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Abstract

Godambe's (1960, 1985) theorems on optimal estimating equations are
applied to some non-linear, non-Gaussian time series prediction problems.
(Examples are considered from the usual class of time series models.) Re-
cently many researchers in applied time series analysis attracted the infor-
mation and valid analysis provided by the estimating equation approach.
Therefore this article places an interest of estimating equation (EE) predic-
tion theory and building a link between it and the well-known minimum
mean square error (MMSE) prediction methodology. Superiority of this EE
prediction method over the MMSE is investigated. In particular a random
coefficient autoregressive model is discussed in some detail using these EE
and MMSE theories.

Keywords: Non-Gaussian models, non-linear time series; optimal es-
timation; optimal prediction, random coefficient autoregressive, minimum
mean square.
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1 Introduction

There are many examples of random vibrations in the real world. For exam-
ple a ship rolling at a sea, car vibration on the road, brain-wave records in
neurophysiology, and so on. Recently, there has been a growing interest in
modelling these events as non-linear time series. See for instance Tj0stheim
(1986), Abraham and Thavaneswaran (1991). In order to use non-linear time
series models in practice, one must be able to fit models to data, estimate
the respective parameters and obtain valid predictors. Computational pro-
cedures for determining parameters for various model classes, together with
the theoretical properties of the resulting estimates are outlined in Tj0stheim
(1986), Thavaneswaran and Abraham (1988).

The theory of generalized estimation equation (GEE) was originally pro-
posed by Godambe (1960) for identically distributed independent observa-
tions and recently extended to discrete time stochastic processes (see Go-
dambe (1985)). The particular statistical relevance and lucidity of the GEE
prediction method for statistical models under present study should be ap-
preciated against the fundamental difficulties encounted in

(a) likelihood prediction when the variance of the observation error de-

pends on the parameter of interest (Godambe, 1985, §3.2) and

(b) when the variance of the observation error becomes infinity and MMSE

method does not apply.

A special class of nonlinear models called Random Coefficient Autore-

gressive (RCA) models play an important role in the modern era of time

series analysis.

The class of RCA models are defined by allowing random additive per-

turbations of the autoregressive (AR) coefficients of ordinary AR models.

That is we assume that the process {Zt} is given by

p

i^et, (1.1)

where φi, i = 2, ,p, are the parameters assumed to be known, {et}

and {bi(t)} are zero mean square integrable independent processes and the

variances are denoted by σ\ and σ\\ bi(t)(i = 1,2, ,p) are independent

of {et} and {Zt-i}.
{bi(t)} may be thought of as incorporating environmental stochasticity.

For example, weather conditions might make {bi{t)} random variables

having binomial distribution.

For RCA models, the superiority of optimal estimate had been demon-

strated in Thavaneswaran and Abraham (1988) and the superiority of the
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interpolation had been given in Abraham and Thavaneswaran (1991). Go-
damble (1994) had briefly looked at the prediction problem in the Bayesian
context assuming the future values as random. Naik-Nimbalkar and Rajarshi
(1995) have used the estimating function method to study the smoothing and
filtering problem in the Bayesian point of view.

In this paper, we shall attempt to develop a more systematic approach
and discuss a general framework for finite sample non-linear time series pre-
diction. Our approach yields the most recent forecasting results as special
cases and, in fact, we are able to improve the efficiency of the predicting
equations.

This approach of using estimating function ideas to study the prediction
problem is very similar to the one used to study the smoothing problem as
in Thavaneswaran and Peiris (1996).

In section 2, we present a theorem on optimal forecasting for discrete
time stochastic processes based on estimating functions with applications
in non-linear, non-Gaussian time series models. Section 3 deals with quasi-
likelihood non-linear estimating functions and compares the efficiency for
MMSE and optimal predictors.

2 A theorem on optimal prediction

Let {Zt : t G /} be a discrete-time stochastic process taking values in 11

and defined on a probability space (Ω, A, F). The index set / is the set

of all positive integers. We assume that the observations (Zi, Z2, , Zn)

are available and that Zt(l) — E[Zt+i\Ff] is a function of JF1/, the σ-

field generated by Zi, , Zt. Then the following theorem gives the form

of the optimal one step ahead forecast of Zn+\ based on observed values

Zi, , Zn. Let Zn+i - Zn(l) = αn+i, where {au αt, αn+i} is

an iid sequence with probability density function /( ). Assume that

/( ) is known and that E [—gj-y /(α)l < 00 and /f^ f(a) da is twice

differentiate under the integral sign.

Let G be the class of unbiased estimating functions g{an+1) such that

E g{an+ι) = 0 .

Consider the following theorem.

Theorem 2.1 : In the class G, the optimal predictor of αn+i, which
. . . Var g(an+ι) . .
inimizes g is given by

(i) ^ O ( / ) J where ma{f) is the mode of / ,

(ii) the optimal predictor of Zn+ι is given by ZnP '(1) = Zn(ΐ) + mα(/),



262 ABRAHAM, THAVANESWARAN AND PEIRIS

(iii) the efficiency of the optimal estimating function, g°, Eff(g°) for αn+i
is

Proof:
Parts (i) and (ii) of the theorem follow by observing that g° = -^log f(a)

is an unbiased estimating function in the class G and using the Cauchy-
Schwarz inequality for unbiased estimating functions as in Godambe (1960).

It is easy to show that E[g°2] = E(—gj) and hence part (iii) follows.

Note: If g = identify, ^—-— = σ\. Thus the minimum mean

square error forecast is a special case of the theorem.

If g = — - » " " * , then y ^ 5 ^ 1 )

Hence the maximum likelihood predictor is also a special case of the
theorem.

It is of interest to note that when the distribution of {at} is stable such
as Cauchy, the MMSE predictor cannot be defined but the MLE could be
defined and it has finite information.

Example 2.1: Consider a stationary time series having moving average
(linear filter) representation

Zt = Φ(β)αt = at + Φiαt-i + *2«t-2 + • (2.2)

where {α }̂'s are independent mean zero with probability density function
/. Existence in mean square requires that {at} have finite variance σ\
and E £ i * i < o o .

Let (Zi, , Zn) be n observations from a series {Zt\. Then the
optimal one-step ahead forecast is given by MMSE forecast, Zn(l), plus
the mode of /
i.e. Z £ p t (l) = Zn(l) + m β ( / ) = E\Zn+ι\F^\ +ma(f).

For an AR(1) model of the form Zt = φZt-ι + at with \φ\ < 1, the

optimal forecast of Zn+\ based on observed values Z\, ••• ,Zn is Zn (1) =
2"n(l)+mα(/), where mα(/) is the mode of the probability density of {at}

If ot's are i.i.d. N(0,σ*) then mβ(/) = 0 and ZnP t"(l) = Zn(l) =
MMSE forecast.
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Now suppose that / corresponds to a double exponential distribution, with
the density f(x) = |e~'χl, —oo < x < oo.
In this case, with

= dlog/(o)^ o n e h a g E f f = γ a r , — a ^ - , I = L ( 2 3 )

da i da J

On the other hand,

r+oo z oo

σ^ = 1/2 / x2 e"lχl dz = / x2e~xdx = 2.

That is
E f f (SMMSE(<*)) = 2.

Thus, Eff.(g^j^jgg) is twice as large as Eff.(g°) and, therefore, the MMSE

forecast Zn(l) of Zn+i in (2.1) entails about 50% loss of efficiency in this

case.

Example 2.2: Consider an ARCH (autoregressive conditionally hetero-
cedastic) model of the form

where {at} is an iid sequence having pdf f(a) and variance σ\. It
can be easily shown that the optimal predictor of Zn+\ based on observed
values Zi, , Zn is given by

Similarly the two steps ahead forecast is

and the ^-steps ahead forecast is given by

Zn(i) = φeZn + Zl(ί-l)ma(f).

Now we consider a more general situation in the next section.

3 Non-linear non-Gaussian models

Theorem 2.1 of this paper gives the optimal predictor when {at} is an
i.i.d. sequence with known p.d.f. /(α) In the case when {at} is
not an identically distributed independent sequence and when the first two



264 ABRAHAM, THAVANESWARAN AND PEIRIS

conditional moments are specified the following theorem gives the form of

the optimal predictor.

Let Z\, , Zn be n observations from a series having first two condi-

tional moments

E[Zt\FU\ = f(θ, FU)
and

Let hu = Zt+ι - E[Zt+ι\Ft

z]
and

The following theorem reports the MMSE and otpimal predictors of

l

Note: The choice of elementary estimating functions is subjective.

Theorem 3.1: (a) The MMSE predictor of Z n +i is given by.

and (b) The optimal predictor of Zn+ι is given by

The proof of this theorem follows by taking the elementary estimating
function h2n = Z*+ι - E[Z*+ι\F*\ (cf. Godambe (1985)). The following
theorem reports the MMSE and optimal predictors of Zn+\ .

Example 3.1: Consider the Random Coefficient Autoregressive (RCA)

model given in (1.1).

By considering a class of estimating functions of the form gn = Σ™=2 a>t-ι h

, where

ht = Zt - E\Zt\FUλ = Zt -ΣφiZt-i , (3.1)
2 = 1

optimal estimates for the model parameters were obtained in Thavaneswaran
and Abraham (1988) and the superiority of the optimal estimate over the
least squares had been discussed.

Here if we restrict ourselves to a class of estimating functions of the above
form then we will get the forecast of the future value of Zn+\ based on
the observed values Z 1 ? Z 2 , , Z n as Z n ( l ) = E[Zn+i\Zn,Zn-U ''' ,]•

That is whether we have an AR(p) model or RCA(p) model we will get
the same linear predictor of Zn+\. However, for the RCA model under
consideration we have
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and p

2 = 1

Thus the conditional variance is a nonlinear function and hence the RCA
model (1.1) may be viewed as a nonlinear time series model.

Nicholls and Quinn (1980) studied linear as well as some nonlinear (pro-
posed) predictors by fitting a nonlinear (RCA) model for the lynx data.

By giving heuristic reasoning they proposed a nonlinear predictor
Zn+ι = sgn(0iZn)[φ\Zn + σ%]2 and have shown empirically that the predic-
tor Zn+ι is a better predictor (having smaller prediction errors when com-
pared with the actual observations) than the linear predictor Zn+χ — φZn,
for the lynx data.

It is of interest to note that by defining ht = Zf - E[Zf\Ft

z_ι\, the
optimal predictor for Zn+i can be obtained as Z*(l) = sqrt [ J ^ Z ^ F ^ ] ] =

Sgn(φιZn) [{φ\ + σ%)Z% + crf\ *•• ι-e estimating function method could be
used to obtain a nonlinear predictor for a nonlinear model by considering
a class of elementary martingale estimating functions generated by nonlin-
ear functions of the observations. Using a similar argument we could also
propose a nonlinear forecast for the ARCH process.

Example 3.2: Doubly stochastic times series
Random coefficient autoregressive sequences given in (1.1) are special

cases of what Tj0stheim (1986) refers to as doubly stochastic time series
models. In the nonlinear case these models are given by

zt-θtf(t,Ft

z_ι) = et, (3.2)

where {θt+bt} of (3.2) is now replaced by a more general stochastic sequence
{θt} and zt-ι is replaced by a function of the past, f(t, Ff_λ). When {θt}
is a moving average (MA) sequence of the form

θt = θ + et + et-u (3.3)

where {θt} , {et} are square integrable-independent random variables and
{βt} consists of zero mean square integrable random variables independent
of {et} . In this case E{zt\Fl_ι) depends on the posterior mean, mt =
E(et\Ft

z), and variance vt = E[(et-mt)
2\Ft

z] of et . Thus, for the evaluation
of mt and vt we further assume that {e*} and {et} are Gaussian and that
ZQ = 0. Then mt and v% satisfy the following Kalman-like recursive
algorithms (see Shiryayev, 1984, p. 439) :

_ σ2

ef(t,FtU)[zt - (θ + mt
1 σ2 + / 2 ( ί F / ) ( i
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and

where UQ = σ\ and mt = 0 . Hence

and

E{hξ\Ff) = E{[zt-E{zt\FU)?\FU}
= σe

2

 + /2(ί,F t

2_1)(σ e

2 + ^ _ 1 ) .

Now the optimal predictor based on ht is given by
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