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ABSTRACT
A general family of distributions with mutually orthogonal parameters is

introduced. The mean parameter is estimated by using the score function,
and the dispersion parameter by using the projected estimating function of
the score function. Both the estimating functions attain the minimum of the
sensitivity criterion due to Godambe (1960, 1976).
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1 Introduction

For many distributions in common practice, the parameter has two types
of components. One of them represents the mean, and the other the dis-
persion. The mean is usually estimated by using the score function, which
is essentially free from the remaining component. This fact is a theoretical
background of the familiar generalized linear model (GLM).

The aims of the present paper are to define a family of distributions
having the above properties in a general way, and also to discuss the separate
estimation of each component of the parameter.

2 Ruled exponential family

Consider first a density function of a random variable x on Rn. For simplicity
we will not distinguish a random variable and a sample of size 1, unless any
confusion is anticipated. Let t(= t(x)) be a statistic on Rs with s < n, and
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m a point in Rs. Define a general family of probability density functions

having the common support as

J=m = {q(x) I E{t I q{x)) = m and E{eβt \ q(x)) exists for β £ B} (2.1)

where the open set B C Rs includes 0 and it may depend on the density
function q{x). Consider a subfamily of Tm as ^ ( Δ ) = {q(x;δ)\δ G Δ}
where Δ C Rr with p = r + s < n. Let B(δ) be the parameter space of β
given 5, and define the parameter space of θ = (/3, δ) as Θ = {(/3,δ)\δ G
Δ, β G B(δ)}. Then the ruled exponential family is defined as follows.

Definition. Let t be an s-dimensional statistic and the family ^*m(Δ) be a

subfamily of Tm in (2.1). Define V{θ) with θ = {β,δ) as

V(θ) = {p(x; /?, δ) I p(x; /3, 5) = exp(/3t)g(x; ί)/κ(/3, ί), θeθ} (2.2)

where κ(/3, (5) is the normality constant. We will call this the ruled exponen-
tial family.

The function, κ(β,δo) for a fixed #o, is the moment generating function

of q{x\ δo). For convenience we suppressed the point m in the notation of the

family V{θ). This is because the point concerns the family only marginally;

in many familiar examples the family does not depend on m at all. The

name of the family comes from the ruled surface in geometry, where a line

in the ruled surface corresponds with an exponential family V(θ(δo)) with

Let μ = E{t \ p{x\ β, δ)}. Then we can employ another parametrization
θ = (μ,£). Since this parametrization is more convenient, it will be used
throughout. Another regularity condition is that the components of the
parameter, μ and 5, are variable independent, that is, θ = M® Δ where M
and Δ are the parameter spaces of μ and δ. When this condition is satisfied,
the family (2.2) does not depend on the choice of m.

Example 2.1. Consider the exponential family of distributions having the
density function p(x; θ) — exp{β(θ)t — b(θ) + α(x)}. Consider also the com-
mon partition f = (t[,t'2), β(θ) = (β^θ), /%(0)), and μ(θ) = (μι{θ),μ2(θ))
with μ(θ) = E{tf I p{x\θ)). Let θλ = μx(θ) and θ2 = β2(θ). Then (0i,02)
is orthogonal as in Huzurbazar (1956). An exponential family is obviously
a ruled exponential family by setting t = ίi, μ = μχ(θ) and δ = /?2(#)
Consider a subfamily {p(x\ (μ,<Jt)) | δ^ G τ(Δ)} for a smooth function
τ( ) : Rr -> Rk with k < r. Then the family is the ruled exponential
family, while it is not always an exponential family but a curved exponential
family.
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3 Some properties

The simple structure of the ruled exponential family yields properties use-
ful for constructing estimators. Write the log-likelihood function l(χ-,θ){=
l(x; μ, δ)) and its partial derivatives as lμ{x\ μ, δ) and ls(x\ μ, δ). Recall
that V(θ(δo)) is the exponential family with the sufficient statistic t free
from Jo Thus the following proposition is derived from the theory of the
exponential family.

Proposition 1. i) The conditional distribution of x given t is free of μ.
ii) The statistic t is complete for μ in V(θ(δo))
iii) lμ(x; μ, δ) = V~ι{μ,δ)(t - μ) where V(μ,δ) = Vax(ί).

Theorem 3.6 (Amari 1985) states that the e-geodesic between p(x; μ, δ*)
and p(x\ μ*, δ*) and the rn-geodesic between p(x; μ, δ) and p(x; μ, δ*) in-
tersect orthogonally at p(x; μ, δ*). The subfamily V{θ(δo)) for every δo is
e-ίlat, and V(θ(μo)) for every μo is a subspace of the ra-flat space Tm. Thus
we obtain

Proposition 2. The components μ and δ are orthogonal, that is,

, ί), (μ*, O ) = L>((μ, ί), (μ, <Γ)) + Z?((μ, <Γ), (μ*, ί*)) (3-1)

for any (μ, δ) and (μ*, δ*) where D(β, 6>*) = £;{logp(a;; (9)/p(rr; β*) | p(x; 0)}.

Two existing families in the literature are closely related to the ruled
exponential family. They are the generalized power series distribution on the
nonegative integers in Patil (1964) and the discrete exponential dispersion
model in Jorgensen (1987). The former covers the ruled exponential family,
but any study on the structure of the family is not done. It is shown that
the latter is covered by the ruled exponential family.

4 Separate estimating function

We begin with discussing a 'separate estimating function' under a general
condition before pursuing that in the exponential model. The regularity con-
ditions on an estimating function g(x; 0), x 6 i?n, θ E θ C Rp in Godambe
(1976) will be assumed.

Consider the common partition g(x; θ) = {g\{x\ 0), 52(̂ 5 θ)) and θ =
(#1? Θ2) where the dimensions are 5 and r (s + r = p), respectively. We
call an estimating function separate, if g\(x\ θ) and 52(̂ 5 θ) depend only
on θ\ and 62, respectively. A practical way to make an estimating function
separate is that g\(x\ θ\) = g{x\ 0χ, ̂ 2(^1)) where ^2(̂ 1) is the solution
of 32(#; θ\>> Θ2) = 0, and g2{x', #2) is defined similarly. This treatment is
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employed in yielding the profile likelihood estimating function. The derived
separate estimating function, however, is usually biased, as emphasized in
Yanagimoto and Yamamoto (1993).

Another conventional way is to discuss g\(x\ 0i, #2θ)and 32(̂ 5 #io> #2) for
a fixed 0o = (#io,02θ) The estimating function g\(x; 0χ, #20) is unbiased at
0 G Θ(02θ) = {θ I 02 = 020, 0 Ξ θ}, but is not unbiased globally. A projec-
tion method of gι{x; 0i, 02o) on the space of (globally) unbiased estimating
functions is developed in Amari and Kawanabe (in press).

Now the score function for μ is written as lμ{x; μ, δ) = V""1^, δ)(t — μ),
and is essentially separate from δ. In fact it is equivalent with t — μ. Lindsey
(1995) called (μ, δ) estimation orthogonal, when the MLE of μ is free from
δ. On the other hand the score function for δ is not separate from μ. Let
μo be an arbitrary value. Then l$(x; μo, δ) is unbiased only at 0 G θ(μo).
Proposition 1 (i) and (ii) yield the optimality of lc$(x; <$, | t).

Proposition 3. i) The estimating function lμ{x\ μ, SQ) is optimum for every
Jo, attaining the Cramer-Rao bound.

ii) For every μo the projection of l$(x] μo, δ) on the space of unbiased esti-
mating functions is lcs{x; δ | i), which is free from μo

It is shown that both the estimating functions in Proposition 3 attain the
minimum of the sensitivity criterion by Godambe (1960, 1976). Note that
the estimating function Zc$(x; δ \ t) does not depend on μ at all. Thus the
two components are estimated in a separate way. Note also that the two
estimating functions are orthogonal (Godambe 1991).

5 Examples

The following example introduces a family of possible usefulness in practice.

Example 5.1. The beta density function is written as Πxf"1(l - x%)q~ι/
Be(p,q) with the support (0,1). The family of beta density functions is
an exponential family with the sufficient statistics, logx and log(l — x).
The sample mean is known to perform favorably, as an estimator of the
population mean p/(p + q). Let α(0 < a < 1) be a constant, and set p = aδ
and q = (1 — a)δ. Consider the density function

x

aδ-ι(\ -.Xi)(ι-a)δ-ι

eP
χ

p(x; β, δ) = Π

where M( ; •; •) is the confluent hypergeometric function. The family of
these density functions is the curved exponential family and also the ruled
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exponential family. Thus the sample mean is an efficient estimator of the
mean.

It is possible to extend a ruled exponential family to that having an infi-
nite dimensional component δ, and also to that having infinite dimensional
statistic t.

Example 5.2. Consider the n-dimensional point process x(t)' = {x\(t), . . . ,
xn(t)) > 0 < t < T, having the intensity function

where X(t) is a positive intensity function and z(t)' = (z\(t), . . . , zn(t)) be
a covarite such that all the components are not identical. Write X(t) =
X(t)Έexpδzi(t). Then the density function is expressed as

Π[{Πλi(*)}exp-/Tλ<(5) da]
i teii J o

= [l[λ(t)exp~
tei

where λ(t) = Σλi(ί), I{ = {t \ x^t) = 1, 0 < t < T} and / = U/;. Set
xτ(t) = Σxi(ί), that is, the superimpose. Then the intensity function of
xτ(t) is Σλ»(ί) = λ(ί), which is free from δ. Let β(t) = Iog{λ(ί)/λ0(t)}. By
regarding the inner product < β(t),xτ{t) > as Σie//3(t), we can show that
X(t) and δ are orthogonal in the sense of (3.1).
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