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RESTRICTED OPTIMALITY FOR PHASE I CLINICAL TRIALS
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We derive locally ¢- and D-optimal designs for maximum likelihood estimation of
the maximum tolerated dose from a phase I clinical trial. We assume that the response
function can be modeled by a distribution function and there is an ethical constraint on
the dose space, as patients should not be assigned to potentially highly toxic dose levels.
In virtually every case, the c-optimal design will be a one-point design at the unknown
quantile of interest. The D-optimal design is two points. We conclude with a discussion
of sequential designs for phase I clinical trials and their relevance in the context of the
optimality results.

1. Introduction. The objective of a phase I clinical trial is to determine a
maximum tolerated dose (MTD), where response is generally dichotomous (“toxicity”
or “no toxicity”). The MTD is then passed to further phases of testing; determining
efficacy of the therapy is often relegated to these later phases. Correct estimation of
the MTD in phase I clinical trials is of critical importance to public health. Assuming
that efficacy is monotonically increasing across the dose space, if we underestimate
the MTD and pass too low a dose to later testing phases, we risk experimenting with
an ineffective treatment. Hence we could sacrifice a potentially life-saving drug by
experimenting with the wrong dose. Phase I clinical trials traditionally recruit fairly
small numbers of subjects, and hence efficiency of estimation is particularly germane.
In addition, experiments are constrained by ethical considerations. Patients enrolled
in the study should not be assigned to dose levels far above the MTD. In this paper,
we discuss formal experimental design considerations for optimal estimation of the
MTD in phase I clinical trials. In particular, we derive the locally ¢- and D-optimal
designs for the maximum likelihood estimator of the MTD under an ethical constraint
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on the dose space and discuss implications in designing studies. By “locally optimal,”
we assume nominal values for the parameters are available. Ford, Torsney, and Wu
(1992) elegantly describe a general framework for constrained optimization, and we
refer readers interested in a more general theory to that paper. Our interest is in the
very specific application to phase I clinical trials.

2. Estimation of the MTD. In order to discuss estimation of the MTD, we need
first to have a rigorous probabilistic definition of the MTD. It is generally accepted
that the MTD refers to a quantile of a monotonic curve. If we assume that response is
dichotomous and that the probability of toxicity increases as the dose level of a drug
increases, then a quantile is the dose level corresponding to a desired probability of
toxicity. That is, for a sample space of doses €2,, the quantile u € 2, corresponding to
a target probability of toxicity I' is defined by P{toxicity is observed given dose level
p} =T € (0,1). In practice, the experimenter chooses I' according to the seriousness of
the toxicity, and the choice of I' may vary extensively among diseases studied. Cancer
studies, for instance, are often interested in values of I' ranging from 0.10 to 0.25.

Estimation of u may be facilitated by assuming the response function follows some
probability distribution from a location scale family. If we let the probability of toxicity
at dose level z; be modeled as F{(z; — @)/}, where @ and (3 are unknown parameters
and F'is a distribution function, then

(2.1) p=a+F D).

For example, F' can be modeled as logistic, probit, or complementary log-log. Under
an assumed distribution, one obtains maximum likelihood estimators & and 3 of o and
3, respectively, and then g = & + F _1(F)B, the information matrix for a single dose
associated with & and £ is given by

1 FOPE [1 A
22) I:@Fum—Fun[AAJ’

where f is the density function corresponding to F' and A = (z — a)/f for z € Q, [see,
for example, Morgan (1992, Section 2.7)]. By summing over doses in (2.2) and inverting
the information matrix, we obtain an approximation to the variance-covariance matrix
of (&,B), and hence we can derive an approximation to the asymptotic variance of ji as

(2.3) Var(i) = Var(@) + [F7/(D)] Var(8) + 2[F(D)]cov(&, B),
which in itself can be estimated.

3. c¢c-Optimality and Elfving’s method. Since x4 can be estimated as a linear
combination of parameters («, 3) by (2.1), a logical choice for an optimality criterion is
to minimize a quadratic form of the inverse of the information matrix. The c-optimality
criterion [Silvey (1980, p. 13)] is that of minimizing ¢/I~*¢ for a fixed vector ¢. For
estimating a quantile, the choice for ¢ is (1, F~!(I')), and the optimality criterion is
thus the minimum of (2.3).
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Elfving (1952) described a clever graphical technique to determine the optimal de-
sign for estimating a linear combination of regression parameters. Using his techniques
for the standard linear model

(3.1) y=oaz;+ fry +€

for (z1,z2) in a specified set S where € has mean 0 and variance o?. Elfving’s method
obtains the optimal design points as follows: The design points (211, Z21), ---, (Z1n, T2n)
for estimating a;a+ay 3, for constants a; and ay, must be selected from S. See Chernoff
(1972, p. 16) for a graphical depiction. Draw S*, the convex hull generated by S and
its reflection through the origin S=. Then extend a ray z from the origin through
the point (ai,ap). The location where the ray penetrates S* yields the solution. If
the ray penetrates S* through S, we have a one-point design at the point (z;,z2) of
penetration (i.e., take all n design pairs at that point). If it penetrates S* at a convex
combination of points of S and S~, then we have a two point design at point (z1, z2) of
S and point (—z;, —z3) of S™. If we let w be the distance from the penetration point
to S divided by the distance between S and S~ along the same line segment, we take
n(1l —w) points at (z1,x2) of S and nw points at (—z1, —z3) of S~ (assuming nw is an
integer, otherwise some rounding scheme is necessary). The variance of the estimator is
then o2 ||al|?/n ||2||?, where a= (a1, az)’, which gives a direct measure to compare the
efficiency of designs. Chernoff (1972) gives a nice proof of Elfving’s method; the proof
relies on S being closed and bounded. The geometric results concerning optimality
criteria of Elfving have been recently generalized in a series of papers by Dette and his
colleagues [e.g., Dette (1993a, 1993b), Dette and Studden (1993), and Dette, Heiligers,
and Studden (1995)].

Chernoff (1972) recognized that Elfving’s method could be used to determine the
c-optimal design for the maximum likelihood estimator of a quantile in a nonlinear
regression problem. Let a;=1 and a; = F~}(T"), as in (1).

Letting § = 1, without loss of generality because it is a scaling factor, it is readily
seen that setting

(32) 2(N) = FOFN A = F)™2 and  z2(0) = AfN[FO) (1~ F()] /2

in (3.1) yields the same information matrix as standard linear regression, as given by
(2.2). Chernoff (1972) pointed out that since the optimality criterion depends only
on the information matrix, Elfving’s method can be used to determine c-optimality
for the quantile estimation problem. Figure 1 gives the graph of S* for the logistic
distribution. The coordinates are given by (3.2). See Figure 3 of Chernoff (1972, p.
30) for a graph of S* for the probit model. In all three cases, a ray that penetrates S*
at a convex combination of points of S and S~ corresponds to a two-point c-optimal
design.

Recent papers have discussed optimality criteria for binary response [e.g., Wu
(1988), Sitter and Wu (1993a, 1993b), and Sitter and Fainaru (1997)]. In particu-
lar, Wu (1988) determined the c-optimal design for quantile estimation under various
distributions. For each of the distributions he examined, the optimal design was a
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one-point design for I' > 0.18. For I' < 0.18, the distributions are highly variable;
the minimum value of I" for which the optimal design is one-point ranges from 0.04 to
0.18. Estimation of smaller quantiles than these requires allocating patients between
two points, one low quantile and one highly toxic quantile. This finding leads to some

Fic. 1.  S* for logistic distribution (unrestricted design).

concern when estimating the quantile corresponding to I' = 0.10 or 0.15, sometimes of
interest in phase I clinical trials. Depending on the underlying dose-response distribu-
tion, the optimal design would be either a one-point design at the target quantile or a
two-point design at extreme values. However, Wu’s results become altered for phase I
clinical trials, because the design space €2, is restricted due to ethical considerations.
Assume that it is unethical to assign patients above a certain quantile. In the next
section, we use Elfving’s method to derive the c-optimal design for quantile estimation
in a phase I clinical trial with a restricted design space.

4. c-Optimality for restricted dose spaces. Now consider quantile estimation
when z € Q, has the restriction that £ < ug, where pg is the quantile corresponding
to some I'g € (0,1). For example, we may be interested in estimating ;1 corresponding
to I = 0.25 while imposing the restriction that no patient should be exposed to doses
where the probability of toxicity is above I'p = 0.33.

Figure 2 gives the convex hull S* for the logistic distribution when I' = 0.15 and
I'r = 0.33. Whereas with an unrestricted dose space, the minimum value of S is the
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breakpoint for distinguishing between a one-point and a two-point c-optimal design,
shifted left to the tangent point of S with the induced convex hull. This breakpoint
corresponds to a quantile which we will denote by I'y. Hence, two-point designs arise
under only very small values of I'. We use standard formulas for finding the tangent
point corresponding to ['y. The following differential equation determines I'y [details
are found in Mats (1997)]:

z2(F~!(Tr)) + z2(F~1(To)) _ z5(F~(T0))

z1(F~1(TR)) + 21 (F~1(T0)) 24 (F~1(To))’

where z;{®} and z,{e} are points (3.2) on S* and ' denotes derivative. When I' < Ty,
the c-optimal design consists of two-points, given by (z},z3), the coordinates of the
point where z, the ray [1, F~'(T)], penetrates the convex hull, using the following
system:

x5+ .TQ(F—l(Fo)) x] + ZIIl(F_l(Fo))

z2(F~1(Tg)) + 22(F~1(To))  z1(F~Y(Tr)) + 21 (F~1(T))’

(4.1)
zy = F~Y(T)z3.

[Mats (1997)]. Weights are given by the system [Mats (1997)]:

w1z, (F~(To)) = woz1 (F~(Tr)),
(4.2)
wy + wyp = 1.

In Figure 2, I'y = 0.028. In determining the c-optimal design for I" = 0.15, the ray from
the origin through the point (1, F~1(T)) intersects S* through S. Hence, the c-optimal
design consists of one point at p corresponding to the percentile 0.15. Suppose next we
were to estimate the quantile u corresponding to I' = 0.025. According to equations
(4.1), the ray passes through S* at the convex combination of points corresponding
to F~1(0.33) and F~1(0.028). So the optimal design for estimating the quantile p
corresponding to I' = 0.025 consists of dosages at the levels corresponding to the
percentiles 0.33 and 0.028. Equation (4.2) yields that 0.6% of the subjects be assigned
to the former and 99.4% assigned to the latter.

In Figure 3, we have the complementary log-log distribution restricted at I'r = 0.33
with I' = 0.15. Again we have a one-point design.

Table 1 gives the values of 'y which are the breakpoints distinguishing a one-point
and two-point design for a variety of distribution functions. Typically, phase I clinical
trials will be designed to target I' < 0.10, so one can conclude from this exercise
that, typically, a one-point design at the desired quantile y is c-optimal design for any
distribution function and any I' < T'r < 0.5.

Software in MAPLE that draws S* and gives the c-optimal design for any distribu-
tion function, any I', and any ' (including unrestricted problems) is available from
the first author upon request.
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F~(Tg)

© FH(To)

FIG. 2. S* for the logistic distribution (" unrestricted design) with T = 0.33 and the ray passing
through the point corresponding to I' = 0.15. Here 'y = 0.028.

-1.5r

Fic. 3. S* for the complementary log-log distribution with T'r = 0.33 and the ray passing through
the point corresponding to I' = 0.15. Here T'g = 0.029.
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TABLE 1
Values of Ty on S* disciminating between one-point and two-point design. Note that I'r = 1.0 s the
unrestricted case

Distribution F(y) 'r=0.25 T'=0.33 TI'p=0.50 T'p=1.0
1
Logistic 1- 0.021 0.028 0.044 0.083
1+e¥
Log-log 1—e® 0.021 0.029 0.046 0.109
—eY, y<0
D. Exp. 2, 0.021  0.029  0.060  0.079

Y +2
Probit /(2w)-%e-?dt 0.014 0019 0029  0.059
—00

5. D-Optimality for restricted dose spaces. The D-optimality criteria involves
finding a design that maximizes the determinant of the information matrix, given in
(2.2). It also has a geometric interpretation similar to that in Elfving’s method, where
the support points of the D-optimal design are the points of contact between S* and
the minimal ellipsoid containing S* [Silvey (1980)]. However, in practice it is difficult
to find these points, and hence numerical optimization methods are more useful.

As before, we use the coordinates given by (3.2). We then maximize the determi-
nant of

10 = w1 % .
=1 Al i

where w; is the proportion of subjects treated at \;. By Fedorov (1972), K is either 2 or
3. Hence, the D-optimal design consists of finding the maximum of a function of three
variables in the case of a two-point design, or a function of five variables in the case of
a three-point design. It is easy to show that, for a two-point design, w; = ws = 1/2.
Hence, finding a two-point design reduces to finding the maximum of the function
Q(A1, X2) = 2(M)T2(N2) (A1 — X2)?/4, where \; = (z; — @)/B,i = 1,2, and z; € Q.
The surface created by @) is symmetric about the line A\; = Ay, and hence the solution
is in the halfplane above the line. It is also symmetric about the origin, so we can look
at solutions in the set {As > A1} N {Aa > —A;}. In the restricted case, where z < ug,
we need only search in that region. Define (A9, \3) as the best two-point design.
Generally speaking, the D-optimal two point design is not globally D-optimal.
Conditions for global optimality are given in Ford, Torsney, and Wu (1992) and origi-
nate from the equivalence theorem of Kiefer and Wolfowitz (1960). For two-parameter
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response functions it is sufficient that

5D =l wireny| 20 | <2 wea.

If condition (5.1) is not satisfied, then the global D-optimal design is three points, and
finding the global three-point design is a more difficult task. Dette and Haines (1994)
find the D-optimal three-point design for the double exponential and double reciprocal
distributions. Geometrically, the smallest ellipsoid will touch the convex hull in three
points for those distributions. However, in the restricted case with I'r < 0.5, one can
think in geometric terms of the smallest ellipsoid, which will touch the convex hull in
only two points. Hence, for our problem, the two-point design satisfies the D-optimality
criterion.

We used MATHCAD to find the two-point D-optimal design for each of the distri-
butions of interest and also verifying (5.1). The logistic, probit, and complementary
log-log distributions each have a global two-point D-optimal designs. We were not able
to find the global D-optimal design for the double exponential distribution. See Dette
and Haines (1994) for the global D-optimal design in the unrestricted case. Table 2
gives the D-optimal two-point designs in terms of quantiles of the distribution.

TABLE 2
Two-point D-optimal designs under various restrictions T'r (note that T = 1.0 is the unrestricted
case)
Distribution F(y) Tr=025 TI'z=033 T=050 T[z=1.0
.. 1
Logistic “Tre 0.037, 0.25 0.051, 0.33 0.083, 0.50 0.083, 0.917
Log-log 1—e® 0.037, 0.25 0.050, 0.33 0.082, 0.50 0.231, 0.930
1
—eY, y <0
D. Exp. 21 0.036, 0.25 0.049, 0.33 0.079, 0.50 0.080, 0.920

1—56—?/, y>0

Y 2
Probit / (2m)"ze~Tdt 0.028,0.25 0.031,0.33 0.058,0.50 0.127, 0.873

6. Local optimality and nonlinear models. While Sections 2-4 provide an
interesting theoretical perspective on designs for estimating the MTD in a phase I
clinical trial, as we have seen, the optimal design for nonlinear problems depends on
the unknown parameters. In this case, we have derived optimal designs in terms of
the quantiles of the unknown distribution with a restriction placed on the design space
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which also corresponds to a quantile of the unknown distribution. These designs are
locally optimal in the sense that one can only implement these designs at a selected prior
estimate of the unknown parameters. Another approach is to use a Bayesian optimality
criterion, which imposes a prior distribution on the parameters and leads to optimal
designs on known support points. Prior information is often available in the context of
phase I clinical trials, either because the clinicians have a deep understanding of the
biological activity of the drug, or there is some information from animal studies. Yet
another approach is advocated by Wu (1988), by putting the local optimality results in
the context of an adaptive design. The experiment can be started at some preliminary
design, and as data accrue, future experiments can be performed at the best point
for estimating the parameters. Since, in our findings, local c-optimality considerations
will almost always lead to a one-point design for phase I clinical trials whose goal is
maximum likelihood estimation of the MTD, sequentially putting points closer to the
MTD, or sequentially targeting the MTD, seems like a reasonable approximation to
optimality. Ford, Torsney, and Wu (1992) then suggest that the locally optimal design
is useful as a reference point in studies of the efficiency of the sequential design; i.e.,
comparing the relative efficiency of the estimators under the sequential and locally
optimal scheme.

There are several proposed methods for targeting a quantile. Stochastic approxima-
tion [Robbins and Monro (1951)] and its modifications were proposed to sequentially
converge to a target quantile. These are discussed in Morgan (1992, Chapter 8). The
very last dose selected is taken as the estimate of u; as it is a nonparametric proce-
dure, maximum likelihood estimation of yx is not discussed. The Robbins and Monro
procedure does not operate on a discrete design lattice, and as such is used in engi-
neering applications where one has a continuous measure on a continuous design space.
However, Wetherill and Glazebrook (1986, Chapter 10) give examples of the difficulty
of convergence to p for very large (in our case, very small) values of I'. Wu (1985)
sequentially fits logistic models and updates the maximum likelihood estimator of u
after each patient’s response and experiments at the new estimate. McLeish and Tosh
(1990) propose a similar technique to sequentially estimate the ¢- and D-optimal de-
sign, and is applicable for sequentially targeting two-point as well as one-point designs.
The rather stringent requirements for the existence of maximum likelihood estimators
hinder the use of these sequential maximum likelihood methods in small samples.

It is not possible to obtain a sequential design that will ensure that no patients
are assigned above pgr. So one possible design criterion is to compare the efficiency
of estimating the target quantile to the best restricted ¢- and D- optimal designs, but
also to analyze the expected number of patients assigned above pg.

7. New sequential designs for phase I clinical trials The local optimality
criterion we have used may not be appropriate for many phase I clinical trials per-
formed today. First, the optimality criterion is the minimization (in some sense) of
an asymptotic approximation to the variance of the maximum likelihood estimator.
Most phase I clinical trials recruit small numbers of patients, often less than 25. One
would want ensure that the design chosen is optimal for small to moderate sample sizes.
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Also, nonparametric estimators of the MTD have been proposed in conjunction with
sequential designs that have less variability than the maximum likelihood estimator
[see Durham, Flournoy, and Rosenberger (1997)]. Nonparametric estimators may be
more attractive since the underlying form of dose-response curve is often unknown.

Secondly, many phase I clinical trials experiment on a finite lattice of dose levels,
so that Q, = {z1,...,zx} and p may be spanned by two adjacent dose levels. These
doses may be prepackaged and some compounds may not be reducible across the entire
spectrum of dose levels. Hence the support points of the ¢- and D-optimal designs
may not even be contained in €2,. The optimal selection of a discrete set of doses for
experimentation has been discussed elsewhere [e.g., Wong and Lachenbruch (1996)].

Recently, two procedures have been proposed that have promise in phase I clinical
trials. The first is the continual reassessment method [O’Quigley, Pepe, and Fisher
(1990)]. This is a sequential Bayesian procedure, in the spirit of stochastic approxi-
mation. A one-parameter logistic prior is assumed, and after each patient’s response,
Bayes’ formula is used to estimate the dose level corresponding to I'. Experimentation
is performed at the dose level closest to the estimate, so that it operates approximately
on a finite lattice. The last dose administered or the maximum likelihood estimator
can be used as the estimator of u. The procedure appears to be robust to distributional
assumptions, but there are conditions under which the estimators will be inconsistent
[Shen and O’Quigley (1996)].

A second new procedure is random walk rules [Durham and Flournoy (1994)], a
variant on up-and-down designs for targeting extreme percentiles. Random walk rules
are up-and-down rules, where the patients are sequentially assigned to the next higher,
lower, or same dose level as the previous patient, based on the previous patients re-
sponse and some probability mechanism, say a biased coin. The bias of the coin is
determined by I', and is selected so that the selected design points will form a uni-
modal distribution around p. The design operates on a finite lattice and is nonpara-
metric. Rosenberger, Flournoy, and Durham (1997) show that maximum likelihood
estimators have the usual asymptotic properties. Unlike other designs, the finite dis-
tribution theory is completely workable [Durham, Flournoy, and Montazer-Haghighi
(1995); Durham, Flournoy, and Rosenberger (1997)]. Simulation results on the distri-
bution of design points for the continual reassessment method were nearly identical to
exact distributional results for the random walk rules.

8. Conclusion. Sequential designs attempt to target the true MTD, and hence at-
tempt to approximate c-optimality. While these designs do not ensure that all patients
are assigned within a restricted dose space, assignment to extremely toxic dose levels
can be minimized [Durham, Flournoy, and Rosenberger (1997)]. It will be interesting
to compare the variances of estimators from these sequential schemes to the variances
obtained from the ¢ and D-optimal designs given in this paper.

We conclude by stating that the correct and efficient estimation of the MTD for
further experimentation phases is critical for our public health. Formal design con-
siderations, such as optimality and development of sequential designs to approximate
optimality should be considered when planning such a study.
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