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In this paper we present a review of the theory of lattice designs for high dimensional

experiments. In particular we consider space filling designs that are equally distributed,
supported on one generator integer grid and are orthogonal for Fourier models. Those
designs that are orthogonal for a larger class of Fourier models have better space filling
properties leading to the idea of a "fan" of a lattice design.

1. Introduction. The dependence of the response of a statistical experiment on
a set of explanatory variables can be described by a response surface, that is a general
class of regression models of the type

Y(x) = μ{x)+ε(x)

with multi-dimensional input x = (xu ..., xd) e [0, l[d, where ε is a random error and
μ is the mean response, defined by

E(Y(x)) = μ(x).

Several observations YΊ,..., Y/v are taken at sites Xi (i = 1,. . . , N), and the fitted
model μ is meant to minimize the distance to the true response. For example this
distance can be measured by the integrated mean squared error.

In case of complete ignorance of the structure of the response μ and when ho-
moscedasticity is assumed, it is natural to take equally spaced observations [for asymp-
totic results in the setting of random designs see Ruppert and Wand (1994), for the
general situation or Opsomer and Ruppert (1997), in the presence of an additive struc-
ture. Indeed the homoscedastic case which is of interest here can be obtained by
considering a constant variance function.] See Muller (1984) for the heteroscedastic
case. It is desirable that also the one-dimensional projections are equally spaced in
order to obtain good marginal properties. In particular the projections onto the axes
should have as many points as the design. For example the designs in column c) of
Figure 1 are to be preferred to those in columns a) and b).
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F I G . 1. Examples of lattice designs with 9 and 25 points.

2. Integration lattices. Integration lattices have been widely used in inte-
gration theory for their space filling properties and the possibility to impose regular
one-dimensional projections, that is the projections are equally spaced [see Niederreiter
(1992) and Sloan and Joe (1994)]. They are used as supporting points for quadrature
formulae for one-periodic functions over the unitary hypercube [0, l[d. We recall that a
function / is one-periodic in each component if f(x) = f(x + c) for all vectors c with
integer components.

A finite integration lattice is a subset of [0, l[d which has a group structure with re-
spect to the sum modulo 1, that is the summation is jointly applied with the "fractional
part" operation. Note that the fractional part of the vector x is the vector

{x} = (xι (mod 1), . . . , Xd (mod 1)).

Lattices can be written in a canonical form as follows [see Sloan and Joe (1994)]. For
any lattice L there exists a unique positive integer r called rank. Moreover there exist
r linearly independent integer vectors [generators) g1,...,gr and unique r positive
integers (invariants) Nι,... ,Nr satisfying Nρ+ι divides Nρ for all ρ = 1,. . . , r - 1 such
that the lattice can be written as follows:

The numbers of distinct points in the lattice equals N = N\ ... • Nr. The lattice gener-
ated by the vectors g1,...,gr with invariants Nι,...,Nris indicated by LSu...iSr;jv1,...,wr
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Notice that the first generator "holds" most of the lattice points. This leads us to
favor rank one or one-generator lattices. In order to get regular projections onto the
axes we require that the greatest common divisor of the number of lattice points and
the coordinates of the generator is one. In this case we may assume the first coordinates
of one-generator lattices equal to 1, which can be accomplished by a relabeling of the
sites. To be more precise, the lattice generated by g — (g\,... ,gβ) G Z and with TV
points is given by the following rule:

mod N kgd mod N

A one-generator lattice can be visualised as a set of points on a trajectory embedded
in [0, l[d interpreted as the d-dimensional torus.

The designs in column a) of Figure 1 are the rank two lattices I/(i,o),(o,i);3,3 and
£(i,o),(o,i);5,5 The second column presents the one-generator lattices £(i,3);9 and £(1,5)525
In the third column the one-generator lattices £(i,4);9 and £(i,6);25 are shown which have
the additional nice feature of regular projections onto both axes.

3. Fourier approximation. To judge the performance of a design we require that
it is suitable (or even optimal) for a certain (parametric) class of functions. Due to the
periodicity property it is appropriate to choose Fourier (trigonometric) models which
fall naturally in the category of one-periodic functions as approximations to a response
surface model. This is motivated for example by the discrete Fourier transform used in
various areas of engineering [see Bracewell (1978)]. A general Fourier model is defined
via a finite set of frequencies A C ~Ld as follows:

μ(x) = E(Y(x)) = 0o + V2 Σ K s i n ( 2 7 r / ι ί a 0 + Φh cos(2πΛ*®)] ,
hAhφO

where x G [0, l[d and 0O, ®h and φh are real parameters for all h G A. As usually the set
A of frequencies is assumed to be symmetric, that is h G A implies —h G A, and the
model is overparameterized in the general case A φ {0}. Therefore we give a minimal
(not unique) parameterization in terms of a set of Ao C Z d such that (i) 0 $ Ao and
(ii) if h G Ao then — h tf Ao so that A = Ao U (—Ao) U {0}. If m is the number of
elements in Ao then the model has p — 2m + 1 parameters.

In several situations we require that A is complete, that is the frequency set has
an "order ideal" structure in the following sense. If the frequency h — (hι,...,hd) is
in A then all frequencies a = ( α i , . . . , α )̂ which satisfy |α^| < \h{\ (for i = 1,.. ., d)
are in A. In particular, this implies that for every frequency h = (hi,..., ha) all
symmetric images (z\hι,..., zdhd) with zι,...,Zd G {—1,1} are included, the latter
being a natural condition arising from the interpretation of hfx as an interaction term
of the marginals \hi\xi for the non-zero components hi, i = 1,. . . , d. For these complete
models we define the generator A+ of the model with frequency set A as the set of all

28



non negative frequencies in A, that is

A = {h:(\hι\,...,\hd\)tGA+}.

For example if (1,1) is in A+ then the frequencies (1, —1), (—1,1) and (—1, —1) are in
A

A particular important class of complete models is given by the M-factor interaction
models F(d; m i , . . . , m^; M) where d denotes the number of factors, πii is the degree of
the Fourier regression for the ith. factor and M is the maximum number of factors in
an interaction involved. For these models the generating set A+ of frequencies is given

by
A+ = {h : 0 < hi < rrii, and hi φ 0 for at most M components}.

For one-dimensional models F ( l ; m; 1) it is known [see Kiefer and Wolfowitz (1959)]
that equally spaced designs with at least p = 2m + 1 points produce diagonal infor-
mation matrices. The one-generator lattice designs generalise this concept. They are
equally spaced designs on a line wrapped around the (d+ l)-dimensional unitary torus.
By suitably exploiting these properties the identifiability of a high-dimensional Fourier
model is reduced to the study of a one-dimensional (non-complete) Fourier model [see
Riccomagno, Schwabe and Wynn (1997)]. Note that when considering one-generator
lattices the uniform (Lebesgue) measure on the one-dimensional "subspace" generated
by the "direction" of the generator g (slope) bears the same information matrix and
is hence optimal. In contrast to traditional methods [see for example Rafajlowicz and
Myszka (1992) and Schwabe (1996)] the main idea here is that first a reduction of the
dimension (to one) is performed and after that the problem is discretised by choosing
an equally spaced design on the one-dimensional subspace. This theory carries over to
rank r lattices. Note that the full factorial design with 2rrii + 1 levels at the zth factor
(for all i = l,...,rf), which is orthogonal for the Kronecker product-type complete
d-factor interaction model F{d\ m i , . . . , m^; d), is the full rank lattice generated by the
unit vectors e» (i — 1,.. ., d) with Ni = 2rrii + 1.

Due to the lattice structure in conjunction with the orthogonality property of
trigonometric functions on a uniform grid the design X\,..., xN is either orthogonal,
that is the standardised information matrix equals the identity, or it is rank deficient.
As the model is not identifiable in the latter case identifiability orthogonality is auto-
matically implied by orthogonality. Moreover, orthogonal designs are simultaneously
D-, A-, E- and /MSΈ'-optimal for a true trigonometric response μ. More generally,
orthogonal designs are universally optimal in the sense of Kiefer (1975) [see Pukelsheim
(1993, Chapter 14)]. A design which is orthogonal for a model with frequency set A is
also orthogonal for any submodel with frequency set A1 C A. In particular, orthogo-
nality for a M-factor interaction model F(d; m i , . . . , md; M) implies orthogonality for
each If-factor interaction model F(d; A4,..., kd\ K) when k{ < rrii (i = 1,. . . , d) and
K <M.

4. Dual lattices and identifiability. The dual of a lattice is a powerful tool to
characterise the identifiability of a Fourier model.
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DEFINITION 1. The dual lattice L1 of a lattice L is defined as

LL = {h £ Zd such that hιx G Z for all x e L} .

For a one-generator lattice L9]N the definition of a dual lattice simplifies to

Lf.N = [heZd such that hιg = 0 (mod N)} .

The dual lattice L^.N is the orthogonal subspace to the standardised lattice N L (with
respect to the scalar product in Z d modulo N). For the lattice £(i,2);5 the dual lattice is
an integer grid generated by (1, 2) and (0, 5), that is Lh 2y5 = {(&, 2k + bj) : j , k G Z}.

The dual lattice of a rank r lattice generated by gλ,..., gr with invariants Nι,... ,Nr

is the set of integer vectors that satisfy the following system of equations

htg1 ΞΞ 0 (mod Nλ)]

hιgr ΞΞ 0 (modiVr).

For example the dual lattice of the full rank lattice in two dimensions with gener-
ators gλ = (1, 0) and g2 = (0,1) and with 9 points is given by

L ^ 2 . 3 j 3 - 3Z 2 = {(3Λχ, 3h2) : hu h2eZ}.

In both above examples it can be recognized that the dual lattice has the same
spatial structure as the lattice itself but under a larger scale. However, this is not the
case for all lattices.

As a further example consider the one-generator lattice in three dimensions gener-
ated by g = (1, 2,3) with 7 points. The dual lattice is generated by the vectors (0,1,4)
and (1,0, 2) on the region [0,7[3 and it contains 49 points within that region, that is

Lj.j Π [0,7[3= {j(0,1,4) + fc(l, 0,2) (mod 7) : j , ^ Z } .

Moreover the two-dimensional projections of the dual lattice are regular. The structure
of the dual lattice allows us to estimate a variety of different models.

Indeed dual lattices govern the aliasing structure of a Fourier model/lattice design
pair in the sense of the following theorems. Necessary and sufficient conditions are
given for a pair of frequencies (Λi, h2) to be mutually orthogonal, that is they can be
included in the same identifiable model. This condition is similar to the condition of
not being aliased in a factorial experimental design. In the same spirit the generators
of the dual lattice describe the aliasing structure in a similar way as it is done by the
defining sequences in factorial experiments.

T H E O R E M 1. The Fourier model given by the set of frequencies A is identifiable by
the rank r generator lattice Lgiimmmigr.Nli_iNr if and only if for every k = (fci,..., kr) G Z r

satisfying 0 < kι < Ni — 1 (i = 1,.. ., r) there exists at most one h G A such that

htg1 ΞΞ fci (mod iVi);

htgr ΞΞ kr (mod iVr);
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The proof of this theorem relies on a generalisation of the simple fact that the sum
of sinusoidal functions over the TV complex roots of the unity has value zero [see Sloan
and Joe (1994, Lemma 2.1) and Niederreiter (1992, Lemma 5.21) for a proof based on
the group representation of lattices]. For details see Riccomagno, Schwabe and Wynn
(1997).

Note that the Fourier model defined by the set of frequencies A is identifiable by a
generator lattice L if each frequency h in A belongs to a different coset of ZA.

TABLE 1

Complete models identifiable by £(i,2),5

Ao

V

(i) (") (ϋi)
(1,0) (1,0) (0,1)
(2,0) (0,1) (0,2)

5 5 5

TABLE 2

Complete models identifiable by £(i,5),i3

V

(i)
(1,0)
(2,0)
(3,0)

(4,0)
(5,0)
(6,0)

13

(ϋ)
(1,0)
(2,0)
(3,0)

(4,0)

(0,1)

11

(iii)

(1,0)
(2,0)
(3,0)

(0,1)

(1,1)
(i,-i)

13

(iv)

(1.0)
(2,0)

(0,1)
(0,2)

(1.1)
(1.-1)

13

(v)
(1,0)
(0,1)
(0,2)
(0,3)

(1,1)

(1,-1)
13

(vi)

(1.0)

(o,D
(0,2)
(0,3)
(0,4)

11

(vii)

(0,1)
(0,2)

(0,3)
(0,4)
(0,5)
(0,6)

13

Table 1 gives all the maximal (with respect to the inclusion) complete models
identifiable by £(i,2),5 The lattice £(i,5),i3 can be used to fit the maximal complete
models given in Table 2. Notice there that the factors are treated symmetrically by
the lattice and that the models (ii) and (vi) are not saturated.

Table 3 presents the list of all maximal complete models estimable with the nine
point designs of Figure 1. The first column gives the only complete model identifiable
by Z/(i,o),(o,i);3,3 a s known from standard theory. In the second block there are those
complete models which are identifiable by £(i,3);g. The third block gives the set of
models identifiable by I/(i,5);9 We could refer to those blocks by the term of the fan of
the corresponding design, in the sense that they represent the full range of complete
models identifiable by the design [see Caboara, Pistone, Riccomagno and Wynn (1997)
for a recent reference to the notion of fan in experimental design]. Thus the bigger the
fan is the better space filling properties the design has.
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TABLE 3

Complete models identifiable by designs with 9 points in Figure 1

A+

P

a)

(i)
(1,0)

(0,1)

(1,1)

9

(i)
(1,0)
(2,0)
(3,0)
(4,0)

9

b)

(")
(1,0)
(2,0)

(0,1)

7

(iii)

(1,0)

(0,1)

(1,1)

9

(i)
(1,0)

(2,0)

(3,0)

(4,0)
9

c)

(")
(1,0)
(2,0)
(3,0)

(0,1)
9

(iii)

(0,1)
(0,2)
(0,3)
(0,4)

9

TABLE 4

Complete models identifiable by designs with 25 points in Figure 1

A
+

V

a)

(i)
(1,0)
(2,0)

(0,1)
(0,2)

(1,1)
(2,1)
(1,2)
(2,2)

25

(i)
(1,0)
(2,0)

(3,0)

(4,0)
(5,0)

(6,0)

(7,0)
(8,0)

(9,0)

(10,0)

(11,0)
(12,0)

25

b)
(")
(1,0)
(2,0)
(3,0)

(4,0)

(0,1)
(0,2)

13

(iii)

(1,0)
(2,0)
(3,0)

(0,1)
(0,2)

(1,1)
(1,2)

19

(iv)

(1,0)
(2,0)

(0,1)
(0,2)

(1,1)
(2,1)

(1,2)
(2,2)

25

(i)
(1,0)
(2,0)

(3,0)
(4,0)
(5,0)

(6,0)

(7,0)
(8,0)

(9,0)
(10,0)

(11,0)

(12,0)

25

(ϋ)
(1,0)
(2,0)

(3,0)

(4,0)
(5,0)

(0,1)
(0,2)

(0,3)

17

c)
(iii)

(1,0)
(2,0)

(3,0)

(4,0)

(0,1)
(0,2)

(1,1)

17

(iv)

(1,0)
(2,0)

(3,0)

(0,1)
(0,2)

(1,1)
(2,1)

19

(v)

(0,1)
(0,2)

(0,3)

(0,4)
(0,5)

(0,6)

(0,7)
(0,8)

(0,9)

(0,10)

(0,11)

(0,12)

25

Similarly Table 4 refers to the 25 point designs I/(i,o),(o,i);5,5 7 (̂i,5);25 and I/(i?6);25 of
Figure 1. If we are only interested in additive models F(2;rai, 777,2; 1) in which only
frequencies of the type (/&i,0) and (0,/12) occur, then the lattices £(i,4);9 and L(i56);25
do not only have regular projections but they also outperform their competitors by
covering a larger fan of models. Note also that for the one-generator designs in columns
b) and c) the factors are not treated symmetrically.

Figure 2 explains the mechanism behind Theorem 1. The first graph gives the dual
lattice of £(i,2);5 ° n the grid [—5, 5[2ΠZ2. The second and third show the cosets which
are added by including +xλ and — x\ in the identifiable model. And finally the third
one represents the cosets associated to ±x 2- Hence, a maximal model identifiable by
L(1|2);5 is given by Ao = {(1,0), (0,1)}.

As a further example consider the two-dimensional design on the rank two lattice
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Dual lattice of L(1,2);5 Effects of adding +x1
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generated by gx = (1,0), Nχ = 2 and g2 = (1,1), N2 = 4. So that

gives the 8-point design (0,0), (i, i), (|, | ) , (|, | ) , (|, 0), (|, J), (0, | ) , (i, | ) , which is
the union of two 22 full-factorials —one at levels 0 and \ and the other at levels \ and
| . The set Ao = {(0,1), (1,0)} defines the maximal complete Fourier model identifiable
b y ί ,

A major research effort is to determine the fan of a design in an automatic way and
to possibly obtain a classification of designs according to the structure of their fan.

5. Complexity. The challenge of the theory is to determine automatic sequences
of orthogonal design for a natural class of complete Fourier models as the dimension
increases. Riccomagno, Schwabe and Wynn (1997) consider the problem for additive
and two-factor interaction models and determine designs whose sample size increases
polynomially with the dimension, while usually there is an exponential increase for
product-type designs or designs obtained by Fibonacci-type recursions applied to the
components of the generator sequence. In particular a complexity theory is proposed
in which the size of the design in compared with some descriptor of the model such as
the dimension d or the number of parameters p. Given a model F(d\ mu . . . , md\ M)
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and a suitable generator sequence (flfi)t=i,...,d the sample size is computed as

2 max rπigi + 1.

Thus a bound on the generator sequence gives a bound on the sample size as d increases.
For the example of the additive models F(d; ra,..., ra; 1) the one-generator lattice

designs generated by (1, ra 4-1, 2ra + 1,...) with sample size 2m2(d — 1) + 2ra + 1 are
orthogonal with the sample sizes increasing linearly in the dimension d.

For the two interaction model F(24; 1,..., 1; 2) the following generator sequence
gives an orthogonal design

1, 3, 8,18, 30, 43,67,90,122,161, 202, 260,305,388,416,
450,555,624, 730, 750,983,1059,1159,1330.

In Figure 3 the logarithm of g^ is plotted against logd, for d > 1, showing that g^
increrases like d2Λ3.

1.0 1.5 2.0

log(lndex)

2.5

FIG. 3. log-log plot for F(d; 1,..., 1; 2) (d > I).

Analogously Riccomagno, Schwabe and Wynn (1997) obtain a sequence that be-
haves like d212 for the identification of all parameters in the models F{d\ 2, . . . , 2; 2). For
the identification of the main effects (Resolution IV) in the same model F(d\ 2, . . . , 2; 2)
they obtain an explicit formula for the generator sequence which increases in the di-
mension like d l os3/ l os2.

In conclusion, we have seen that lattice designs and in particular one-generator
lattice designs have good space filling properties with regular projections and are or-
thogonal for proper Fourier models. The aliasing structure follows nicely from the
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general theory. For special classes of Fourier models it is possible to find sequence of
designs whose sample size incresaes polynomially with the dimension. It is possible
to discriminate among designs according to how many and what kind of models they
identify (fan theory).
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