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ABSTRACT
Economic theory (particularly with optimizing economic agents) usually

imposes a set of moment restrictions on economic data. These restrictions
are known as orthogonality conditions, which correspond to a set of unbi-
ased estimating functions with the dimension of the estimating functions
often larger than the dimension of the parameters of interest. This paper
provides a selected review on the efficient methods of estimating such over-
identified models, using the approach of estimating functions (see Godambe,
1960, 1976; Godambe and Heyde, 1987, and Godambe and Thompson, 1974,
1989), as an organizing principle. The discussion in this paper takes place
in a random sampling framework and draws heavily from Qin and Lawless
(1994), who use the estimating-functions approach to combine the estimating
functions in an over-identified model optimally.

1 Introduction.

Let z be a p-dimensional vector with z G Z where Z is a compact subset of
W. Let θ be a k-dimensional vector with θ G Q and define the vector-valued
estimating function g as g : Z x Q -> W, such that it is unbiased

E\g(z,θ)] = 0 (1)

for a unique element θo of Q. The function g(z, θ) is assumed to be twice
continuously differentiable with respect to θ.

Equation (1) with dim[g] > dim[0] often arises from economic theory
with optimizing behavior on the part of economic agents. The parameter
vector 0o is assumed to satisfy E[g(z,θo)] = 0, where g(z,θo) is a given
vector-valued function of moment conditions implied by economic theory -
economic examples of this function in time-series context can be found in
Hansen and Singleton (1982), Wirjanto (1995; 1996a, 1997), Amano and
Wirjanto (1996a,b; 1997a,b,c) etc. Consequently this paper focuses on the
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over-identified case, where dim[g] > dim[0]. Given an identically and inde-
pendently distributed (i.i.d.) sequence { J ^ } ^ , this paper is interested in
estimating the parameter vector θ.

2 Two-step Estimator

One popular approach to combining the estimating functions in economet-
rics is briefly mentioned in Qin and Lawless (1994, page 315). This approach
considers the optimal (in the sense of minimum asymptotic covariance ma-
trix) linear combination of the r estimating functions. This leads one to
estimate θ as the solution to the estimating equations

) = 0 (2)
t=ι

where M = E[dg(z,θo)/dθτ] has full rank. More generally, an estimate of θ
solves the minimization program

= MIN, hr<^,0) j V | χ > ( ^ 0 ) j (3)

over Q, for some positive semi-definite (rxr) symmetric weighting matrix
V. Under standard regularity conditions, the minimand of Q(θ) is a consis-
tent estimator of ΘQ. However it is not efficient in the over-identified case.
An efficient estimator can be obtained in this case by minimizing Q(θ) for
V = J - 1 , where J = E[g{z,θo)g{z,θo)

τ] has full rank (See Hansen, 1982;
McCullagh and Nelder, 1989; White, 1984).

In practice the inverse of the weighting matrix, J, is unknown and needs
to be estimated from the data. A two-step estimation strategy can be used
to implement this procedure. In the first step, an initial consistent estimate
0° is obtained by minimizing Q(θ) for an arbitrary choice of J such as the
r-dimensional identity matrix Ir. The optimal weighting matrix is then
estimated as J " 1 = [Σ?=i9(θ°) Σΐ=ι9(θ°)T/n}-\ where g(θ°) = g(zuθ°).
In the second step, an efficient estimator θ is obtained from the estimating
equations

ΣMτJ-1g(zt,θ)=0 (4)
t=l

More generally, it is obtained by solving the second-stage minimization pro-

gram

MΐNθQ(θ) = MINe ix>(z t ,0) | J - 1 IΣ9(*t,θ)] (5)
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For an obvious reason, the resultant estimator is referred to as a two-step
estimator (TSE). This two-step estimator is discussed in the time-series con-
text in Hansen (1982), White (1984), etc.

If the model is correctly specified, and there exists a unique value ΘQ such
that the estimating function is unbiased, E[g(z,θo)] = 0, then

^(0 T S E -0o)Λi\Γ(O,Λ) (6)

where Λ = (MΊ J~ιM)~ι. The normalized objective function, evaluated at
the estimated parameters, converges in distribution to a chi-squared random
variable with r — k degrees of freedom.

One potential drawback of the two-step estimator discussed above is
that in the over-identified case, i.e. when dim[g] > dim[0], the choice of
the weighting matrix will affect efficiency considerations in an important
way. More specifically in finite samples or in the case of misspecified model,
the way in which the optimal weighting matrix is estimated will affect the
efficiency of the estimator

3 Maximum Empirical Likelihood Estimator

An alternative to the two-step estimator is the one-step estimator based on
solving a set of estimating equations for θ and 7, the r-dimensional normal-
ized Lagrange multiplier. Let Φ = (θ,j)τ. Then the solution Φ M E L E

 ιs

obtained by solving a set of estimating equations

,Φ) = 0 (7)

where l(zu )Φ)Γ,/2(^t, Ψ) T ] T , with the following estimating functions

This is shown by Qin and Lawless (1994) to be equivalent to solving the
following constrained maximization program:

n

MAXp.θΣn-^lnipt) - in^" 1)] (8)
t=i

subject to the restrictions
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which yields the maximum empirical likelihood estimator (MELE). Under

regularity conditions, %[ELE i s asymptotically efficient for 0O, i e.

The MELE procedure requires that one solves a system of estimating

equations in k+r unknown parameters in one step compared to the procedure

for the TSE which requires two steps. However some of the estimating

equations in this method may potentially be unstable since the matrix of

expected derivatives will not have full rank at the limiting values of the

parameters, i.e. at (0,7) = (0o,O), the (k + r) x (kxr) dimensional matrix of

derivatives E[dl(z, 0o O)/dΨτ] will have rank r. In practice this may not pose

a serious computational problem in specific applications since the empirical

likelihood in terms of (0,7) gives (0,7) as a saddle point.

4 Alternative Characterization of the MELE

An alternative characterization of the MELE of Qin and Lawless (1994)

is suggested below. It is based on solving a set of generalized estimating

equations that takes account of the over-identifying restrictions on the dis-

tribution explicitly. In particular for a discrete parameterization of z with

known support, this estimator (if it exists) is shown to belong to the MELE.

In the theory of estimating functions (see e.g. Godambe and Heyde

(1987) and Godambe and Thompson (1989)) an estimating function g*(z, 0) G

Q, Q = Z x Q, is optimal in Q if the estimator 0 from g*(z, 0) = 0 has min-

imum asymptotic covariance matrix. To begin the analysis / partition the

vector-valued estimating function g{z(θ) as

where g\ is a k dimensional vector and 52 is a (r - k) dimensional vector.

Similarly / partition the M and J matrices conformably to the estimating

function g as

I " \dg2(z,θo)/dθΊ

u J L

and

9i(z,θo)gi(z,θo)τ 9i(z,θo)g2(z,θo)τ

^ 92(z,θo)g2(z,θo)
T
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It is assumed that g\ can be used to estimate θ consistently and t2 represents
the over-identifying restrictions on the model. The latter is equivalent to
assuming that the submatrix M^ 1 exists. It should be pointed out that
the partition of the g vector-valued function into (gj,g2)

τ will affect the
interpretation given to 7 only. However it will have no effect on the estimator
of0.

Let 7 be a (r — fc)-dimensional vector. Let 77 = (η[,ηζ)τ, η\ = {θ,η)τ

and 772 = (μι,μ2)
τ. Define μι .= vec(Mi) for i = 1,2. Then an estimator 77

can be obtained as a solution to the following system of r(k + 1) generalized
estimating equaitons

Σ,h(zt,η)=0 (10)

where h(zt,η) = [/ii(zt,η)τ, ...,/i4(zt,77)τ]τ, with the following estimating
functions

1 4- ΊT92(Z,Θ) — 7TM2M1

 1gi{z,ι
1

-1

τM2MΓ19i(z,θγ
2-vec{dg2/dθτ)}

The resultant estimator rj defined above is referred to (for the sake of
clarity) as a generalized estimating equations estimator (GEEE). Under reg-
ularity conditions, the GEEE ήι has the following limiting properties:
(i) 771 4 7710, where ηλ0 = (0O,O)T; and

(ii) y/n(ήι - 7710) 4 (0, Λi), where Ai = Q

 n

 A I

Λn = {MτJ-ιM)~ι and Λ22 = [M2(M?)-ιJn(MΪ)-ιMξ - 2J1

T

2(M1

T)"1

M2 + J22]"1' The proof is given in Appendix A.
The above limiting result suggests that solving the generalized estimat-

ing equations system in (10) yields an asymptotically efficient estimator, i.e.
y/n(θ — ^TSE) = °p(l) However unlike the two-step estimator, this estima-
tor is based on solving a set of estimating equations in one step. Therefore,
it allows one to estimate the limiting covariance matrix of the estimator,
even when the model is misspecified. Under misspecification where there
is not a value for θ such that E\g(z,θ)] = 0, the limiting distribution of
the estimator can still be obtained as a solution to the estimating equations
ΣJLx h{zuή) = 0 as long as the observations are i.i.d. Let 77 be the unique
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solution to the unbiased estimating functions E[h(η)] = 0. Under misspeci-
fication, the solution to 7 in general will not be 7 = 0, even though it exists.
The limiting distribution of ή in the case of misspecification of the estimat-
ing function is given by y/n(ή — ή)-ϊ (0, Λ*), where Λ* = (M*τ J*~ιM*)~ι

M* = E[dh{z,η)/dητl and J* = E[h(z,η)h(z,η)τ].
The component of the limiting covariance matrix of 77, which corresponds

to the variance y/n(θ — 0), is not equal to Λn if there does not exist a value θo
at which all r estimating functions (</i,</25—50r) are unbiased. In the case
of the two-step estimator, the effects of misspecification on the weighting
matrix and the second-stage estimation must be analyzed.

One potential drawback of the GEEE procedure is computation. Since
in this procedure, one has to solve a system of r(k +1) equations in r(k +1)
unknown parameters, it can be potentially more burdensome in terms of
computation than solving a minimization program in k variables twice as
in the two-step estimator. It is also likely to be more complex than the
computation involved in MELE procedure which requires one to solve a set
of estimating equations in k + r unknown parameters. In practice it may or
may not pose a serious computational burden in specific applications since
this estimator can be used to calculate better approximations to its finite-
sample distribution using a saddle-point approximation.

To further interpret the GEEE, J show that for a discrete parameteriza-
tion of z with known support, 7 can be interpreted as the vector of Lagrange
multiplier (for the over-identifying restrictions) in the context of the empir-
ical likelihood estimation studied by Qin and Lawless (1994). In this sense
the GEEE may be viewed as an alternative formulation of the estimator
of θ to Qin and Lawless (1994) as the solution to a system of generalized
estimating equations.

Suppose that z has a discrete cumulative distribution function F(z,p) for
some unknown p € V, and F is known. Thus, / have a parametric estimation
of θ, such that the estimating function g(z, θ) is unbiased, i.e. E[g{z, θ)] = 0.
/ can estimate p efficiently by maximizing thelikelihood function over Vg,
where

V9 = lpe V\3Θ V Jg(z,θ)F(dz,p) = θ | (11)

Once the maximum-likelihood estimate (MLE) p is obtained, the MLE for
θ is given by θ defined by /g(z,θ)F(dz,p) = 0.

In an over-identified case, it is important to consider the restrictions
implied by the difference between Vg and V. Hence consider a sequence of
random variables with a known support {z\, z<ι,..., zm} and pj = Pr(z = Zj)
for j = 1,2, ...,ra. Then the probability density function is

3=1
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for p e V = {p e TZm\Pj > 0,Σf=iPj = l,BΘVfg{z,θ)F(dz,p) = θ} where
φj(z) = I Ίϊ z = Zj, and = 0 if z φ Zj. Since there exists a value of
θ V /g(z,θ)F(dz,p) = 0, p must be restricted to Vg defined in (11).

Next / partition g into a k dimensional vector g\ and a,(r—k) dimensional
vector g2, such that V\ = {p e V\3Θ such that f gi{z,θ)F(dz,p) = 0} is
equal to V and Vp E Pi = P. Then the solution for 0 to the estimating
equations /gι(z,θ)F(dz,p) = 0 is unique. Given these assumptions, define
θ as a function of p implicitly as

/

m

9ι(z,θ(p))F(dz,p) = Σ f t Ji( ĵ,fl(p)) = 0 (13)

i=i

There are two useful properties that can be obtained by differentiating (13)
with respect to pτ

m

9i(zτ,θ(p)) + ̂ 2pj(dg1(zj,θ(p))/dθ)(dθ(p)/dPτ) = 0. (14)
3=1

These properties are given by

m

dθ(p)/dPτ = -[ΣPj(d9i(zj,θ(p))/dθτ)}-1g1(zτ,θ(p)) (15)

and
m

j(g1(j,(p))/)} ΣPMT,(P)) = 0
i=i 3=1 J=I

(16)
respectively.

Consider the following problem

The assumptions suggest that the maximization can be performed on the
set given by

Vg = lp e nm\pj > O,JTPj = 1, J g2(z,θ)F(dz,p) = 0 } (18)

i.e. the maximization program can be written as

n m m m

max > > ΦΛzΛlnypi) s.t. ϋ7 > U; > pΊ- = 1; and
t=lj=l j=l
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in the framework of empirical likelihood of Qin and Lawless (1994).
In the above maximization program I have (r — k + 1) nonlinear restric-

tions, which contain an implicit function that can be solved using a numerical
approximation method. However the solution to (19), if exists, will be iden-
tical to the solution to the generalized estimating equations in (10), which
only requires a solution to a system of r(k + 1) exactly-identified equations.

Let t\ be the Lagrange multiplier associated with the restriction Y^iPj,
and #2 be the vector of Lagrange multipliers associated with the restrictions
g2(zj,θ(p)) = 0 respectively. Then the first-order conditions for the maxi-
mization problem in (19) are

[a] Y\φj(zt)lpj\ - h - tξg2(zj, θ(p))

3) = O i = 1,2, ...,m;
τ=l

m

Multiplying the left-hand side of [a] above by pj and summing over j
1,2,..., m shows that the Lagrange multiplier ίi for the restriction Σφ=ι Pj
1 is n. Thus the solution for (p,ti,t2) is characterized by
[a] h = n;

n

Pj =
t=l τ = l

m

τ = l

7
Given p and ί2, the MELE for θ = θ(p), which is 6» = 6>(p), can be

obtained as a solution to the system of equations

m

O (20)

Below I show that the MELE for θ given by (20) is equivalent to the
GEEE obtained from (10). To this end, let Mx = Σf=ιpjdgι(zj,θ{p))/dθτ,
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and let M2 = Σ?=iPjd92{zj,θ(β))/dθτ. Let 7 = t2/*i Then the solution
for η is characterized by

[c] ft- = n-1 ΣΓ=i *i(
Lastly, substituting the expression for pj, the solution for the estimator ή

can be obtained from the system of generalized estimating equations

m

0 (21)

Below I show that the MELE or θ given by (20) is equivalent to the

GEEE obtained from (10). To this end, let Mx = Σf=1Pjdgι(zj,θ(p))/dθτ,

and let M2 = ΣT=iPjd92(zj,θ(β))/dθτ. Let 7 = t2/h- Then the solution

for η is characterized by

[b]ΣT=iPj92(zj,θ(β))=0;

[c] pi = n- 1 Σt=ι Φj(zt)/[1 + iT92(zj,θ(p)) - ητM2M^gι{Zj,θ(p))}
Lastly, substituting the expression for pj, the solution for the estimator ή
can be obtained from the system of generalized estimating equations

)=0 (22)
t=ι

which is equation (10).

The discussion so far has suggested a link between the GEEE and an

estimator of the distribution function. To see this, consider z having a

discrete distribution, so that the distribution function can be estimated by

(23)

which, after substitution of the expression for pj, yields

*(z) = n-ιΣl{zt < z)[l+Ί

τ{F*(z) = n-ιΣl{zt < z)[l+Ί

τ{g2{zuθ) - M2Mf V M ) } ] " 1 (24)
t=ι

can be stated as follows. The probability qn = pr(z G B) is estimated by

q= f I(zeB)F*(dz); as n -> oo (25)

The limiting properties of this estimator can be obtained by noticing that

to the unbiased elementary estimating functions E[g(z,θ)], I can augment

the estimating functions go(z,q) = lq — I(z E B). Let ψ = (q^θτ)τ, and let
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Then I partition the estimating functions l(z,φ) as

where ji(z,φ) = (go(z,q),gι{z,θ)τ)τ and J2{z,φ) = g2{z,θ). The new esti-
mating functions are therefore given by

with

^ — -\π-I(z€B]\: and

hn(zuψ) = hι{zt,η)',

h2(zuφ) = h2(zt,η)\

h = hs(zuη);
= hA(zuη).

It folows that the 77-component of the solution to the generalized esti-
mating equations

) = 0 (26)
t=l

where h(zt,φ) = [hιo{zt,φ)τ,hn(zt,φ)τ,...,h4(zt,φ)τ]τ, is identical to the
estimator ή obtained from solving the generalized estimating equations in
(10). This implies that the g-component of the solution to the above gener-
alized estimating equations is given by (24), rewritten as

q = = l - . Ί n " 1 Y I{z G B)] (27)

The limiting properties of this estimator for the distribution function are:
[i] q 4 go; and

[ i i ] V f i ( 9 < a > ) 4 ( 0 , , ) ,
where ίlq = q{\ - q) - gl[J~ι - J~ιM(MτJ~ιM)-ιMτJ-χ]gB, and gB =
E[g{z,θn)I{z e B)] = qoE[g{z,θo)\z G β]. The estimate q is fully efficient
in the sense that its variance attains the semi-parametric efficiency bound.
The proof is given in Appendix B.

5 The Minimum Discriminant Information Adjusted
Estimator

The GEEE method in Section 4 solves a system of estimating equations of di-
mension rx(k+l) much larger than (k+r) x (k+r) as in the MELE procedure,
even though the GEEE procedure has the advantage that E[dh(z;θo,O,μιo,
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lJ>2θ)/dητ] has full rank, whereas the MELE procedure has the disadvantage
that E[dl(z\ 0Q, 0)/5Φτ] does not have full rank. In practice this dimensional
issue may or may not be a serious handicap to applied workers, depending
on specific applications.

However given the potentially computational burden involved in the
GEEE procedure it is worthwhile looking at alternative procedures. One
such procedure is Haberman's (1984) procedure mentioned in Qin and Law-
less (1994, example 3, page 314). Instead of maximizing the empirical likeli-
hood as in (7), this estimator is obtained by minimizing the Kullback-Leibler
divergence from the estimated distribution to the empirical distribution.
Thus the resultant estimator is referred to as the minimum discriminant
information adjusted estimator (MDIAE).

The MDIAE of Φ can be obtained by solving a set of estimating equations
for 0 and 7, the r-dimensional normalized tilting parameter in

(28)
ί=l

subject to the restrictions

Thus the solution Φ# is obtained by solving a set of estimating equations

£>(*,*) =0 (29)
ί=l

where ω(^,Φ) = [ωi(zt,Φ)τ,α;2(^t,Φ)'Γ]"Γ, with following estimating func-
tions ωλ{zuΦ) = Ί

τ{dg{z,θ)/dθτ)exp[7

T<7(*,0)]; ω2(zuΦ) = g(z,θ)exp[7

T

g(z, 0)]. Under regularity conditions, 0MDIAE ιs asymptotically efficient for

0o, i.e. \/^(%DIAE " # T S E ) = M 1 )-
There is a number of attractive features of the MDIAE. First, in the

MDIAE procedure, the discrepancy between the estimated probabilities pt
and the empirical frequency n~ι is weighted using the efficient estimate
of these probabilities pf, in contrast in the MELE procedure, the discrep-
ancy is weighted using an inefficient estimate of these probabilities n" 1 .
Second, built on Huber (1980), the influence functions of the estimators
defined by estimating equations for the MELE and MDIAE are given by
E[dl(z,V)/dVτ]-ιl(z,V) and E[dω(z,Φ)/dVτ]-ιω(z,V) respectively. At
the limiting values (0,7) = (0o?O) the influence functions for the MELE and
MDIAE are identical. However the influence function for MELE, in contrast
to the MDIAE, can be unbounded at 7 = e where e 3 0, even if the estimat-
ing functions themselves g(z,θ) are bounded. Third, the MDIAE procedure
potentially is more attractive in terms of computation than the MELE and
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GEEE procedures. This is because the estimated probabilities in the MDIAE
procedure is given by pt = exp[yτg(z, θ)]/ Σΐ=i eMlTΦ> θ)] Replacing pt

in (27) with this and re-arranging terms result in the constrained maximiza-
tion program

t=i

subject to (30)

d{ln(Σexp[Ί

τg(zt,θ))) - ln(n)}/dΊ = 0
t=i

which is computationally easier to solve. It is clear that the estimating
equations in (28) amounts to choosing (0, 7) with the first derivatives of the
object function in (29) with respect to θ and with respect to 7 set equal to
zero.

Lastly it also is possible to obtain an estimator that has identical first-
order limiting properties as the GEEE, using the principle of minimizing
the Kullback-Leibler divergence measure in Haberman (1984). In terms of
computation however, it is potentially inferior to the MDIAE procedure
applied to the formulation proposed by Qin and Lawless (1994). For this
reason, it is not discussed in this paper.

6 Concluding Remarks

This paper has provided a selected survey on the efficient estimation of over-
identified models common in Economic models with optimizing agents, using
the theory of estimating functions as an organizing principle. It was argued
that the two-step estimator is sensitive to the way in which the optimal
weighting matrix is estimated from the data. The MELE of Qin and Law-
less (1994) solves this problem by estimating a set of estimating equations in
one step. However some of the estimating equation in the MELE procedure
may potentially be unstable because the matrix of their expected derivatives
does not have full rank at the limiting values. Although in practice this may
not pose a computation burden in specific applications, an alternative char-
acterization of the MELE was suggested in this paper. It is based on a set
of generalized estimating equations, which does not share the shortcoming
of the MELE mentioned above. This set of generalized estimating equa-
tions incorporates information provided by the over-identifying restrictions
on the distribution function explicitly, resulting in a just-identified set of
estimating equations with an exact solution. Unfortunately the computa-
tion of the result GEEE appears to be much less attractive than that of the
MELE since the estimating equations in GEEE method has the dimension
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much larger than the dimension of the estimating equation in the MELE
method. In practice this may or may not pose a computational problem
in particular applications since it is possible to use this estimator to com-
pute a saddle-point approximation to the finite-sample distribution. Next an
alternative estimator to the MELE based on Haberman's (1984) minimiza-
tion of Kullback-Leibler divergence measure is discussed. It has a number
of appealing theoretical features in terms of finite-sample efficiency and ro-
bustness and a priori it has a more tractable computational requirement.

It is worthwhile to make two final remarks: [i] the estimating functions
approach is a natural framework to use in over-identified models. One of its
major advantage over other known approaches, which has not been empha-
sized much in this literature, is that in this approach it is possible to treat
over-identified models as just-identified models essentially be re-defining the
estimating functions appropriately; [ii] another asymptotically equivalent es-
timator to the ones discussed in this paper can be obtained by combining
the set of elementary estimating functions gχ(z,θ), which is unbiased, i.e.
E[gι(z,θ)] = 0 with the set of auxiliary estimating functions £2(^,0) which
represents the over-identifying restrictions. This set of estimating functions
is biased with the biased term given by a r-dimensional auxiliary parameter
vector λ, i.e. E\g2(z,θ)] = λ. However λ will be a zero vector identically, so
that the set of elementary estimating functions will be unbiased, when the
over-identifying restrictions are satisfied by the data. Under regularity con-
ditions the resultant estimators will be consistent (i.e. λ will be consistent
for a zero vector), asymptotically normal and asymptotically efficient. How-
ever the efficiency is obtained from a joint estimation of θ and λ, without
using the prior information that λ = 0. This prior information can be used
simply by projecting the estimator of θ orthogonally on to the tangent space
in which λ = 0. This projection, which will be done approximately at the
appropriate tangent space, corresponds to the one-step estimators discussed
in this paper. Recently Wirjanto (1996b) has applied this approach to study
a collection of generalized linear models in McCullagh and Nelder (1989)
with contemporaneous correlations across the regression error terms. The
resulting one-step estimator is shown to be not only efficient but also robust
to nonconstant variances in each model's error terms as well as nonconstant
correlations across the equation error terms.

APPENDIX A

Since E[h(ηo)] = £7[/ι(0o,O,μio,μ2θ)T] = 0, there exists a consistent root
of the generalized estimating equation

ί = l
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Regularity conditions ensure that

where Λ(£>ΓΣ-1£>)-1, D = E[dh(z,ηo)/dητ], and Σ = E[h(z,ηo)h(z,ηo)
τ].

Next let me partition the matrices D and Σ conformably to η = [ηi;η2]
τ,

where ηι = (0,7)T, and η2 = (μi,μ 2 ) τ , as

j _ Σ = Γ Σ Π Σ 1 2

D2χ £>22 ' Σ21 Σ22

where

I 0 0
^ u " M2 -J22 + π2(Mΐ)-λMΪ I ' ^ ~ I 0 0

and
[ /2211 0 1 \ Jn J12
[ W i2222 J [ ^12 ^22

Here, I2211 2tnd /2222 are identity matrices of dimensions (k(k — l))/2 and
((r — k)(r — k — l))/2 respectively.

The limiting covariance matrix of ή\ is thus given by

Since I can write

[Mi
[M 2

the above expression for the matrix Λi simplifies to

ι J ) - χ 0

-J12 + Jii(M1

T)-1M2

T 1 _ Γ (MTΓ'
-J 2 2 + JUMjr'M? \ ~ J [ -Ir_k

[ 0 [M

which yields the intended result.

APPENDIX B

The minimum bound for the parameter vector Φ is given by

Ω(Φ) = (AτB-χA)-1

where A = E[dj(z, ΦO)/9ΦT] and B = E\j(z, Ψ0)j(*, Φo)Γ]
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The minimum bound for the parameter q can be obtained by noting that

A =
1 o ] . o - i = \ q(ί-q) -9B 1 =

0 M ' \ -9B J \ B21 B 22

where
gB = E[g{z,θn)I(z G B)] = qnE[g(z,θn)\z E B\;

l ι 1

B22 = J- 1 + J-ιgB[q{lq) -
Therefore I have

Γ Ω 1 1 Ω 1 2

[ Ω21
where

Ω12 = -[ςr(lςf) - & %
Ω22 = MΓJ-!Af + MJ-ιgB[q{lq) -

Since the new estimating function does not affect the variance of the
estimator 0, I have

Ω22 = (MTJ'1M)'1

regardless of what the set B is. The element of Ω(Φ) corresponding to the
parameter q is simply

Therefore, I obtain the result that

var(q) = q(l - q)

If I have extra information in the form of unbiased estimating function with
θ known, then

υar(q) = q{\ - q) - gβJ~ιgB

It remains to show that the variance of the estimator q in (34) attains
this minimum bound. Following the steps in section 2 for the new estimating
function j(z, Φ) results in a one-step estimator. Using the result in Appendix
A, it follows that its variance will be identical to the variance of the two-
step estimator. Therefore, it attains the minimum bound and the resultant
one-step estimator is q. The key to this result is that

= ί 1 °
L2 =
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so that

L2LΊ1jι = M2M{1g1

Therefore I have the results that

which can be rewritten as

q-I{ze B]
u ( \

1 + Ίτ92(z,θ) - ψM2Mϊι

9ι{z,qγ

Similarly, it can be shown that

hn(zt,η,q) = Λ , τ , J

gι{z,θ)-vec(d9ι/dθτ)

l+Ί

τg2{z,θ)-Ί

τM2Mϊι

gι(z,θ)

g2(z,θ)-vec(dg2/dθτ)

Since Λn{zuη,q) = hι(zuη), h2(zuη,q) = h2(zuη), h{zuη,q) = h3(zuη),
and h^zt^η^q) = h$(zt^), the intended results follow.
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