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Abstract

For a simple one-dimensional lattice gas we consider the efficiency
properties of the maximum pseudo-likelihood estimate. We show that
the pseudo-likelihood estimating function is not optimal within a nat-
ural class of estimating functions, although numerical investigations
show that it is very close to being optimal. We also show that the
pseudo-likelihood is far from being efficient when there is strong de-
pendence in the model.
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1 Introduction

In the field of stochastic processes it is often not possible to give the likelihood
function in an explicit form. Instead one uses estimating functions, and it
seems natural to look for an optimal estimating function within a class of
such functions. A theory for this has been developed in Heyde (1988). For
martingale estimating functions an application of these ideas can be found
in Bibby and Sgrensen (1996).

In this paper we will try to use these ideas in the setting of Gibbs lattice
models. Such models are defined through interactions between neighbouring
points and typically there is a norming constant in the distribution that
cannot be calculated explicitly. For the lattice Z¢, d > 1, there is also the
possibility of phase transitions and the maximum likelihood estimate need
not be asymptotically normally distributed. Due to these problems other
estimating procedures have been considered. Besag (1975) introduced the
pseudo-likelihood function, which only uses local conditional distributions. It
has been shown recently (Guyon and Kiinsch 1992; Jensen and Kiinsch 1994)
that the maximum pseudo-likelihood estimate admits a random norming so
that the limiting distribution is normal. The efficiency of the maximum
pseudo-likelihood estimate seems largely not to have been investigated. The
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paper of Guyon and Kiinsch (1992) contains a comparison of five estimators,
including the pseudo-likelihood estimator, for a model slightly different from
the model considered in this paper. What we propose to do here is to view
the pseudo-likelihood estimating function as one in a class of estimating
functions, and then to find the optimal choice within this class.

The term pseudo-likelihood is here adopted from Besag (1975) although
the contrast function used has no direct relation to a proper likelihood func-
tion. Also the reference to martingale estimating functions (Heyde, 1988)
is indirect. The estimating function here is not a martingale, but it has
the property that the individual terms have conditional mean zero, where
the conditioning set consists of all but one variable. As in the martingale
case this property ensures the consistency of the estimate. However, the
conditional-mean-zero property is not something that is shared with the
true likelihood.

To be able to perform all the calculations we will only consider a one-
dimensional Gibbs model. We can then find the optimal estimating function
within the class considered, and it turns out that the pseudo-likelihood is not
optimal. However, for the model considered, the maximum pseudo-likelihood
estimate is very close to being optimal. For the simple model considered it
is also possible to compare the pseudo-likelihood with the true likelihood.
When the interaction in the model is strong we find that the efficiency of
the pseudo-likelihood estimate is very poor. Furthermore, an attempt to
improve on this by extending the pseudo-likelihood idea turns out to give

only a minor improvement. It is an open problem whether these conclusions
carry over to higher dimensions.

2 The Gibbs Model
Let X; € {—1,1}, i € Z, be a lattice gas, where X; interacts with the four
nearest neighbours (X;_9, X;_1, X;+1, Xi+2). The conditional specifications
are given by

P(X; = z; | (Xi-2, Xi—1, Xiv1, Xiv2) = (%i-2, Ti-1, Tit1, Tit2))  (2.1)
= {2cosh[B(Ti—2 + Ti—1 + Ti—1 + Tiy2)]} " exp{Bzi(Ti—2 + Tiz1 + Tiv1 + Tita)}

and for l > k

P ((Xk)Xk+1; --"Xl) = (zkawk+1) "'aml)

(Xk—Q, Xk—l ) Xl+1 , X[+2) =
2.2)
(zk—2a Tk—1,Tl+1, zl+2)

I+1
= Z1-k(B; Tk—2, Tk—1,Ti4+1,T142) "' €Xp {,3 [Z Ti(Ti—1 + Ti2) + -"31+2$1] }

i=k
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With n = [—k+1 the evaluation of Z;_j, involves a sum with 2" terms, and so
for n large it is not feasible to evaluate Z;_j. Instead of using the likelihood
function for estimating 3 we use the pseudo-likelihood function exp(pl,(83)).
The latter is given as the product of the conditional densities in (2.1), see
Besag (1975). Let the observations be z_1, ¢, Z1, ..., Zn, Tn+1, Tnt+2, then

Pha(8) = Y-{Bss: — logl2cosh (59,

1=1

where
8§ = Tj—2 + Ti—1 + Ti41 + Tiya.

From this we find

pln(B) = D [zi —tanh(Bs;)]si, (2.3)
=1

“pAB) = 3 cosh(Bs) 2 (2.4
=1

The question we want to investigate is whether the estimating equation
(2.3) has some optimality properties? The form of (2.3) suggests a slightly
more general class of estimating functions, namely

n

T'n(B;9) = > _[zi — tanh(Bs;)]g(si; B). (2.5)
i=1
This class of estimating functions has the important property that each term
in the sum (2.5) has conditional mean zero, that is

E([X; — tanh(BS)]g(Si; B) | X; : j #14) =0. (2.6)

This property is essential when proving asymptotic normality of the estimate
in related, but more complicated models, where one has the possibility of
phase transitions (see Jensen and Kiinsch, 1994). What we want to consider
is whether

9(si; 8) = si

is the optimal choice of ¢ in (2.5). Optimality is here defined in terms of
having the smallest asymptotic variance of the estimate.
For 2 < i < n — 1 we have from (2.6) that

E{[X; — tanh(8S:)]g(Si; B)Tn(B; 9)} = EYi{Yi2 +Yie1 + Yi + Yip1 + Yigo},
where Y; = [X; — tanh(3S;)]g(S:; B). We therefore find that

H(g) = lim Var <%Fn(ﬂ; 9)) = Fh{ti+ 2+ 21} (1)
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Minus the derivative of (2.5) with respect to 3 is

. = _ 9g(si; B
n(B;9) = h(Bs;)"sig(si; B) — [z: — tanh(Bs;) :
3n(819) = 3 {coshs) sig(s55) ~ s ~ amh 0] 2515 |

We therefore have from (2.6) that

S19(51; B)

cosh(85:)?’ (28)

19 = Jlim E(LinBio) = E

n—o0

Combining (2.7) and (2.8) we find
 VaB-B) SN (0,H(9)/I9)?),

where J is the solution to I',(8;g) = 0.

We want to minimize H(g)/J(g)? with respect to g. For symmetry rea-
sons in (2.5) we only consider functions with g(—s;; 8) = —g(s;; ) for s; # 0.
We now argue that the smallest variance is obtained with g(0; 8) = 0. Intu-
itively this is clear from (2.5) as those terms with s; = 0 give no information
on 3. More precisely, we can argue as follows. Write U; = Y;1(S; # 0)

and V; = Y;1(S; = 0). Both these terms have conditional mean zero and
therefore

EU,(U; + 2U; + 2U3) + EVi (V) + 2V, + 2V3)
+EV3(Uy + Us + Uy + Us). (2.9)

The conditional specification in (2.2) implies that —X ~ X, that is, in-
verting the signs of all the X;’s does not change the distribution. Since
Ui(-X) = U;(X) and V;(—X) = —V;(X) we find that the third term in
(2.9) is zero. The second term in (2.9) is proportional to g(0; )% and so we
get the minimum for g(0; 3) = 0. Since also J(g) does not depend on g(0; 3)
we get that H(g)/J(g)? is minimized for g(0; 3) = 0.

Normalizing g by setting g(4; 3) = 4 we end up considering the class of
estimating functions (2.5) with g belonging to

{9:{-4,-2,0,2,4} = R | g(0) = 0,9(—s) = —g(s),9(4) =4}.  (2.10)

We therefore only have one free parameter g(2;3) that we want to choose
so that H(g)/J(g)? is minimized.
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3 A partial evaluation of the limiting variance

In this section we give a partial derivation of H(g) and J(g) from (2.7)
and (2.8), respectively. We will perform the calculation by conditioning on
(z-1,Z0,Z4,5). The conditional distribution has 8 states with probabilities
given by (2.2), and the conditional means of the terms in (2.7) and (2.8)
can be written explicitly. There are 16 possibilities for (z_;, zg, z4,z5), but
these can be paired two by two using that —X ~ X. We therefore basically
have 8 different conditional distributions to consider.

As an example consider the case (z_1,zo,z4,25) = (1,1,1,1). With
¢ = g(2; 8), r = tanh(20), and t = tanh(40) the conditional mean of Y;(Y; +
2Ys + 2Y3) is

{e% + 3¢ + 4% }_1 {80e% (1 - 1)
+eP[16(1 + )2 + 6(1 — r)%6% — 326(1 — r)(1 + )] + 634 (1 + r)zéz} :

Calculating all the conditional means and using the notation P(ij;kl) =
P(X_1=14,Xo = j, X4 =k, X5 = l) we obtain
2P(11;11)
e 4 3ef + 438
+€ [-3267 (1 = ) (1 +1)] + €2 [P (1 — 7)? + 67 (1 +7)?] }
2P(-11;11) - 21 78 )
T e re (£ 16— -]+ [P
+e¥((L+7)2 = 4(1 = r)(1+7)) +e7P(1 - 1)? + 5P (1 +7)?] }
2P(11;1-1)
e’ +e3f +5e P +e
+£ [8e™(1 = )(1 = ) — 16e7P(1 = r)(1 +1)] + €2 [e7(3(1 — )’
~2(1 =) (1+7) +e P (1L = )% + (1 +7)%) + 57 (1 4+ r)?]}
2P(1-1;11)

1107 307 (&[0 =] + € 371 - )’
+eP((1+7)2 +3(1 =) = 2(1 = r)(1 +7)) + 3e*# (1 +7)?] }
2P(11;-11)
€90 + 4ef + 3e—38

+£ [16e% (1 = r)(1 - 1)]

+€2 [eﬂ(2(1 — )2 =41 +7)(1 ) + 67 (1 +7)?]}
2P(11;-1-1)

4e3F + 2e=B + 258

H(g) {80e% (1 — £)% + 16 (1 + 1)? (3.1)

—5 {48 (1= )2 + 1667 (1 + 1)?

{16€%(1 = )2 + 1673 (1 + 1)’

{166¥(1 - )2 + 16675 (1 + 1)’
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+€ [8e¥ (1= r)(1 — 1) + 1667 (1 + 8)(1 +7)] + € [P (1~ 7)?
+e (1= r)2+3(1+7)2 —6(1 —r)(1+7)) +e P (1 +7)?]}

+ % {¢& [10e3ﬂ(1 —r)2+ 271+ r)2] }
+ e5ﬂ2ig;51: ) s e st - n0 -] + € [P -1y

+(3(1— )2+ (1+7)% —2(1 = r)(1 +7)) + 37 (1 +7)?] }

A similar calculation, with ¢ = 16/ cosh(48)? and ¢ = 2/ cosh(20)?, gives
the formula

J9) = iifﬁlfi)e_w {¢e® +¢] + ¢y [2¢ + 27|} (3.2)

b (s e e [ 270 4 o))

b e (e [+ P e )
* e*”ﬂzf z(liﬁlf;:glg—aa {[e% +e7] +&v [2 +2e7%]}

" e5ﬂ2f 1(11;1;1313_3‘3 {&b [esﬂ +2¢% + e"3ﬂ]}

* = 1+—12)e—5ﬂ {9[e+e] +ew [ + 207 +e7]]
+ 2R Loy 209 4 207}

L _2P(-1-11)

e + 4eb + 3e—30 {&’b [eSﬁ +2¢ + e—w]} :

Writing H(g) = ag + a1€ + a2€? and J(g) = cp + 1€ we find that the
asymptotic variance H(g)/J(g)? is minimized for

2apc1 — a1
2as¢) — a1c1

£= (3.3)

(3.2) we find H(g) = % +1e+ %{2 and J(g) = 1+ 3¢. The optimal value of
¢ is then € = 2, that is, the estimating function (2.3) is optimal in the class
(2.10) when g = 0.

Let us now evaluate (3.3) in the limit 8 — oco. In the limit 8 — oo the
distribution of X becomes concentrated in sequences with no change of sign
along the sequence. One change of sign reduces the probability by a factor
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exp(—6/0). By such intuitive reasoning we find that as 8 — oo

P(11;11) - 3,
P(11;1-1) = P(-11;11) ~ 1758, P(11;-1-1) ~ 2¢7%8,
max{P(11;-11), P(1-1;11), P(1-1;1-1), P(1-1;-11)} = o(e~%5).

These formulas can be proved directly from the results of the next section.
Using these asymptotic relations we find from (3.1) and (3.2) that

ag ~ 64e 80 a; ~ —128e128 g, ~ 16e7108,
co ~ 64e788, ¢ ~ 167108

and therefore from (3.3)
£ 1.

We can therefore conclude that for 3 large the pseudo-likelihood estimating
equation (2.3) is not optimal in the class (2.10). In the next section we
evaluate precisely the difference between the optimal choice and the pseudo-
likelihood.

4 The equivalent Markov chain

For a one-dimensional lattice gas of finite range it is possible to express the
distribution through a stationary Markov chain. We will use this to evaluate
the probabilities P(-+;--) in (3.1) and (3.2).

In (2.2) the interaction of z; with previous values is through z;(z;—2 +
z;—1). If we pair the variables Y; = (Y;1, Yi2) = (X2i—1, X2;) the interaction
of Y; with previous values is through f(yi—1,%i) = vi1(yi-1,1 + ¥i-12) +
Yi2(¥i—1,2+¥i1). To get the Gibbs model in (2.2) we need a Markov chain for
which the product of the transition probabilities equals exp (Z’f f(yi-1, yi))
except for an initial term and a final term. This is exactly the construction
used in large deviation theory for Markov chains, see e.g. Jensen (1991).
We number the possible values of Y; in the order (1,1),(1,-1),(-1,1) and
(=1,-1). We let Q be the matrix with entries exp{8f(vi—1,¥:)}, that is,

eth 1 e 28 28
1 1 e 28 28
Q= e e 28 1 1
e 2P e 2 1 %

Let ) be the largest eigenvalue of Q and let e, = (1,v,v, 1) be a corresponding
right eigenvector and ¢; = (1,u,u,1) a corresponding left eigenvector. We
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then define the matrix P by P(y,z) = A" le,(y) "1 Q(y, 2)er(2),

e?h v ve P 2
1 v7! 1 e=28  y~le2B
P= 2| vle?P 28 1 v1 !
e 28 pe=28 v el
and define the vector u by
_ (L uv,uv,1)
T 24 2uw

With these definitions we get

k k
11 Pi-1, %) = A %er(yo) " er(yk) exp {ﬁz f(yi-1, yi)} , (41)
=1 3

=1

which gives the same model as in (2.2). The stationary distribution of Y; is
given by p. It is not difficult to show that

A= % {e‘m + 142728 4 \/e88 — 2e48 4 4628 4+ 9 + 4e‘2ﬁ} (4.2)

A—etf —e 28 A—etf e 2
Us Ty V=T

Let now
a;; = P(i,1)P(1,5) + P(i,2) P(2,j) + P(i,3)P(3,5) + P(i,4) P(4,5).
Then we have for P(-+;--) in (3.1) and (3.2)

PL;11) = p1){qulP(1,1)+ P(1,2)] + q3[P(3,1) + P(3,2)]},
P(11;-11) p(W{q12[P(2,1) + P(2,2)] + q14[P(4,1) + P(4,2)]}
P('ll; 11) N(3){Q31[P(1’ 1) + P(172)] + Q33[P(3, 1) + P(3a 2)]}a

and so forth. We are therefore now in a position to calculate (3.1) and (3.2)
and the optimal value (3.3). In Table 1 we have given £ and the asymptotic
variance with the optimal choice £ and with £ = 2 corresponding to the
pseudo-likelihood estimate. It is clear from the table that although the
pseudo-likelihood is not optimal in the class (2.10) it is very close to being
so, and the difference has no practical importance.

Because of the representation of our model as a Markov chain we can find
the limiting variance of the maximum likelihood estimate Gy. From (4.1) we
can find the observed information based on Xi,...,X,, n = 2k. Dividing
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Jé] §~ £ = E E=2 mle double
0.0 2.00 0.50 0.50 0.50 0.51
0.2 2.04 0.33 0.33 0.29 0.33
0.4 2.03 0.46 0.46 0.29 0.44
0.6 1.86 1.67 1.67 0.69 1.53
0.8 1.64 8.36 8.41 2.39 7.86
1.0 1.46 43.32 43.78 8.76 41.96
1.5 1.19 2496.61 2518.04 205.55 2487.62

Table 1: The column £ gives the optimal value (3.3) of £. The other columns give the
asymptotic variance of different estimates. The column § = E is the estimate obtained
from (2.5) with the optimal choice of g from (2.10), £ = 2 is the pseudo-likelihood esti-
mate obtained from (2.3), “mle” is the maximum likelihood estimate, and “double” is the
extended pseudo-likelihood estimate obtained from (5.1).

this by n and taking the limit n — oo we get %-f[;g log A(B), with A given in
(4.2), and therefore

N 2 -1
Vn(Bo - B) & N (0,2 {d%log)\(ﬁ)} ) :

In Table 1 the limiting variance of the maximum likelihood estimate has been
included. As can be seen for 8 = 0 the pseudo-likelihood estimate is fully
efficient, whereas for large values of 3 the efficiency is quite poor. Actually,
for B — oo the ratio of the limiting variance of the pseudo-likelihood estimate
to the variance of the maximum likelihood estimate is 9 exp(23)/16.

In statistical applications models of the form considered here are often
used in situations with a weak interaction, that is, with small values of 3,
see e.g. Besag (1974). In such cases we can expect the efficiency of the
pseudo-likelihood to be acceptable.

5 An extended pseudo-likelihood

The pseudo-likelihood considered in Section 2 is based on the one-dimensional
conditional distribution (2.1). It is therefore not surprising that the efficiency
of the pseudo-likelihood estimate is poor when § is large. When f is large
the dependency in the chain is very strong and this can not be seen efficiently
from the one-dimensional conditional distributions. It seems of interest then
to investigate what improvement we get by extending the pseudo-likelihood
idea to consider the conditional distributions of two variables, say, given the
remaining variables. Precisely, we base a new pseudo-likelihood exp(pl,,) on
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(2.2) with i =k +1,

pl,(B) = 2":1{’8 [wzszl + Tig187 + $i$i+1]
i=
—log [Qeﬂ cosh(B(s} + s?)) + 2P cosh(B(s} — s ))]} (5.1)
where
S} =z;—2+Ti—1 +Tj4+2 and .5‘22 =T;j—1 + Tijy2 + Ti43.

As for pl,(B) we can calculate the limiting variance of pl (B) and the limit-
mg mean of pln(ﬂ) to get the limiting variance of the estimate § satisfying
pln(ﬂ) = 0. The result can be seen in Table 1 in the column with the heading
“double”. As can be seen, for this one-dimensional lattice gas, the improve-
ment is quite small and of no practical importance. It seems important to
investigate if this conclusion is also true for higher dimensions. Intuitively,
one feels that in two dimensions, say, much more about directional differ-
ences in the interactions can be learned from a set of nine points, say, than
from a single point.

To summarize, the pseudo-likelihood is based on local information and
this is the basis for simple formulas and for simple asymptotic properties.
However, using only local information is not a very efficient procedure when
there is strong interaction. It therefore seems likely that if one can con-
struct a more efficient class of estimating functions, one will be faced with
complicated asymptotic properties.
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