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ON A MARKOV MODEL FOR CHROMATID
INTERFERENCE

BY HONGYU ZHAO AND TERENCE P. SPEED

Yale University School of Medicine and University of California, Berkeley

Meiotic exchange between homologous chromosomes takes place after the
formation of a bundle of four chromatids. Crossovers are precise breakage-and-
reunion events. Random strand involvements (no chromatid interference) and
random distribution of crossovers (no chiasma interference) are usually assumed
in analyzing genetic data. In this paper, we discuss a Markov model for chro-
matid interference. Closed form expression for the probability of any multilocus
recombination/tetrad pattern is derived. Both chromatid interference and chi-
asma interference can be studied together using this model. In particular, we
discuss chi-square models for chiasma interference.

1. Introduction. In diploid cells, each chromosome is paired with its ho-
mologue during meiosis . Each member of a given homologous pair has two
identical sister chromatids, so that each synapsed paired structure consists of
four chromatids. Usually one or more crossovers occur among the four chro-
matids. A crossover is a precise breakage-and-reunion event occurring between
two nonsister chromatids.

The types of genetic data considered here are single spore data, in which
the products of a single meiosis are recovered separately, and tetrad data, in
which all four meiotic products are recovered together. A tetrad consists of four
spores, each of which is haploid, encased in a structure called an ascus. In some
organisms, such as Neurospora crassa (red bread mold), tetrads consist of four
spores in a linear order corresponding to the meiotic divisions; these are called
ordered tetrads. In other organisms, such as Saccharomyces cerevisiae (baker's
yeast), the four spores are produced as a group without order and are called
unordered tetrads. Griffiths et al. (1996) covers relevant genetic background.

In this paper, genes (markers, loci) are denoted by script letters. For exam-
ple, we use A and B to denote two genes. Alleles of A are denoted by A and
a, while alleles of B are denoted by B and b. Suppose that A and B are on the
same chromosome arm, and consider a diploid cell having AB and ab on ho-
mologous chromosomes. There are four possible products at these loci resulting
from meiosis of this cell, namely, AB, ab, Ab, and aB. The first two are called
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parental types or nonrecombinants, the other two types, Ab and aB, are called
recombinants. If two markers are recombined by crossovers in a meiotic product,
then during meiosis an odd number of crossovers must have occurred between
the two markers on the strand carrying them. The proportion of recombinants,
r^^, is called the recombination fraction. Because recombination fractions are
not additive, genetic (or map) distance is used as an additive measure of distance
between loci. Genetic distance between two markers is defined as the average
number of crossovers per strand per meiosis between these markers. The unit
of genetic distance is Morgan (M). Two markers are 1M apart if on average
there is one crossover occurring on a single strand per meiosis between these
two markers. In practice, centiMorgan (cM = 0.01M) is more commonly used
in genetic mapping.

The occurrence of crossovers cannot be observed directly and has to be in-
ferred from observed recombination events. In the case of single spore data, a
given meiotic product may be scored as recombinant or non-recombinant for
each pair of markers. The map distance between two markers can be estimated
from the observed recombination fraction. In the case of unordered tetrad data,
there are three possible observed outcomes for each pair of markers: parental di-
type when all four strands are non-recombinants, tetratype when exactly two of
the four strands show recombination between the two markers, and nonparental
ditype when all four strands are recombinants. The map distance between two
markers can be estimated from the observed proportions of these three tetrad
types. In the case of ordered tetrads bearing one marker Λ with alleles A and
a, there are six distinguishable configurations:
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Configurations 1 and 2 are called first division segregation (FDS) patterns and
configurations 3 to 6 are called second division segregation (SDS) patterns.
Because of random spindle to centromere attachments during meiosis, configu-
rations 1 and 2 have the same probability, and the four configurations showing
SDS pattern also have the same probability (Griffiths et al. 1996). The map
distance between a marker and the centromere can then be estimated from the
observed SDS proportion.

To estimate map distance from the observed data, a model is needed which
connects the process of crossover to the observed outcomes. Any model has to
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consider two aspects of crossover that are relevant to the observed recombi-
nation outcome: the distribution of crossover events along the bundle of four
chromatids, and the pairs of nonsister chromatids involved in crossovers. To
distinguish crossover events occurring on the four strand bundle and crossover
events on single strands, we describe crossover events on the four strand bun-
dle as chiasmata (singular: chiasma), and crossover events on single strands as
crossovers. Chiasma interference refers to non-random distribution of chiasmata
on the four strand bundle, whereas crossover interference refers to non-random
distribution of crossovers along single strands. In this paper, we use the word
random in the sense that all outcomes are equally likely. There is no chromatid
interference (NCI) if any pair of non-sister chromatids are equally likely to be
involved in any chiasma, independent of which pairs were involved in other chias-
mata. It is possible that there is chiasma interference at the four strand bundle,
but because of the presence of chromatid interference, there is no crossover in-
terference on single strands, see Zhao and Speed (1996) for a model exhibiting
this phenomenon.

With virtually no restrictions on the chiasma process, Speed, McPeek and
Evans (1992) derived the constraints on multilocus recombination probabilities
for single spore data under the assumption of NCI. It was shown by Zhao,
McPeek and Speed (1995) that the assumption of NCI also imposes constraints
on multilocus tetrad probabilities. Based on these constraints, a statistical test-
ing procedure for NCI was proposed in the last mentioned paper and applied to
data from several organisms. Though there was an excess of two-strand double
recombinations in some organisms, no strong evidence was found for chromatid
interference.

Crossover interference has been observed in almost all organisms. The pres-
ence of one crossover usually inhibits the formation of crossovers in a nearby
region. Fisher, Lyon and Owen (1947) modeled crossovers as a renewal process;
that is, crossovers along a single strand were assumed to be formed as a regular
sequence starting from the centromere, with the length between two adjacent
crossovers always following the same distribution. Centromeres are constricted
regions of nuclear chromosomes, to which the spindle fibers attach during divi-
sion. Mather (1938) appeared to be the first one to propose the above sequential
model for the chiasma process. Other mathematical models have also been pro-
posed to model crossover interference (McPeek and Speed 1995). However, the
biological nature of crossover interference is still not well understood.

In this paper, we discuss a Markov model for chromatid interference. There
exist closed form expressions for joint recombination and tetrad probabilities un-
der this model. Closed form expressions still exist when this model is combined
with a class of chiasma interference models, the chi-square model (Zhao, Speed
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and McPeek 1995), thus allowing joint modeling of both types of interference.

2 A Markov model for chromatid interference. The Markov chro-
matid interference model discussed here was first introduced and studied by
Weinstein (1938). Later studies on chromatid interference (Carter and Robert-
son 1952, Sturt and Smith 1976 and Stam 1979) essentially used Weinstein's
model.

Weinstein's model assumes that chiasmata occur according to a point pro-
cess originating from the centromere, and that the choice of nonsister chromatids
involved in one chiasma only depends on the pair involved in the previous chi-
asma. Thus it is a Markov model. The two pairs of sister chromatids are labeled
as to1, w2 and m1, ra2. If w1 and ra1 are involved in the A th chiasma, the chances
of the four nonsister pairs (wι,mι), (wι,m2), (to2,?™1), and (w2,m2) being in-
volved in the (fc-fl)th chiasma are denoted by α, /3, /?, and 7, respectively. That
is, the conditional probabilities of two, three, and four-strand double chiasmata
are α, 2/?, and 7 for any two consecutive chiasmata. Under this model, if a
strand is involved in one chiasma, the chance that it will be involved in the next
chiasma is 77 = α + /?, and the chance that it will not be involved is/3 + 7 = 1 — η.
So for a single strand, the degree of chromatid interference is determined by η.
Different values of (α, 2/3,7) c a n correspond to the same η. When there is no
chromatid interference, (α,2/?,7) = (4? 2'4) a n c ^ ^ = 2' ^ u * a n ^ chromatid
interference model with parameters (α, 2/3,7) satisfying a + β = | will be indis-
tinguishable from a no chromatid interference model if only single spore data
are available. On the other hand, different sets of (α, 2/?, 7) that correspond to
the same η value can be distinguished using tetrad data.

Previous work on this chromatid interference model has been confined to the
two-locus case. Our aim is to derive general expressions for the probabilities of
recombination or not, across a set of loci, and the analogous multilocus tetrad
probabilities. We consider single spore data and tetrad data separately.

2.1 Single spore data. We assign a state "y" or "n" to any locus on any
one of the four strands in a bundle as follows. If there has been at least one
chiasma between the centromere and that locus, then a (locus, strand) pair is
assigned state "y" if the strand was involved in the last chiasma before the
locus; otherwise the (locus, strand) pair is assigned "72". If no chiasmata have
occurred between a locus and the centromere, it can be shown that assigning
the state "y" or "n" with probability \ fits in well with our development.

Suppose that A and B are two loci on the same chromosome in the order
CEN — A — B. For any given strand, there are four possible joint states, (y, y),
(y,n), (n,y) and (n,n). Consider the case in which A is in state y and that
k > 1 chiasmata have occurred between A and B. A given strand could have
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been involved in an odd (o) or an even (e) number of the chiasmata occurring
between A and β, i.e., A and B may have recombined or not, on that strand.
Given A is in state y on a strand, let pθy,y{k) be the conditional probability that
B is in the state y and that an odd number of the k > 1 chiasmata between A
and B involve this strand. Define py>n(A;), Py>y(&), and py?n(&) in similar fashion,
where e denotes an even number. If A is in state n, p£>y(fc), Pn,n(^)> Pn,y(k), a n d
Pen}n(k) c a n b e s i m i l a r l Y defined. Group pgιtf(fc), pg|Π(fc), ί£,y(fcj, and p£fΠ(fc) into
a 2x2 matrix, define

τl =

and similarly,

rpO _ Pl,n(k)

Recursive relationships among these quantities can be established as follows.
Suppose that B is in state y on one strand, and that A and B are recombined
on that strand after k chiasmata have taken place on the bundle between A
and B. If a (k + l)th chiasma on the bundle occurs between A and β, then the
strand has a chance η of being involved in it, and 1 — η of not being involved. In
the first case, B will remain in state y and A and B will not be recombined on
that strand; in the second case, B will change to state n and A and B will still
be recombined on that strand. Other cases can be considered similarly, and we
can thus derive the following relationship:

/ 0 0 η l - η \

1-η η 0 0

η 1 -η 0 0

v 0 0 I-77 η )

Similarly, if A is in state n, with p°n,y(k), j£fΠ(fc), pe

n,y(k), and pe

n}Tl(k) defined as
above, similar recursive relationship can be established.

Let py

Λ (or p1^) be the probability that A is in state y (or n) on a given strand
and sj, and Sβ be the states at A and B. From the definitions of the Pr

SΛ,SB{k),
after k > 1 chiasmata have occurred along the four-strand bundle between A
and β, the chance that A and B are recombined on that strand is
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and the chance that A and B are not recombined on that strand is:

Let δ = 2η — 1, define

and i ^

y ( l )δ - ^ 2

General expressions of Ύ\ and T^ can be obtained through the above recur-
sive relationships among the Pr

SΛySB{k) as summarized in the following theorem.
The proof is given in section 6.

Theorem 1. When k is even,

and T° = ί(M - No),

and when k is odd,

and T° = i(M - Nx).

For a strand chosen at random, A has an equal chance to be in state y or n.
The probability that A and B are recombined is | ( 1 — £2) for k even and | for
k ood.

This result was proved by Weinstein (1938) and Sturt and Smith (1976). Our
approach, however, is different, and easily generalizes to the multilocus case, as
illustrated later. We now consider three special cases: (a) η = | , (b) η = 0, and
(c) η = 1. Case (a) includes no chromatid interference. Case (b) implies that a
strand is never involved in two consecutive chiasmata, i.e., that only four-strand
double chiasmata occur. In case (c), all chiasmata involve the same two strands,
i.e., only two-strand double chiasmata occur. We calculate T^ for each case.
Case (a):

I I

ff
4 4
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Case (b): when k is even,

τ ί = ( i ( 1 " < -

and when k is odd,

Case (c): when k is even,

χi =

and when k is odd,

The recombination fraction is: case (a) r = | for k > 1; case (b) r

| ( 1 — (—1)2) for k even and | ( 1 — ( — 1 ) ~ ) for k odd; and case (c) r = 0 for

even and 1 for k odd.

Suppose <?fc is the probability that there are k chiasmata between Λ and
and let

Then given that Λ is in state s.4, the value oίp°A Sβ is the conditional probability

that B is in state Sβ and that Λ and B are recombined. We can similarly define

Define p ^ and p\ as above, the chance that A and # are recombined is
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and the chance that they are not recombined is

The recombination probabilities can be computed explicitly for some simple
chiasma processes. Consider the Poisson chiasma process model. Under this
model, the number of chiasmata between A and B is Poisson distributed, qk =
e~2d(2d)k/k\, where d is the genetic distance between A and B. There is a factor
2 because each chiasma involves two of the four chromatids, thus the average
number of crossovers on a single strand is half the number of chiasmata on the
four strand bundle. The matrix T^g is

1. / x y - z\
4\y + z x / '

where

— (η — φ)e

Φ

y = 1 _ -4rf(l-,)

z =
Φ

and φ =
Therefore, for any </>, the recombination probability r is |{2 — (e-

2d(ι+Φ) -\-
e " 2 ^ 1 " ^ ) } . Consider the above-mentioned three special cases. For case (a), r is
| ( l - e - 2 d ) ; for case (b), r is f {l-cos(2d)e-2 ί /}; and for case (c), r is \(l-e~4d).

Now consider three markers, A\, A<ι, and A3. Given A\ is in state θi, and
there are k\ and k2 chiasmata in the two intervals, denote the probability that
A3 is in state s3 and that the strand is involved in an odd number of chiasmata
in both intervals (both intervals show recombination) as p°s°Sz{kι,k2). Define
the matrix T ^ ^ f c i , k2) as

Considering the state of A2, denoted by s2, and using the Markovian prop-
erty of the model (that the choice of strands involved in the next chiasma
depends only on the pair involved in the previous one), we obtain

PZiKki) = P°y,a2=y(ki)po

S2=yty(k2) + p ; s 2 = n ( f e i K = n , # 2 ) .
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Similar relationships hold for the other />,;%,(fci,fc2). Writing this in matrix
form, we have

Other T^^3(fci,fc2) can be defined similarly, where z'i,z2 is either 1 or 0
corresponding to whether two genes are recombined or not over that interval.
We have

Let pι\l\(kι, k2) be the conditional probability that the recombination pat-
tern for A1A2A3 is (z'i,z2) given that there are kx and k2 chiasmata in the two
intervals. Then P^Ma^i?^) can be calculated as:

(\

Let qkuk2 be the chance of fci and fc2 chiasmata in the two intervals. Denote

P%Λ'ΛJ a s *^ e probability that the recombination pattern is (ii,z2), we have

For any / + 1 markers, Aι, A2,... , *4/+i, an explicit expression exists for the
probability of any recombination pattern i = (h,^2, ik)-, where ij = 0, or
1 according to whether there is no recombination or recombination in the jth.
interval. Define k = (&i,A;2,... ,fc;) and let q^ be the probability of there being
fci, fc2,... , kι chiasmata in these / intervals. The probability of recombination
type i is denoted p\. The general result for single spore data involving / + 1
markers is:

Theorem 2.

where the T matrices are defined as for the two marker case, and the sum is over

allk = (&i,fc2,... ,fcj).

Given the joint chiasma probabilities on the four strand bundle across stud-

ied intervals, <&, Theorem 2 allows us to obtain a closed form expression for any

joint recombination probability.
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2.2. Ordered tetrad data. For the simplicity of our discussion, we assume for
the moment that the tetrads are ordered. Unordered tetrads will be discussed
in the next subsection. For a tetrad ordered from top to bottom, marker A
with two alleles A and a can have six distinguishable types as illustrated in the
introduction section.

For the moment, assume that there is at least one chiasma between the
centromere and A. Then for each type, tetrads can be further divided into
subclasses according to the two strands involved in the last chiasma before A.
Each possible pair can be represented by (/«;,/m), where lw = 0 if the top one
of the two strands bearing A was involved in the last chiasma, lw=l otherwise,
and, / m =0 if the top strand bearing a was involved in the last chiasma, lm=l
otherwise. Thus, we can classify each locus into 6x4 states according to the
order type of the strands, and according to the nonsister pair involved in the
previous crossover. Each state is written as [/ι, (lw, /m)], where h is the order type
of the four strands 1, 2, 3, 4, 5, or 6, and (lw,lm) defines the strands involved
in the last chiasma before A.

Consider two markers A and B. Suppose A is in some state SA , say [1, (0,0)],
and let t*Λ'8B(k) be the conditional probability that B is in state s& after k
chiasmata between these two markers. For each SB=[h,(lw,lm)], tSΛiSB(k + 1)
is a linear function of the t*A'*B(k). For example, in order for B to be in state
Sβ=[l, (0,0)] after fc + 1 chiasmata, B must be in one of the four states [6, (0,0)],
[6,(0,1)], [6,(1,0)], or [6,(1,1)] after k chiasmata; these states have chance /?,
7, α, and /?, respectively, to change to [1,(0,0)] after the (A;+l)th chiasma. So
fM,[i,(o,o)]()t + i) is equal to

Number the 24 possible states in the following way,

( 1 , 2 , . . . , 2 4 ) = ( [ 1 , ( 0 , 0 ) ] , [1 , ( 0 , 1 ) ] , . . . , [6, ( 1 , 0 ) ] , [6, ( 1 , 1 ) ] )

and let T(fc)=(ί< J '(ib)), where <•'•>(*;),t,.7 = 1, . . . ,24, is as defined above. We

have Ύ(k + 1) = UT(fc), where U is the following 24x24 matrix.
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Therefore, T(k) = U fcT(0) = Ufc because T(0) = /24x24 Matrix T(Jfe) can
be divided into 36 4x4 submatrices as follows:

(Ύx'\k)

Ύ2'\k)

T3'\k)
T4-1^)
T5-1^)

Tli2(fc)
Ύ2 2(k)
T3'2(k)
T4<2(k)

T 5 2(fc)
Ύ6 2(k)

T 1 - 3 ^)

T2'3(k)

Ύ3'3(k)

T4'3(k)

T 5 3(fc)
T 6 3(fc)

Ύι'\k)

Ύ2'\k)

Ί3'4(k)
T4'4(k)

Ύ5'4(k)

Ύ6'4(k)

T x 5(fc)
T 2 5(fc)
T3'5(k)
Ύ4'5(k)

T 5 5(fc)
T6'5(k)

Tlβ(k)\

T2'6{k)

T3'6{k)
Ύ4'6(k)

Ύ5β{k)

T6'6(k)J

The submatrix T / ι Λ'hβ(fc), h^ hβ = 1,... ,6, is the transition matrix from
type hj\ at Λ to type hβ at B given k chiasmata between them. For example,
T 1 ' 1 ^ ) is a 4x4 matrix with each entry being the conditional probability that,
given A is in state [1, (/^, /^)], B is in state [1, (/£, l2

m)} after k chiasmata.
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Let p,4 = (p\,... ,p3f)' ^ e the initial distribution of states at A, and let
S = (p.*,... ,P.Λ) and P(fc) = ST(ife) = (phJ(k)). Then p^(k) is the joint
probability that A is in state i and B in state j given the occurrence of k
chiasmata between them. The matrix P(fc) can be also divided into 36 4x4
submatrices, and labeled as PhΛ'hB(k). It is straightforward to obtain from P(fc)
the probability that A and B show parental ditype, tetratype and nonparental
ditype with k chiasmata between them. For example, the chance of parental
ditype with k chiasmata between the markers is the sum of all entries in the
following matrices:

P M ( * 0 , P 2 | 2 (*0, P3'3(fc), P4'4(fc), P5'5(fc), P6'6(fc).

Suppose there is chance qk of there being k chiasmata between A and B and
define T=^qfcT(fc) a n d P = E % P ( ^ ) Then thj is the conditional probability
that B is in state j given A is in state z, whereas p1^ is the joint probability
that A is in state i and B in state j .

Using arguments similar to the single spore data case, we may obtain general
results for multilocus ordered tetrads with / + 1 markers, A\,A2, . , «4/+i, or-
dered starting from the centromere. Let k = (fci, k2,... , kι) and denote by q^ the
joint probability of having k{ chiasmata between A{ and *4;+i, i = 1,... , /. Sim-
ilarly, write h=(/ii,/i2, ,^/+i), where h{ is the order type of the zth marker.
If p ^ be the initial distribution of the state at A\, then we have

Theorem 3. The multilocus probability of tetrad type h is

k

If there is no chiasma interference, this probability can be factored as

In the above discussion it is assumed that there is at least one chiasma before
4̂χ, so the state of A\ can be defined by the order type of the strands and the

pair involved in the previous chiasma. The above results still hold if each pair
is assigned the same chance of being involved in the previous chiasma when no
chiasmata have occurred before A\.

2.3. Unordered tetrad data. To analyze unordered tetrads, the most common
type of tetrad data obtained from genetic experiments, we also begin with two
markers A and B. Recall that there are three possible types of unordered tetrad
data with two markers. If the unordered tetrads are thought to be generated
from ordered tetrads but with the order lost, the parental ditype would result
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from ordered tetrads with order types at two markers being one of (1,1), (2,2),
. . . , (6,6); nonparental ditype would result from ordered tetrads with order
types being one of (1,2), (2,1), . . . , (6,5); and tetratype tetrads would result
from all other order pairs. Let p ^ be the initial distribution at A, and write
pp(A;),pnp(A;), and p\k) as the probability of parental ditype, nonparental ditype,
and tetratype with k chiasmata. Then

f{k) = (pJiT1^*) + P3tT2 2(fc) + • + p6

AT
6<e(k))l',

p\k) = ( p ^ f c ) + • + Tιfi(k)) + ••• + P ^ T 6 ' 1 ^ ) + + Ύ6'\k)))l'.

Define u = ( | , | , | , | ) , it can be shown that:

Suppose now that we "order" unordered tetrads by always assigning order
type 1 to A and order type 3 to B for tetratype data. There will only be three
possible ordered tetrad types, (1,1), (1,2) and (1,3) for parental ditype, non-
parental ditype and tetratype. Then pp(k)^ pnp(k), and pt(k) can be shown to be:
f = i i T 1 ' 1 ! ' , / ^ - u T 1 ' 2 ! ' , andp* - 4UT 1 ' 3 ! ' , whereTh*>h* = Σkqkΐh^h*(k)
is as defined in the previous subsection.

For unordered tetrads with / + 1 markers, we may assign the order type to
each marker by assigning order type 1 to A\. If there are no tetratypes among
the / intervals, the order types of other markers are uniquely determined, either
1 or 2. If Aj and Aj+i is the first pair starting from A\ having tetratype, we
assign order type 3 to *4j+i. There will be no ambiguity of assigning order types
afterwards since the order type of the four strands is fixed after this step. A
one to one correspondence can be established between unordered tetrad types
and ordered tetrad types from this procedure. Let h = (l,/i2, . ,/*H-I) be
the ordered tetrad type corresponding to the unordered tetrad type g. Then
the probability of type g is p g = ph when there is no tetratype among all /
intervals, and pg = 4ph otherwise.

The matrix U and its powers play an important role in the above discussion,
but no simple expression for \Jk has been obtained. In the case of unordered
tetrads with two markers, explicit expressions for ^(A;), pnp(k), and p^k) do
exist.
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Theorem 4. Let a=a + η, cx = 3 + a, c2 = — 1 + a, and c3 — yj— 3 + 6α + α2

(c$ could be a complex number). Then

2 1 1
P\k) = Q - (o)kT^r((Cl ~ C 3 )( C 2 + C3) fc+1 - (ci + C3)(c2 -o Δ ~

When k > 0 is even,

When k is odd,

The proof is given in section 6. The number C3 could be complex, but pl{k)
is always a real number. Note that when (α,2/?,7) = ( | , | , j ) , i.e., there is no
chromatid interference, α = | and p\k) = | ( 1 — (—^)k). This well-known result
was first proved by Mather (1935). When α + 7 = 1, i.e., consecutive chiasmata
always involve the same two strands or four strands, pt(k) = 1 when k is odd
and 0 when k is even. The probability that two markers are recombined on
a single strand can also be derived from Theorem 4. Because one half of the
strands on tetratype tetrads are recombined, and all strands on nonparental
ditype tetrads are recombined, the recombination fraction r is \pι{k) +pnp(k) =

| {1 - (fP(k) - pnp{k))}. Note that r is \ when k is odd, and | ( 1 - (a - 7)5)
when k is even. This result was proved earlier for single spore data by another
approach.

3 Data Analysis. We fit the Markov chromatid interference model to un-
ordered tetrad S. pombe. The data were kindly provided by Peter Munz. In this
organism, chiasma interference is thought to be absent, the chiasma process can
be assumed to follow the Poisson process. The parameters α, 2/?, 7, and genetic
distances were estimated using maximum likelihood. The estimates of α, 2β
and 7 are summarized in Table 1. Four markers on chromosome / (leul, his7}

mat, hisδ) were used in cross XB1050. A total of 277 tetrads were genotyped. In
Table 1, XB1050-1 used markers leul, hisΊ, and mat, whereas XB1050-2 used
markers hisΊ, mat, and hisδ. Seven markers on chromosome // (mat, uraδ, hisS,
tpslS, leuS, adel, Iys4) were used in cross XC2 which had 458 offspring. XC2-3
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TABLE 1

Estimates of a, 2β, and 7 (and their standard errors) from experimental crosses using S. pombe. The
data were provided by Peter Munz.

Cross

XB1051-1
XB1051-2
XC2-3
XC2-5

a

0.34
0.14
0.25
0.26

sea

0.03
0.03
0.02
0.02

2/3

0.46
0.77
0.45
0.48

se-ίβ

0.02
0.02
0.02
0.02

7
0.21

0.09
0.30
0.26

seΊ

0.03
0.02
0.02
0.02

used markers tpslS, mat and leuS. XC2-5 used markers leuS, adel and Iys4 The
standard errors were calculated from the numerical approximation of the Fisher
information. Except for XB1051-2, estimates of α, 2/?, 7 are close to | , | , | ,
which correspond to no chromatid interference.

4. Incorporating chromatid and chiasma interference. The chiasma
process has to be specified if we are to fit this chromatid interference model
to single spore and tetrad data. Due to the difficulty of separating chromatid
interference from chiasma interference and the fact that chiasma interference is
observed in many organisms, a suitable model for the chiasma process is essential
to the estimation of α, /?, and 7. If the chiasma model is misspecified, the
estimates of α, /?, and 7 might indicate the presence of chromatid interference
even when it is, in fact, absent.

Among different chiasma process models, the chi-square model has been
found to give good fit to data from a variety of organisms (Zhao, Speed and
McPeek 1995). The chi-square model can be traced back to Fisher, Lyon and
Owen (1947) and has generally been of interest due to its mathematical tractabi-
lity. Recently the chi-square model was suggested as a plausible biological model
by Foss et al. (1993). However there are now doubts concerning the appropri-
ateness of this motivation (Foss and Stahl 1995). The model is represented in
the form Cx(Co)m, as follows: assume that chiasma intermediates (C events)
are randomly distributed along the four-strand bundle, and every C event will
either resolve in a chiasma (Cx) or not (Co). When a C resolves as a Cx, the
next m C's must resolve as Co events, and after m Co's the next C must resolve
as a Cx, i.e., the C's resolve in a sequence Cx(Co)mCx{Co)m . To make
the process stationary, given a set of C events, the leftmost C has an equal
chance to be one of Cx(Co)m. We say a C event is in state k if it is the fcth C
after a Cx, i.e., the state "0" means that this C event is a Cx and "fc" (k φ 0)
means this C event is the fcth Co after a Cx. If we start counting C events
from the leftmost marker, then the state of the nth C, $„, forms a homogeneous
Markov Chain.
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Under the chi-square model, the state of a marker along the chromosome
can be defined to be the same as the state of the last C event before the marker.
If we also consider strands involved in each chiasma, a joint state of a marker A
can be defined as (r,"y") if the last C event before A is in state r and that this
strand was involved in the last Cx event. Marker A has joint state (r,"n") if the
last C event before A is in state r and this strand was not involved in the last
Cx event. Given A being in state sj, and there being k chiasmata between A
and #, define P°Ai8B(k) a s *he conditional probability that B is in state Sβ and
t]jat the strand is involved in an odd number of chiasmata. Define PlAt8B(k) a s

the conditional probability that B is in state Sβ and that the strand is involved
in an even number of chiasmata. Recursive relationships among the P°At8g{k)
and Pe

SA,SB(k) can be easily established. For example, under the CxCo model,
the following relationships hold:

tf*Wfc
^ O O O O O r / O l -

1 0 0 0 0 0 0 0

0 1 — 77 0 η 0 0 0 0

0 0 1 0 0 0 0 0

0 η O l - r / 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 O l - r / 0 η

0 0 0 0 0 0 1 0 /

These relationships can be used to derive closed form expressions for mul-
tilocus recombination probabilities. Because the techniques are essentially the
same as before, we omit the details here. Similarly, closed form multilocus tetrad
probabilities can be derived under this Markov chromatid interference model
and the chi-square chiasma interference model.

5. Discussion. In this paper, we studied a Markov model for chromatid
interference. Although both chromatid and chiasma interference are commonly
assumed to be absent in analyzing genetic data, crossover interference has been
observed in almost all organisms studied, including humans. Thus a reasonable
mathematical model, which can capture the main features of the genetic data,
may help the understanding of the underlying biological mechanisms and the
construction of genetic maps.

Genetic map functions, r = M(d), are often used to relate the unobservable
map distance (d) to the observable recombination fraction, r, from single spore
data. Map functions are also used to infer the map distance between the cen-
tromere and the marker to the proportion of second division segregants (SDS)
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at the marker using ordered tetrad data. Most of the map functions proposed in
the literature were constructed to deal with crossover interference, and some do
fit data well. But when there are more than three markers present in the data,
multilocus recombination/tetrad probabilities are not, in general, uniquely de-
termined by the map function. Map functions under different chromatid and
chiasma interference models were compared in Zhao and Speed (1998). For sin-
gle spore data, it was found that recombination fraction is no longer a monotone
function of map distance when both types of interference are present. In gen-
eral, there is no one to one correspondence between the map distance and the
recombination fraction, unless the NCI assumption holds. The presence of chi-
asma interference diminishes the effect of chromatid interference. For ordered
tetrad data, for different chromatid interference models, the SDS proportion
never exceeds | under the Poisson model. When consecutive chiasmata always
involve the same pair or different pairs of strands, the SDS proportion never
goes above | . When consecutive chiasmata always involve three strands, except
for the Poisson model, the SDS proportions all rise above | . As with single
spore data, in general, there is no one to one correspondence between the map
distance and the SDS proportion, unless NCI holds. Therefore, in the presence
of genetic interference, extra caution should be taken when gene centromere
distance is estimated from the SDS proportion, especially when the observed
SDS proportion is large.

Both the Markov chromatid interference model and the chi-square model
discussed in this paper are based on discrete time Markov chains, which are
equivalently definable as one-dimensional random fields. Therefore, there is no
preferred directonality in theory for both models.

The chromatid interference model discussed in this paper relies on the simpli-
fied assumption that the interference parameters do not depend on the distance
between two crossovers. When the distance increases, the degree of interference
might decrease. Recall that for single spore data, chromatid interference is de-
termined by α — 7. Carter and Robertson (1952) and Stam (1979) proposed
that a — 7 is a function g(t) of the distance between two consecutive chiasmata,
and considered the special form g(t) = g(0)e~ct. For tetrad data, α, /?, and 7
have to be specified as a function of the distance. A simple model is

a(t) = α(0)e-c t + | ( 1 - e'ct),
β(t) = β(0)e-ct + \(l-e-ct),

Ί(t) = 7 (0)e- c ί + 1(1 - e" c ί ).

However, no closed form expressions for multilcous probabilities have been

obtained for this model.
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Like any mathematical model, the models discussed above have to be tested
and validated using real data sets. A variety of goodness-of-fit tests can be
performed to examine whether the model provides a reasonable fit to the data
sets (Read and Cressie 1988).

Because the existence of crossover interference has been well established
in many organisms, chromatid interference should be considered together with
chiasma interference. Although two types of interference are not separable using
single spore data (Zhao and Speed 1996), they can be distinguished from tetrad
data as demonstrated in this paper. When chromatid interference is present,
genetic mapping assuming the absence of chromatid interference can lead to
incorrect genetic maps. In such cases, the model studied in this paper provides
a useful approach to incorporating chromatid interference.

6. Proofs.
6.1. Proof of Theorem 1. Define Sfc = T£ + T°k and Όk = T\ - T°k. We have,

= sk[Λ ' ' „ „ ' J = s f c u ,

and

Thus,

Sk = S0U
f c and Όk = D0V

fc,

where

no _ f + 1 0
0 +1

and

It is easy to show that

U

n _ τ i To / - 1 0
Do - T o - T o - I Q _χ

_ l fl + (2η-l)kl-(2η-l)k

Ί { k k
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When k is even,

When k is odd,

— (1 — 77)$ V ηδ~

It is then straightforward to arrive at the expressions for Ύ\ and T£.

6.2 Proof of Theorem 4- Without loss of generality, assume Λ is in state
[1,(0,0)]. Let pSB(k) be the conditional probability that B is in state Sβ given
k chiasmata between Λ and B. Define

p(k) =.

np(k) =

U(k) =

t2(k) = p[3,(0,l)](fc) + p[4,(0,l)](fc) + p[5,(0,l)](fc)

t3(k) =

Theorem 4 can be proved using the following recursive relationships:

p{k + 1) = /?<i(fc) + 7<2(fc)

t2(k + 1) = np(fc),

<3(fc + l)=p(fc),
<4(A; + 1) = 7#i(Ar) + /?<2(fc) + βU{k) + at4(k).
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