this
problem can be obtained by invoking Monte Carlo maximization, a technique pioneered
by Geyer and Thompson (1992) and Chen, Geisser, and Geyer (1993), and used inde-
pendently in the context of optimal design by Atkinson, Demetrio and Zocchi (1995)
and more recently by Atkinson and Bogacka (1997). In the present case, the approach
is implemented broadly as follows.

1. Generate a sample, SQ, from the distribution specified by q(θ) using Markov
chain Monte Carlo techniques.

2. Maximize the sum, ΣθesQ I*1 I M(μ,θ) |, which approximates the required inte-
gral, with respect to the design measure, μ, and confirm the global optimality or
otherwise of the resultant design, μ*, from the maxima of the sum of asymptotic
prediction variances, ΣfleSg d(x, μ*, 0).

For Example 3.1, the parameter space, V, was chosen, somewhat conservatively,
to comprise 0 values satisfying the constraints, — 6 < 0 i < 0 3 < 6 , O < 0 2 < 3 ,
-2 < 04 < 0, 1.3 < 05 < 1.44, 0 < 06 < 2.3 and 0 < 07 < 2.6, and the parameters of
the gamma prior for r were taken to be a = β = 0.0001. A chain of 510,000 pairs of 0
and τ values from the joint distribution specified by h(θ, τ) was generated by sampling
alternately from the full conditional distributions,

τ | 0 ~ G a m m a ( α + - , / ? + ^ |

V 2 ' μ 2
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and
h{θ I r) oc e~τS^2 for θβV.

Sampling from the latter distribution was achieved by invoking the random walk
Metropolis algorithm of Bennett, Racine-Poon and Wakefield (1996). Specifically, a
multivariate normal proposal for the parameter, 0, centered on the current value and
having a variance matrix equal to a constant, c, times the inverse of the information
matrix evaluated at θ and the current value of r, was adopted, and the value of c was
chosen so as to ensure an acceptance rate of candidate θ values close to 30%. It should
be noted that a long chain of (θ, r) values was generated here in an attempt to achieve a
thorough sampling of the appropriate parameter space. The required sample, SQ, was
obtained from this chain by discarding the first 10,000 values in order to accommodate
"burn-in", and by then subsampling every 500th value of θ in the chain, and thus com-
prises 1000 near independent realizations from the distribution, q(θ). The frequency
distributions obtained from SQ for each of the parameters, # i , . . . , #7, indicate that the
corresponding marginal distributions, with the exception of that for #5, are severely
skewed and non-normal.

The design maximizing the criterion, ΣβesQ I*1 I M(μ,θ) |, was found to comprise
the 17 support points, -12.0, -4.532, -3.937, -3.586, -3.245, -2.993, -2.762, -2.417, -
2.103, -1.833, -1.405, -0.637, 0.389, 0.900, 1.461, 3.091, and 12.0 with corresponding
weights, 0.122, 0.011, 0.016, 0.028, 0.047, 0.023, 0.043, 0.045, 0.026, 0.044, 0.057,
0.101, 0.120, 0.029, 0.122, 0.050, and 0.116 respectively, and its global optimality was
confirmed numerically from the values of the appropriate sum of asymptotic prediction
variances. It is interesting to observe that this approximate Bayesian D-optimal design
concentrates points at x-values corresponding to predictions in the vicinity of the peak
of the fitted curve, and also that, in accordance with other findings [Chaloner and
Larntz (1989)], it comprises many more design points than its classical D-optimal
counterpart.

A possibly more satisfactory approach to optimal Bayesian design than that de-
scribed above is to draw the existing data more directly into design construction
through the information matrix, M(μo,0), and, following Chaloner (1989), to proceed
sequentially by maximizing the criterion,

J. In I nM{μ0, θ) + M(μadd, θ) \ q{θ)d{θ),
θeθ

with respect to the augmented design, μadd. A strategy analogous to that just described
for Bayesian D-optimality was adopted and, in particular, designs maximizing the
approximate criterion,

(4.2) £ In I nM(μ0, θ) + M(μadd, θ) \

were found, and their global optimality confirmed from the values of the corresponding

directional derivative,

Σ tr{nM(μo, θ) + M(μadd, θ)}-ι{M{x, θ) - M(μadd, θ)}.
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Thus for Example 3.1, the design maximizing the sum, (4.2), over the sample, SQ, of
1000 θ values was found to be based on the 6 support points, -3.370, -2.540, —1.588,
-0.655, 0.495, and 1.386 with attendant weights, 0.122, 0.385, 0.113, 0.007, 0.367, and
0.006 respectively. It is interesting to observe that this design is again more diffuse
than its locally optimal counterpart.

5. Conclusions. The main thrust of this paper has been to develop a frame-
work for constructing designs for nonlinear models describing hidden-layer feed-forward
neural networks by invoking classical and Bayesian optimality criteria. A number of
points of specific interest emerge immediately from the study. In particular, certain of
the criteria involving augmented designs depend upon the number of observations in
the original data set, and it would thus be worthwhile examining how the form of the
associated optimal designs changes as this number of observations changes. In addi-
tion, it is common, within the classical framework for hidden-layer feed-forward neural
networks, to incorporate regularization techniques into the modelling process in order
to smooth the fitted curve [Bishop (1995), Section 9.2], and it would thus be of some
interest to construct optimal designs to accommodate this methodology. The issue of
overriding concern in the context of optimal Bayesian design is that of maximizing
criteria which are multi-dimensional integrals. The approach of the present study re-
lies upon an efficient and effective Markov chain Monte Carlo procedure for generating
samples from the posterior distribution of the parameters, and it is not clear that the
random-walk Metropolis algorithm used is satisfactory in that respect. It would thus
be of interest to consider, for example, simulating Markov chains by using mixture
proposal distributions of the type described by Tierney (1995), or implementing the
dynamically-based hybrid Monte Carlo algorithm invoked recently within the neural
network setting by Neal (1996, Chapter 3). More generally, alternative methods for
maximizing integrals to that used in the present study are available, and the procedure
of Muller and Parmigiani (1995), which involves maximizing a smoothed estimate of
the integral, would seem to be a particularly relevant and promising one.

Finally, and in a broader context, it is clear that the use of a sequential approach
to optimal design for nonlinear models in situations in which data are available is
practically very appealing. Results relating to this are however difficult to derive, and in
fact there are few studies, both in the classical and in the Bayesian setting, upon which
the practitioner can draw [Ford, Titterington and Kitsos (1989)]. Also, it should be
reiterated that hidden-layer feed-forward neural networks model data in an essentially
nonparametric manner, and that, strictly, optimal designs which accommodate this
implied model misspecification should be constructed [Chang and Notz (1996)]. In
summary therefore the present study highlights the need for further research into two
broad, and to some extent interwoven, areas, those of sequential design and of optimal
design for nonparametric regression.
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