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When population samples of molecular data, such as sequences, are taken,
the members of the sample are related by a gene tree whose shape is affected by
the population processes, such as genetic drift, change of population size, and
migration. Genetic parameters such as recombination also affect that genealogy.
Likelihood inference of these parameters involves summing over all possible ge-
nealogies. There is a vast number of these, so that exact computation is not
possible. Griffiths and Tavare have proposed computing these likelihoods by
Monte Carlo integration. Our group is doing this by the Metropolis-Hastings
method of Markov Chain Monte Carlo integration. We now have, in our LAMARC
package, programs to do this for constant-sized and growing populations, and
for geographically structured populations. The bias of the estimator of popula-
tion growth rate is discussed. One can also allow for samples stratified in time,
as with fossil DNA or sequential samples from the population of a virus in a
patient. A program for recombining sequences is in progress, and we hope to
put together an object-oriented environment which can cope with a variety of
evolutionary forces.

1. Introduction* Samples of genes from natural populations of organisms
are related by a genealogy, which is usually unknown. At the level of the copies
of the genes, such a genealogy would specify where each copy of the gene came
from. Thus, a particular copy that we sample may have come from the mother
of that individual, from her father, from his father, from his mother, and so on,
back in time. Other copies are doing the same. As we go back, occasionally two of
these lineages will coalesce, as it happens that two copies of a gene are descended
from the same parental copy. Thus, my great-great-great-grandmother might
happen to be the sibling of your great-great-great-grandfather, and the genes
we possess might then turn out to be copied from the same copy in one of their
parents. Such coalescences are inevitable in natural populations.

Figure 1 shows such a pattern of ancestry. Each circle is an individual who
has two copies of the gene; we are concerned not just with the genealogy of
the individuals, but with the genealogy at the gene level. In the figure, time

Supported by NIH grant R01 GM-51929 and NSF grant BIR-9527687
AMS 1991 subject classifications. Primary 62F03, 92D15; secondary 92D10, 92D20.
Key words and phrases. Coalescent, molecular evolution, genetics.



164 J. FELSENSTEIN, M. K. KUHNER, J. YAMATO AND P. BEERLI

Θ Θ
Θ Θ
Θ Θ

f o o j ( o o ) ( o o )

( o o j ( o o ) ( o o )

( o o ) ( o o ) ( o o )

Time

F I G . 1. A coalescent tree of gene copies that is formed in a diagram showing from which gene in the
previous generation each gene copy comes. Large circles are individuals, small circles are copies of
genes. Three copies in the current generation trace back to two copies 6 generations earlier.

flows upwards. The sample consists of three copies of the gene taken from the
latest generation (at the top). Arrows show the copies of the gene transmitted
from parent to offspring. When we go backwards in time along the arrows, we
go downwards, and the lineages gradually coalesce. The rate of this coalescence
is higher in small populations than in large ones, simply because the chance
that the ancestors of two copies of the gene are the same is greater in a small
population.

We have reasonably straightforward models of change in the DNA sequences
of such genes, based on the neutral mutation theory of evolution. We can, for
example, assume that all sites in the gene change at the same rate μ per gen-
eration, according to one of the standard Markov models for base subtitution,
which specify probabilities of change among the four states A, C, G, and T. If
we were to know the genealogy of the copies in detail, statistical estimation of
the rates of mutation would be possible, as well as testing of hypotheses about
the mutational process. The genealogy is itself the result of a stochastic process,
dependent on JVe, the effective population size. This would be the population
size if the population reproduced according to an idealized Wright-Fisher model;
as it is, it corrects for some departures from such a model. We could imagine
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using the genealogy to estimate Ne and test hypotheses about it.
However, we don't know the genealogy. We must therefore integrate over our

uncertainty about it. This turns out to confound Ne and μ, and create a large
computational problem. In this paper, we will outline the problem, our own
Markov Chain Monte Carlo approach, and relate it to the work of Griffiths and
Tavare, who have suggested another Monte Carlo sampling approach. We will
also sketch how population growth, migration, recombination, and fossil DNA
sequences can be accomodated in our scheme.

2. The coalescent. It has been known since the work of Sewall Wright, in
the 1930's, that if we choose two copies of a gene from a random-mating popu-
lation, the time since their common ancestor is geometrically distributed, with
expectation 2N generations. (For the moment we use JV, the actual population
size, as we are dealing with idealized models). As 2iV is typically reasonably
large, it is also well-approximated by an exponential distribution with that ex-
pectation. In 1982 Kingman (Kingman 1982a, 1982b, 1982c) generalized this to
n copies by defining the coalescent process, and proving that the distribution
of the genealogies of the n copies converges to it when scaled properly. While
Kingman's methods were sophisticated, the resulting distribution is easy to de-
scribe and use. This is fortunate, for Kingman's result is fundamental to the
analysis of population samples of DNA sequences.

In the coalescent in a population whose size is ΛΓ, one can sample from the
distribution of the possible genealogies of n copies by the following procedure:

1. Set k = n and Γ = 0.

2. Draw a random quantity Uk from an exponential distribution with expec-
tation 4N/(k(k - 1)).

3. Pick two of the k copies of the gene at random, without replacement.

4. Create a node of the genealogical tree which is the immediate common
ancestor of these two copies, and which existed T + Uk generations before
the present.

5. Set T = T + uh.

6. Replace these two copies by this common ancestor and set k = k — 1.

7. If k — 1 we are done. Otherwise return to step 2.

Thus we go back through a series of exponential time intervals, combining
randomly chosen pairs of lineages, until we get a complete tree. The expected
time to reach the common ancestor of all copies is 4/V(l — 1/n) generations. The
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lineages combine rapidly at first, then more slowly as we go back, and the last
two are expected to take 2N generations to find their common ancestor, more
than half of the expected time. An interesting implication of the coalescent is
that a sample of modest size has an excellent chance that its common ancestor
will also be the common ancestor of all copies of the gene in the population.

Kingman's coalescent is an approximation, valid when n2 <§C JV, but it is in
practice extraordinarily accurate. Given the departures that real populations
show from any of these idealized models, inaccuracy of Kingman's approxima-
tion is the least of our worries. Kingman's coalescent defines the prior distri-
bution of genealogies, and has given its name to the whole area: researchers
studying ancestry of samples of genes from populations are said to be working
on coalescents.

There are many possible departures from the idealized Wright-Fisher model
that underlies Kingman's result, but the coalescent is in effect a diffusion ap-
proximation. Many different models of reproduction of single populations will
have the same diffusion approximation, and hence the same coalescent process,
provided we replace the actual population size N by the appropriate effective
population size Ne. .

3. Likelihoods. The coalescent gives us a prior distribution of the geneal-
ogy £?', which has its intervals expressed in generations. As a product of ex-
ponential densities, it is easily written down and easily computed. Its density
function is

where Uk is the length of the interval during which the genealogy G' has k lin-
eages. If we were able to observe the coalescence intervals u&, we could estimate
Ne. Note that the event that actually occurs brings in a factor of 2/(4Ne) rather
than k(k — l)/(4Ne) as we know which two lineages have coalesced. The prod-
uct of these factors of 2/(k(k — 1)) represents the probability of sampling the
particular "labelled history" (Edwards 1970) from among all those possible.

Of course, we do not actually observe coalescence intervals. For most kinds
of contemporary data, we can observe only the differences between the mem-
bers of our sample. For example, for DNA sequences, we can see the number
of positions (sites) at which the molecules differ. That gives us a picture of
the coalescence times, but only a clouded picture. We need to make inferences
about parameters such as Ne by using a model of the change in the DNA. The
notion of a molecular clock provides such a model. We assume a Markov pro-
cess operating independently at each site in the DNA, with a mutation rate μ.
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By equating long-term change to mutation, we are implicitly basing ourselves
on the neutral mutation model of evolution made famous by Motoo Kimura
(Kimura 1968, Kimural983). We can use a stochastic model of DNA change,
and make assumptions of independence of change in different sites and in dif-
ferent lineages, to compute the probability of the observed sequences D given
a genealogy G'. One of us (J.F.) has outlined how to do this (Felsenstein 1981)
and Ziheng Yang, Gary Churchill, and he have more recently shown how to
incorporate autocorrelated variation of evolutionary rates from site to site us-
ing a Hidden Markov Model approach (Yang 1993, 1994, 1995; Felsenstein and
Churchill 1996).

We cannot be certain of the genealogy Gf. In fact, it is the role of the data
to illuminate it, however dimly. To compute the likelihood of the coalescent
parameter Ne and the mutation rate μ given the data D, we must integrate
over all possible genealogies (Felsenstein 1988, 1992)

(3.2) Pτob(D\Ne,μ) = / f(σ\Ne)Pτob(D\G',μ).
J

We describe the integration below. The probability of D given G1 and μ which
appears on the right is the probability calculated by our Markov process model of
evolution, the same quantity that is computed in maximum likelihood inference
of phylogenies. The quantity μ is a rate of mutation per generation; in more
complex cases this may be replaced by several parameters.

Neither of the terms inside the integral in equation 3.2 is hard to compute.
The quantity / is given by 3.1 and the other probability requires effort pro-
portional to the total number of DNA bases in our sample, times the square of
the number of states at a site, which is 4. The computational problem comes
from the vast size of the space of genealogies Gf. The space of values of Gf is
a union of a very large number of Euclidean spaces. Edwards (Edwards 1970)
enumerated these: they are his "labelled histories". With n sequences there are
n\(n — l)!/2n~1 of them, so that with only 10 sequences there are 2.571 x 109

labelled histories. Each one of these has n — 1 node times. The integration in 3.2
must be over all values of these, so that each of these billions of terms integrates
over n — 1 dimensions. Clearly there is a computational problem here.

All attempts to find mathematical simplifications for this integration have
so far failed. Nevertheless two groups - Griffiths and Tavare and ourselves -
have attempted to use Monte Carlo integration. This can work because many
of the billions of possible labelled histories make rather little contribution to
the integral, because they lead to very low values of the term Prob(D|G'). We
will describe our approach first, and then show the relationship between the two
approaches, which appear at first sight to be quite different.
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4. A Metropolis-Hastings approach. Our approach has been to use
Markov Chain Monte Carlo sampling, in particular the Metropolis-Hastings
method (Metropolis et al. 1953; Hastings 1970). We want to sample from the
terms of 3.2 using importance sampling, with our importance function being
as close as possible to the the that is being integrated. Our approach for the
simplest case - a single population of constant size, with no recombination - is
outlined by Kuhner et al. (Kuhner et al. 1995, 1997).

In that case, it turns out that we can change the time scale of the genealogies.
The entities Gf have their node times given in generations. Instead we can
rescale them to be in units of l/μ generations, where μ is the underlying neutral
mutation rate of the DNA model that we use. Thus if a node in the genealogical
tree is 100,000 generations ago, and the underlying mutation rate μ is 10~7, when
rescaled the node is 0.01 mutations ago. These are of course expected mutations
per site, not actual mutations. Informally, we can write this by saying that the
genealogy is now G rather than G\ and

(4.1) G = μGf.

The result of this change of variables is of course to alter the density / as well.
The coalescence intervals Uk in 3.1 are replaced by Vk = μw*, and a factor of l/μ
comes into each term in the resulting density as well. The result is the density:

(4.2)

where Θ = 4iVeμ. This resembles closely the widely-used parameter θ that is
frequently estimated in evolutionary genetics, except that it contains the neutral
mutation rate per site rather than per locus.

The result of this change of scale is that the probability Prob(JD|G/,/i) can
be replaced by Prob(£>|G), as the branch lengths of G are already multiplied
by the mutation rate. In most DNA models, the elapsed time t in generations
must be multiplied by a rate of mutation μ before it can be used. If we are given
the product μt we can compute the transition probability directly from it. The
result is that 3.2 now becomes:

(4.3) Prob (£>|Θ) = / g(G\θ) Prob(L>|G).
JG

If there were more parameters than μ, one would have to change Prob(D|G) by
adding ratios of parameters, such as Prob(Z}|G,μ2/μi). Onτ objective becomes
computing the likelihood of the parameter θ .
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To approximate the integral we take as our importance function the quantity
flf(G|Θ)Prob(Z)|G), which immediately raises the issue of what value of Θ to
use. Ideally one would want to sample at the maximum likelihood value of
Θ, but we cannot know in advance what this will be. Our strategy has been
to make a rough estimate of Θ, which we call Θo, and use that for an initial
sampling, sampling from g (G|Θ0) Prob(£>|(2). We sample genealogies (?i, G2,
. . . , Gm by taking an initial genealogy and making successive alterations to it,
doing acceptance/rejection sampling appropriately according to a Metropolis-
Hastings algorithm. This forms a Markov chain of genealogies. We use that for
an initial sampling, then find a maximum likelihood value based on the sample
from that first Markov chain. This is then taken as the provisional value for a
second Markov chain, and so on. We have usually run 10 of these chains, then
two much longer ones at the end. The final likelihood curve is computed from
the second of these long chains. In our programs the user can customize the
number and lengths of the chains.

5. Importance sampling and likelihood curves. One useful property
of Metropolis-Hastings sampling is that we can estimate the whole likelihood
curve from a single run of a Markov chain, rather than having to compute each
point on the likelihood surface from a separate run. Suppose that we sample m
genealogies from a Markov chain which has its equilibrium distributiion propor-
tional to g(G\Θo)Pτob(D\G). Call the sampled genealogies the d. The usual
importance sampling formula for Monte Carlo integration gives:

(5.1)

g(Gi\θ)
9 ( < ? | θ ) P r O b ( O | < ? ) * m Σ g (Gi |θo)PΓob(Z>|G,) = S Σ g(Gi\θ0)

this allows us to estimate the likelihood for other values of θ from a run of
the Markov chain at Θo Note that the likelihood curve depends only on the
Kingman priors of the sampled G{ at Θ and at Θo This makes it seem that the
data are not involved at all; they actually affect the Markov Chain Monte Carlo
sampling process and affect the final likelihood through their effect on which G{
are sampled.

6. The Markov Chain sampling. Our samples of the genealogies G must
come from a distribution proportional to g(G\Θ0) Pτob(D\G). We achieve this
through a sampling based on conditional coalescents. A conditional coalescent
may be described as a distribution on G that has its density proportional to the
coalescent density g(G\Θo) on some domain of G's, and has density 0 elsewhere.
In our programs the conditional coalescents are created by a process of dissolving
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B

FIG. 2. A conditional coalescent method of altering a tree. A single lineage is chosen at random to
be altered (the lineage below z in A). It is removed from the tree (B) and then its coalescence with the
remaining lineages is simulated (C). Tree D shows the result.

part of a tree, and reforming that part by allowing lineages to sample their
ancestry randomly according to a conditional coalescent. In the original paper
by Kuhner et al. (1995), the region of the tree that was dissolved had a single
lineage at its base and three lineages at its top. The three lineages, which were
not necessarily contemporaneous, were then re-formed into a tree by allowing
them to coalesce, but requiring that all three coalesce into a single lineage by
the time the base of the dissolved region was reached. The details of how this
was done will be found in that paper.

More recently, we have changed to a different conditional coalescent sug-
gested by Peter Beerli. In this, a lineage is selected, and is disconnected from
the genealogy, with the lineage being dissolved back up the tree to the next
highest coalescent node. It is then allowed to sample its ancestry downwards
(backwards in time) until it re-connects to the tree. Note that sometimes this
will mean it reconnects below the previous root of the tree. Figure 2 shows this
process in a single population.

A branch of the tree is chosen at random. In this case it is the one below tip
z (tree A). Tree B shows the tree with that branch removed. In tree C we see
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the process of simulating the conditional coalescence of that lineage with the
remaining ones. During the topmost interval of the tree (the time down to line
j) , the instantaneous rate of coalescence of that lineage with each of the three
others is 2/Θ0, for a total of 6/Θo We generate an exponential random variate
with mean Θo/6, which is the time until coalescence of that lineage with one of
the three others. In this case (line 1 in tree C) the time is too long, and takes
the lineage past line j . We then consider the lineage to have remained distinct
back as far as line j . Starting at that time, we have two other lineages, for a
total instantaneous rate of coalescence of 4/Θ0. We then draw an exponential
variate with mean Θo/4. This time, which defines line fc, turns out to be a time
above the next coalescence, which is the root of the tree. So we connect our new
lineage to the tree at the time of line fc, choosing one of the two lineages as the
one to which it will be connected. The resulting tree is D.

Note that it is possible for any of the lineages, other than the one that
is below the root, to be chosen to be dissolved, and it may reconnect to the
tree below the original root. The method requires one exponential variate to
be generated for each coalescence interval on the remaining part of the tree. If
there are m other lineages in an interval, the instantaneous rate of coalescence
with them is 2ra/Θ.

Having proposed this change, we decide whether to accept it. The method
of generating the new tree is a conditional coalescent, which means that if the
old tree is Goid and the new tree Gnew, then

(6.1) Prob (Gnew\Gold) = KProb(Gnew\Θ0)

for some constant A", as the density from which Gnew is drawn is proportional
to the coalescent density. An analogous equation holds for Prob (Goid\Gnew). In
constructing the rule for acceptance and rejection, we use these in the Hastings
ratio terms, accepting the new tree if a uniform random fraction r satisfies

Prob(Gnew\Gold) Prob(G o ί d |θ 0 )Prob(D|G o ί d )

Prob(Gold\Θ0) Prob(Gne™|Θo)Prob(P|Gneu,)
Prob(Gnew\e0) Prob(G o M |θo)Prob(D|G o M )

Prob(£>|Gneυ,)
Prob(D\Gold)

Thus the conditional coalescent causes cancellation of the Hastings terms
and the Kingman prior term, leaving only the ratio of the likelihoods of the
trees. These would be the likelihoods of these genealogies, given the data, if the
genealogies were treated as parameters (which they are not). The machinery
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FIG. 3. The log-likelihood curve for θ for the data of Ward et al.

to compute likelihoods on genealogies is the same as it is on phylogenies, and
it is well-enough known (e.g. Felsenstein 1981) not to need to be treated here.
Note that we can use any type of data for which such likelihoods are available,
including DNA sequences, microsatellite copy numbers, restriction sites, and
even isozyme mobilities. Note also that we have only modified part of the tree,
so that we need only recalculate the likelihoods for the parts of the two trees
that differ, a considerable saving. The rearrangement strategy described here
has some similarity to that used by Li et al. (1998) but their strategy dissolves
only branches leading to tips, and does not use the conditional coalescent for
reattachment.

As an example, Figure 3 shows the likelihood curve generated by a run of
on the mitochondrial DNA data set of Ward et al. (1991). The estimate of Θ
is 0.0396. Taking an interval two units of log-likelihood below the maximum
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suggests that the estimate lies between about 0.03 and 0.055. This curve was
generated by two long chains of 12,000 steps each, sampling trees every 20 steps.
Further details are given by Kuhner et al. (1995).

The method is computationally feasible on workstations or fast desktop com-
puters. Computational effort seems to rise slowly with the number of sequences,
especially since we can re-use many of the likelihood computations from one tree
to the next. If only part of a tree has changed we can re-use the likelihoods from
the rest of the tree. However there are no easy generalizations about how long
the Markov chains must be run.

7. The method of Griffiths and Tavare. Our Monte Carlo sampling ap-
proach was preceded by the pioneering and innovative method of Griffiths and
Tavare (1994a, 1994b, 1994c). At first sight their method appears to bear no
relation to ours, and to have considerable advantages over it. A close examina-
tion shows that the two methods are related, and makes clear the advantages
and disadvantages of our approach.

Griffiths and Tavare have as their objective the same likelihood function
that we compute. They form a system of recurrence equations expressing this
likelihood in terms of likelihoods for data sets that have resulted from one fewer
evolutionary event. In principle, recursive evaluation of these equations, as in
an earlier paper by Griffiths (1989), will yield the desired likelihood. However,
the recursion expands rapidly, and one must therefore use some approximate
method of evaluating it. Griffiths and Tavare (1994a, 1994b, 1994c) choose sam-
ple paths down through the recursion randomly. The great advantages of this
method are that the computations are rapid, and each such sample path is inde-
pendent of all the others. By contrast, our samples are autocorrelated, leading
to serious problems knowing how long to continue the sampling. In each of
our samples, the likelihood of a tree must be computed. Even if parts of the
computation can be re-used, this is much more effort than is needed for their
method.

Each step in their sampling goes back one level in the recursion, and amounts
to a decision as to what the next most recent event in the genealogy is. The
sequence of choices that Griffiths and Tavare make corresponds to a sequence
of events in evolution. Going backwards in time, their events are mutations
and coalescences, plus choices of the ancestral nucleotides at each site. Figure
4 shows such a history of events leading to a set of four DNA sequences. It
corresponds to one path through their recursion. Note the difference between
such a history (H) and the genealogy (G) that we sample. Our genealogy has
branch lengths; theirs does not, at least in the simplest case. They specify the
place of occurrence of each mutation, while our likelihoods must sum over all
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possible placements of mutations on the tree. Nevertheless, we can regard their
method as Monte Carlo integration. We can make an equation analogous to our
equation 3.2:

(7.1) L = Prob(D|Θ) = ] Γ ΐ>τob(D\H) Prob(#|Θ),
H

where if is a history of events, corresponding to a sequence of choices in Griffiths
and Tavare's recursion. The histories that they sample have the property that
they must always lead to the observed sequences. Thus Έ>τob(D\H) is, trivially,
always 1. The term Prob(JΪ|Θ) is simply the product of probabilities of the
individual events in H. In the history shown in Figure 4, the most recent event
could have been a mutation in any of the 11 sites in any of the four sequences,
and each could have come from any of three other nucleotides. The particular
event that is shown is a coalescence. There are only two sequences (1 and 3)
that are identical, and thus could have coalesced at this point. The rate of
coalescence for this pair will be l/(2Ne). The next event is a mutation. If we
use, for simplicity, a symmetric Jukes-Cantor model of evolution, the rate of
occurrence of a particular mutation from Cto A at a particular site will be μ/3,
where μ is the total mutation rate per site.

Consider all possible histories if, those that lead to the observed sequences
as well as those that do not. As the most recent event, there are 4x 11 x 3 possible
mutations, and 4x3/2 possible coalescences. The fraction of this probability con-
tributed by the most recent coalescence in Figure 4 is then (l/(2Ne))/(6/(2Ne)
+44μ), which turns out to be l/(6 + 22Θ). Continuing in this fashion we can cal-
culate the probability Prob(//|Θ) of the particular sequence of events in Figure
4 to be

Θ \ / Θ \ / 2 \ / 1 \ / l χ U

The last term is the probability that the initial DNA sequence is as shown in
Figure 4. In effect what Griffiths and Tavare do is to sum over all such histories,
adding up this quantity for all those that lead to the observed data.

Griffiths and Tavare at each stage are considering all possible most recent
events that could have led to the observed sequences. They use importance sam-
pling, by sampling at each stage from among the possible events in proportion
to their rate of occurrence. Thus at the first stage in the above calculation,
they choose among the one possible coalescence and the 33 possible mutations
in proportion to the contributions each would make to the numerator (in that
case l/(2Ne) versus μ/3). This needs the usual importance sampling correction.
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Lineages 1 and 3 coalesce

Site 2 in lineage 2 has mutated A->C

Site 4 in lineage 1 has mutated T->G

Lineages 2 and 4 coalesce

Lineages 1 and 2 coalesce

Started with this sequence

FlG. 4. A history of mutation, coalescences, and ancestral nucleotide choices that could result in a
given set of four sequences. Such histories are, in effect, what Griffiths and Tavare's method samples.
The events are described from a point of view looking backwards in time from the present.

Their sampling is done, as ours is too, at a trial value Θo. Suppose that / is
the probability Prob(iί|θ), unconditioned on the data, and h is the probability
for the distribution from which we sample instead. The importance sampling
correction is

(7.2) = S} [Prob(£|#)] =

and since for h we always have Pτob(D\H) = 1, the likelihood is just the
expectation over h of f/h.

A history H consists of a series of choices. Suppose that history Hi has at
stage j a series of possibilities, with the terms of the Griffiths/Tavare recursion
being the α ^ ( θ o ) Suppose that one that is actually chosen in history Hi has
term 6^(Θo). Then the probability of having taken this choice is

(7.3)
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and the probability of the history is the product of this ratio over all j , the
number of these depending on the number of events in history H{. This is the
expression for h. The distribution / is similar except that it has Θ in place of
Θo, and a wider range of possible events, including those which conflict with the
data. The full set of events at stage j in this distribution we call the

We end up with

(7.4) L(Θ) = Sh

Πj6.j(Θ)

Πjb,j(Θo)

Griffiths and Tavare's method consists of sampling from h to approximate this
expectation by averaging the ratio on the right. A careful reading of their pa-
pers will show that the above expression is precisely what they compute. Thus
their method too can be considered a Monte Carlo integration method with an
importance function.

Given the independence of their samples, and the rapidity with which they
can compute them, one might expect their method to be unequivocally superior
to ours. We are, after all, burdened by more computation and autocorrelated
samples. The difficulty with their method is that the distribution h from which
they sample does not sample from the histories in proportion to their contri-
bution to the likelihood. There is thus some wasted effort. By contrast our
Metropolis-Hastings sampling is supposed to sample from genealogies in pro-
portion to their contribution to the likelihood. We thus have reason to hope
that our method might do better in some cases. The problem is most easily
seen when considering how Griffiths and Tavare's method will handle two DNA
sequences. If those sequences happen to differ by (say) 2 bases, the mutational
events that are sampled will include not only the precise changes needed to
make the two sequences identical, but also all other changes in all other sites.
Thus a great deal of sampling may be needed to sample from the events that
contribute most of the likelihood. Griffiths and Tavare (Griffiths and Tavare
1994c) have worried aloud about this very issue.

8. Population growth. The model of an isolated population of constant
size can be extended by allowing the population to grow exponentially. Griffiths
and Tavare (1994a) have done so, and so have we (Kuhner et al. 1998). Our
program FLUCTUATE is currently in distribution. In a population of effective size
Ne(t) with k lineages, the rate of coalescence is k(k — l)/(4Ne(t)). If the effective
population size grows exponentially at rate r, then when t is the time back from
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the present ("dual time"),

(8.1) Ne(t) = e-rtNe(0)

Taking this into account in the time to coalescence, that density function is
(Kuhner et al. 1998)

(8.2) f(t) =

This can be used to make a counterpart to equation 3.1 straightforwardly. Grif-
fiths and Tavare (1994a) have used this for joint likelihood inference of the
current value of Θ and the growth rate. We have more recently produced a
Metropolis-Hastings algorithm (Kuhner et al. 1998) for a similar model.

Once the mutation rate μ is introduced and the branch lengths of the ge-
nealogical trees rescaled in units of expected mutations per site, the parameters
of the likelihood turn out to be the current value of 4iVe(0)μ, called Θ, and the
growth rate per unit branch length, which is g = r/μ. The likelihood surfaces in
these parameters usually contain long, narrow ridges. At any given value of g,
the estimation of Θ is reasonably accurate, but there is usually a long, narrow,
slightly curving ridge whose top is nearly flat. It runs nearly parallel to the g
axis, but curving gradually upwards as higher values of g are reached.

There turns out to be surprisingly little power to estimate </, except in cases
where the true value of g is large. Even more surprising is the strong bias in
the estimate of g. When data sets are generated from a model that has no
population growth, they much more often cause us to estimate a large positive
g than a negative g. The behavior is so startling as to make us wonder whether
it simply be the result of a program bug.

We can verify that the bias is real by using 8.2, and considering the case
of a sample of size 2 (n = 2). Suppose that we had very long, nonrecombining
sequences. That would allow us to make a precise estimate of the rescaled time
T = μt to coalescence. The likelihood function can be written in terms of g and
θ = 4Ne(0)μ.

(8.3) Prob(7ΊΘ,<7) = e ^ K " 1 ) ] ^ ^

In the case of a sample of size 2, let us assume that θ is known, and set in
8.3 to its true value, and that we are estimating g. There is no explicit formula
solving for the maximum likelihood estimate g in terms of T, but the likelihood
can be maximized numerically. Now imagine a population whose true growth
rate is zero, and whose value of θ is known to be 1. The scaled coalescent time
T for sample size 2 will be distributed exponentially with mean 0.5.
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Centile of coalescence time

FlG. 5. Estimates of growth rate for n = 2 in a data set with a large number of sites, so that
coalescence time can be estimated accurately. For a case where θ is known and the true growth rate is
0, the estimates for different quantiles of the coalescence time are shown. A large bias toward inferring
growth is apparent.

In Figure 5, the maximum likelihood estimate g is shown for quantiles of
that distribution. It is striking that 87% of the time the estimate is positive,
and very strongly positive for small coalescent times (below 0.08 the curve is too
high to fit onto this figure). The other 13% of the time the estimate is negative,
though only moderately so. The bias in g can be seen: it is the average height of
the curve, which is strongly positive. Note that the growth rate scale means that
g = 20 implies growth of the population by a factor of e 1 0 during the expected
time for two samples to coalesce. Even at the median of the coalescence times,
the bias implies that we infer growth by a factor of e2Λ6β during the average
coalescence time. As our Metropolis-Hastings algorithm is not used here, this
calculation is an independent check of the reality of the bias. This bias sounds
like a serious problem for Monte Carlo integration methods. It is, but we are
convinced that it is an equally serious problem for all other methods. However,
although the point estimates are biased, if we make interval estimates using
the usual chi-square approximation to the distribution of the likelihood ratio,
accepting all values of g whose log-likelihood is within 3 units of the peak (in
the more general case where two parameters, g and θ , are being estimated),
the true value of 0 is within the interval almost 95% of the time. In this case
(S. Tavare, pers. comm.) the chi-square distribution is of dubious propriety, as
it has an asymptotic justification but is being used on data from a single locus.
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Nevertheless, the interval based on it seems to behave appropriately. In addition,
the bias becomes much smaller as we add data from more loci (Kuhner et al.
1998).

9. Migration. We can also extend the model to allow for multiple popu-
lations exchanging migrants. This has been done by Nath and Griffiths (1996),
who estimate the migration rates for populations whose values of Θ are known.
We have extended our Metropolis-Hastings method to a two-population case,
to estimate the two values of Θ and two migration rates (Beerli and Felsenstein
1999). This seems to have advantages over methods using statistics like FST,
as those cannot estimate all four parameters independently. An extension to n
populations is in progress.

10. Sequential sampling. In studies of ancient DNA, we have samples
that are not contemporaneous. In studies of the course of viral infection in
a patient (as in HIV) one may also have sequential samples. The coalescent
likelihood approach is readily adapted to such cases (Rodrigo and Felsenstein
1998). Suppose that we have a genealogical tree G* whose branch lengths are
actual times, with some tips not contemporaneous. Let the generation time of
the organism be r. As one proceeds down the tree, there are two possible events,
the entry of a new sample (which has probability 1 at certain known times) or
a coalescence. In place of equation 3.1, we have a product of terms, the j-th. of
which is either

4iVe

or

kj\kj — 1) Uj
(10.2) exp —

T

depending on whether there is a coalescence or a new sample at the bottom end
of interval j . Note that kj is the number of lineages that exist in the genealogy
during interval j . Note also that the chronological lengths of the interval have
been divided by the generation time to convert them into generation times.
The probability of the data given G* also needs a conversion: it depends on the
product of the per-generation mutation rate per site, μ and the generation time
elapsed, which is t/τ.

The result is that we can restate equation 3.2 as

(10.3) Pvob (D\Neτ,μ/τ) = / f(G*\Neτ)Pvob(D\G*,μ/τ).
J
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FIG. 6. Contours of the likelihood surface from a single run of a the RECOMBINE Metropolis-Hastings
sampler with recombination on simulated data. The axes are θ = ANeμ and the recombination pa-
rameter c/μ. The contours shown are 1, 2,3,. . . units of log-likelihood below the peak. The true values
of the parameters are shown by the dashed lines. In this run the value of θ is a bit higher than the
truth, but the true parameters lie well within the contour of 3 log-likelihood units below the peak, which
defines their approximate confidence limits.

so that the two parameters that can be estimated are Neτ and μ/τ. This means
that if we know the generation time r we can estimate Ne and μ separately.
Alternatively if (for example) we know μ, we can estimate Ne as well as the
generation time r. Note that the integration over (2* would involve all possible
labelled histories and coalescent times, but would not alter the times at which
the samples were taken, these being assumed known.

11. Recombination, All of the above cases involve sequences with no re-
combination. They are thus appropriate for mitochondrial DNA but of dubious
value in the nuclear genome. For this reason it has been of great interest to
everyone involved with coalescent likelihood methods to have a way of dealing
with recombination. As usual, we have come in second in the race, as Griffiths
and Marjoram (1996) have an algorithm that infers the likelihood of a sample
with two parameters, 4Neμ and 4Nec, where c is the recombination fraction per
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site. Their method requires substantial computation to adequately sample the
histories. Their method makes use of an "ancestral recombination graph" (Grif-
fiths and Marjoram 1997) originally described by Hudson (1990). This shows
coalescences and recombination events. The latter branch as one goes rootwards,
and at each such branching one needs to specify which sites take each of the
two routes.

We have also produced a program for inferring these two parameters (manus-
cript in preparation). Although the Metropolis-Hastings approach helps concen-
trate the sampling on the relevant genealogies, the number of these is so large
that the computation is still slow. Figure 6 shows contours of a likelihood surface
produced in one of our runs.

There are serious problems ahead, as we need to know how long to run
the Markov chains to get an accurate answer, and this is generally unknown.
However there are also opportunities. One involves using these methods to place
a firm likelihood foundation under the widely used genetic mapping method
known as linkage disequilibrium mapping. A start has been made on this by
Rannala and Slatkin (1998) and Graham and Thompson (1998); our methods
can be used to treat the problem more generally.

12. Natural selection. Until recently it was assumed by everyone that one
could not specify the coalescent for sequences that were under natural selection.
Only some special cases could be solved, for cases of extreme selection (Kaplan
et al. 1988, Hudson and Kaplan 1988, Takahata 1990). Recently Neuhauser and
Krone (Neuhauser and Krone 1997, Krone and Nuehauser 1997) made major
inroads into the problem, in what are perhaps the best papers on the coales-
cent since Kingman. They defined a diagram that branches both downward
and upward. Unlike the similar diagrams that are produced in cases of recom-
bination, these do not have different alleles following different loops. Instead
information flowing upward on the genealogical graph can only pass through
certain branches if the genotype contains one of the selected alleles. In the case
of recombination, at each site the graph is a tree, although not the same tree
at all sites. In the Neuhauser-Krone "ancestral selection graph" the loops are
rather more serious. If one tries to compute Prob(D|G) on them, likelihood must
be propagated simultaneously, not independently, around both sides of a loop.
However, they were able to define a recursion system that could be evaluated
by Griffiths and Tavare's method.

Neuhauser and Krone's work is an enormous and stimulating advance. But it
seems ill adapted to our Metropolis-Hastings approach, since when the selection
coefficient favoring haploid genotype Aλ over genotype A2 is s, for moderate
values of 2Nes the number of loops in the ancestral selection graph can become
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large. Stimulated by it, J.F. has started work on a different method, which
involves carrying out Metropolis-Hastings simulation of the frequencies of the
selected alleles, as well as the coalescent of other alleles within those alleles, and
the "migration" between them that is caused by mutation and recombination.
There are no results to report yet.

13. Software distribution. Our package LAMARC (which stands for Like-
lihood Analysis by Metropolis Algorithm for Random Coalescents) is available
free from its Web site:
ht tp: / /evolut ion.genet ics .Washington.edu/ lamarc.html
as C source code plus PowerMac and Windows executables. It is readily com-
piled on workstation C compilers (except for the cc compiler on SunOS sys-
tems). As of this writing four programs were in distribution: COALESCE, which
analyzes a single population of constant size, FLUCTUATE, which analyzes expo-
nentially growing single populations, MIGRATE, which analyzes two populations
exchanging migrants, and RECQMBINE, which analyzes a single population of con-
stant size with recombination. More programs and more features will probably
be available by the time you read this.

14 An object-oriented fantasy. Even if we could solve some of the prob-
lems of how long to run the Markov Chains, the sampling approach has one
other serious problem. We like to call it "the 28 programs problem". Each one
of these Markov Chain Monte Carlo programs is enormously difficult to write.
It takes each of us about 2 years to write and debug one of them. And yet,
the present programs are highly limited. We have programs that add one com-
plication (population growth, migration, recombination) but do not combine
these in the same program. And yet there are more complications (such as nat-
ural selection, speciation, and gene conversion) that need to be considered. Any
user may want to pick some particular combination of, say, 8 complications. Do
we need to resign ourselves to spending the next 500 years writing all possible
programs?

There is one way out. Object-oriented programming methods (such as are
embodied in C++, Objective C and Java) allow a program to self-assemble in
response to a user's requirements. We therefore intend to try to create such an
environment. The user would select which combination of evolutionary forces,
historical events, genetic situations, and population structure were needed. The
program would then use only those classes and subclasses needed to run that
particular combination. Thus more like 8 programs than 28 need to be written.
The issue of chain length remains, and we as yet have no experience with the
serious issue of user interface - how do we represent the results of runs that have
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many parameters, for example?
Nevertheless one may fantasize about an "evolutionary genetics black box".

The user puts in the data and the model, and out come likelihood inferences
about the parameters. One still needs to know population genetic theory, of
course, to comprehend the model. But a large fraction of the kind of work that
has filled theoretical journals in population genetics may become obsolete if this
fantasy can be realized. Many papers start with a theoretical model, pose the
question of what is the expected value of some statistic (such as the probability
of monomorphism, or of fixed differences between populations, or the variance
of heterozygosity), and after much blood, sweat, and tears arrive at a power
series, which usually remains unused by those with data. We may hope that
this era can be succeeded by one where the same effort can be redirected to
formulating the model and improving the computational methods.
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