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ABSTRACT
This paper explains why Godambe-Durbin "estimating functions" (EFs)

from 1960 are worthy of attention in econometrics. Godambe and Kale
(1991) show the failures of Gauss-Markov and least squares and prove the
small-sample superiority of EFs. There are many areas of Econometrics
including unit root estimation, generalized method of moments (GMM),
panel data models, etc., which can use some simplification, a little greater
emphasis on finite sample properties and greater flexibility. We show why
statistical inference using the EFs in conjunction with the bootstrap can
be superior. For example, compared to the GMM, our EF estimates of the
'risk aversion parameter' are economically more meaningful and have shorter
bootstrap confidence intervals.

Key Words: Generalized method of moments, bootstrap, confidence inter-
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1 Introduction

The aim of this paper is to continue a dialogue between statisticians working
with Godambe-Durbin estimating functions (EFs) and econometricians, ap-
parently started by Crowder's (1986) lead article in an econometrics journal.
Though Crowder proves consistency of estimates as roots of EFs, he neglects
to mention (i) the "main lesson" of EF theory, and (ii) that Durbin's (1960)
two-regression (TR) estimator for autoregressive distributed lag (ADL) mod-
els is an optimal EF (OptEF)

Ordinary least squares (OLS) estimators are roots of "normal equations"
and maximum likelihood (ML) estimators are roots of "score equations."
The "main lesson" from Godambe's EF theory is to deemphasize the esti-
mates (roots) and focus on the underlying equations called the EFs. One
considers the bias and variance of EFs themselves. Minimizing the variance
of (standardized) EFs is Godambe's (1960) G-criterion. It provides opti-
mal EF, g* = 0, whose roots are the OptEF estimators. The large and re-
cently growing EF literature, surveyed by Godambe and Kale (1991), Dunlop
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(1994) and Liang and Zeger (1995), gives theory and examples of success-
ful applications in biostatistics, survey sampling and elsewhere. They show
that EFs can offer distinct and improved estimates, both with and without
normality. It is remarkable that whenever the OLS or ML estimators do not
coincide with the OptEF, it is the OptEF that have superior properties in
both large and small samples.

Rather than another survey, this paper indicates avenues for further re-
search and applications in econometrics by focusing on the regression prob-
lem. Section 2 discusses EFs for multiple regression. Section 3 reviews EFs
for the GMM and ML, and includes our "results." Section 4 has further re-
sults on Instrumental variables and specific suggestions for achieving small-
sample optimality in GMM. Section 5 refers to the EFs in further settings,
mostly those used in biostatistics. Section 6 discusses statistical testing and
inference with new bootstraps based on EF pivots. Section 7 contains some
final remarks.

2 Estimating Functions And Multiple Regression

Consider the usual regression model with T observations and p regressors:

e, E(e) = 0, E{ee') = σ2Ω (1)

If the Ω matrix is known, one uses the generalized least squares (GLS) esti-

mator, whose "normal equations" are viewed here as EFs and denoted by:

ggis = X'ΩΓιXβ - X'ϊl-ιy = X'ίl^e = 0. (2)

The log likelihood function Lτ when e ~ JV(O, σ2l) (normal errors and Ω =

/) is:

Lτ = (-T/2)log2π - (T/2)logσ2 - (l/2σ2)(y - Xβ)'{y - Xβ). (3)

Let ST denote the p x l score vector of partial derivatives of LT with respect

to (wrt) β.

dLτ/dβ = ST = (Mσ2)X\y - Xβ) = (l/σ2)X'e = 0. (4)

Under the above assumptions the score equation Sτ = 0 is OptEFg*=0,

since it minimizes Godambe's G-criterion defined for our vector case as

«)D^\ (5)

where Dg* = Edg*/dβj for i, j=l , - , p.
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The OLS normal equations from (4) are, X'e = 0, which are optimal
when Ω = /. Let us rewrite them as a sum over t:

gols(y, X,β) = Σf=1 X[{yt - Xtβ) = 0, (6)

where Xt={xn, , xtp) is a row vector and X[Xt (for t=l , ,T) are pxp
matrices having p equations for each t.

Remark 1: The EFs (as vector random variables) are sums of T terms,
but the corresponding (estimators) roots need not be sums. Hence the "cen-
tral limit theorem" arguments apply directly to EFs, supporting Small and
Mcleish's (1988) claim that EFs are "more normal." This justifies what we
called the "main lesson" of Godambe's EF theory, asking us to focus on the
EFs while deemphasizing the roots.

Using the Cauchy-Schwartz inequality, Kendall and Stuart (1979, sec.
17.17) prove that the Cramer-Rao lower bound on the variance of an unbi-
ased estimator y of μ = Xβ is attained, if and only if, β is chosen to satisfy
ST = A(X, β, σ2) (y — Xβ) where A is the arbitrary constant (matrix) of pro-
portionality. We refer to this important small sample property as "attaining
Cramer-Rao," often readily satisfied by the EFs. Durbin (1960) proved
that his simple TR estimator is OptEF for the ADL model, as it "attains
Cramer-Rao," even if the autoregressive (AR) parameter has a unit root, or
yt is explosive with the root > 1. Hendry (1995, p.232) lists eleven applied
econometric models, including partial adjustment, equilibrium correction,
leading indicator, etc., which are special cases of ADL models, but ignores
Durbin's TR estimator for them. Similarly, most econometricians discuss
asymptotics of complicated estimators, which often exclude unit roots or
explosive cases. Since EF theorists have recently developed a better un-
derstanding of conditioning which makes Durbin's TR estimator OptEF, it
deserves a fresh look in econometrics.

Gauss's intuitive notion of consistency from 1820's is explained by Sprott
(1983). An estimator is said to be small-sample Gauss-consistent (SSGC)
if it equals the true value, when all errors are zero. For example, solve the
OptEF Xfe = 0 when €*=() for all t in (6), and note that the EFs are obvi-
ously SSGC. Small-sample Gauss-consistency (SSGCy) is merely a desirable
property, using Gauss's tool for studying the properties of estimators. Note
that SSGCy is different from unbiasedness, since it does not involve aver-
aging. Just as the conventional asymptotics is useful, even though T may
never be actually infinite, SSGCy can be useful even though all errors may
never be actually zero. Kadane (1970) implemented SSGCy as small-sigma
asymptotics, which is conveniently discussed later in Remark 7.

Wedderburn (1974) defined integral of ST as quasi-likelihood, used in
econometrics by White (1982), without referring to Wedderburn. Quasi-
likelihoods require only the mean and variance and admit the exponential
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family of distributions. If only the first two moments are specified (no nor-
mality), the likelihood is unknown and the ML estimator is undefined. By
contrast, EFs remain available and "attain Cramer-Rao." Economists' com-
mon impression that "under normality, ML is unbeatable" is proved wrong
in Godambe (1985) and further explained in Godambe and Kale (1991).

Godambe and Heyde(1987) prove that EFs yield asymptotically short-
est confidence intervals. Vinod (1996b) explores this with regression exam-
ples. Small and McLeish (1988) show that EFs minimize the asymptotic
mean squared error (MSE). The EF literature shows that solving an OptEF
starting at some initial consistent estimator followed by Fisher's method
of scoring, is similar to the Newton-Raphson iterates with readily available
algorithms and "more normal" properties.

Let the parameter of interest be a smooth function u(β) with nonzero
derivatives, (e.g., long-run elasticities in econometrics). The chain rule im-
plies that the new score for v(β) is the original score ST times (dβ/dv).
Assuming that ST can be written as a sum over t, the new score equation,
which is the new EF, can also be a sum over t, and by Remark 1 it too is
"more normal". If we ignore the "main lesson" above and focus on the roots,
its sampling distribution can be quite nonnormal. For example, if v{β)—β2^
it is easy to verify that the sampling distribution of the root is χ2.

Remark 2: The EF literature seems to ignore warnings of numerical mathe-
maticians. For example, finding regression coefficients by solving the normal
equations (EFs) directly is not advisable, especially for ill-conditioned prob-
lems, due to rounding and truncation errors, Sawitzski (1994). Vinod and
Ullah (1981) formulate the regression problem in terms of the singular value
decomposition (SVD) of X = HAλ/2Gf, which leads to βols = GA~l/2H'y,
as the computationally most reliable technique.

If the regressors X are correlated with the errors we have X'Qτιe φ 0.
This leads to biased EFs from (2), Έggιs φ 0. The familiar method of
instrumental variables (IV) assumes that we have data on a Txr matrix Z
of r instruments which are (i) correlated with X, and (ii) uncorrelated with
e. The condition (ii) can be written as: EZΏ~ιe = 0, which obviously
achieves an unbiased EF of the IV estimator:

giυ = Z'Ω-^V " Xβ) = Z'9Γ\y - μ). (7)

We will note [after eq. (18)] that replacing X by Z in IV-type estimation
leads to "overidentification problems." Instead, Godambe and Thompson
(1989) prove that it is "optimal" to replace X in the score equation (4) by
its own expectation, (denoted later by Xc), hierarchically "conditional" on
exogenous and lagged variables. Singh and Rao (1997) generalize "hierar-
chical conditioning" in Godambe-Thompson theorem and provide results on
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asymptotic efficiency. In (A.8) of our appendix we use AR(3) and AR(4) to
replace a regressor logCt by its predicted value.

3 Estimating Functions, GMM And ML Estima-
tors

It is well-known in econometrics texts that OLS, GLS, ML and IV can be
viewed as special cases of GMM (e.g., Hamilton, 1994, ch. 14). Since the
summation in (6) can be replaced by an expectation, it is obvious that the
moment conditions of GMM can be viewed as EFs in (6). Since the GMM is
a direct generalization of Pearson's method of moments, it has (conditional)
moment equations. The first moment leads to the following EF:

E[9mom(y, X, β)] = E[X't(yt - Xtβ)} = 0, (8)

The GMM solution of (8) is obtained flexibly by minimizing an associated
quadratic form gf

momWgmorn, where W is any positive definite weight matrix.

Remark 3: The asymptotically optimal GMM minimizes gf

momW gmom, for
W = [Limτ->oo TE(gmomg'mom)]-\ Hamilton (1994, p. 413). Unfortu-
nately, this W involves ad hoc choices and possibly impractical evaluation of
the Limτ-^oo' By contrast, when available, the score is the OptEF without
using asymptotic arguments. Since OptEF "attains Cramer-Rao," optimal
GMM must be suboptimal in small samples, if it is different from the OptEF.

Dhrymes (1994, p. 368) calls GMM a "minor" modification of standard
IV methods. However, GMM is popular in the context of "rational expecta-
tions" framework in economics. It can adapt to dynamic macroeconomics,
where the Euler equations can be directly used as moment equations. For
example, Christiano and Eichenbaum (1992) write the "first order condi-
tions" from the "real business cycle" theory as the moment restrictions of
the GMM. An Appendix illustrates another application deriving (A.4) as
the EF for Tauchen's (1986) intertemporal utility maximization in a con-
sumption based capital asset pricing model (C-CAPM). See Ogaki (1993)
for C-CAPM details.

Result 1: Under certain assumptions of the regression model, EF methods
yield the same β as the OLS, ML, GLS, IV and GMM estimators. However,
OptEF methods may involve different choice of instruments or a different
estimate of Ω yielding a different β. Then, OptEF alone has small-sample
optimality and assumes no more than existence of first two moments. For
example, if due to heteroscedasticity, Var(yt) is a function of /?, Godambe
and Kale (1991) prove that the OptEF estimator is superior to GLS and
ML.
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It is well known that ML estimators (found by solving the score equation
(2) as the EF) enjoy an equivariance property wrt a one-to-one differential
transformation, a property not shared by the unbiased minimum variance
estimators. Now assume that Ω(</>) is unknown, and collect the parameters
as θ = (/?,</>), where β are parameters of interest and φ are the nuisance
parameters. The so-called Neyman and Scott (1948) problem is that the ML
estimator obtained by ignoring nuisance parameters φ can be inefficient and
inconsistent. Though this was published as a lead article in Econometrica,
it is rarely, if ever, cited in econometric literature. The EF literature shows
how to avoid the Neyman-Scott problem. Let q denote a complete sufficient
statistic for φ for each fixed θ. Assume that q is independent of β and let f
denote a generic density. We have

f(y,β,Φ) = f(y\q,β)f(q;β,Φ), (9)

where the first part is a conditional density. Godambe (1976) shows that
the conditional score

SCnd = dlogf(y\q,θ)/dθ = 0 (10)

is an OptEF, since it maximizes the G-criterion. Lindsey's (1982) conditional
score subtracts expected value to achieve unbiasedness. For time series data,
Godambe (1985) uses conditional expectations using information till time t-
1. Similarly Godambe and Thompson's (1989) hierarchical conditioning,
and results in Godambe (1991) and Bhapkar (1991) can be used to avoid
the Neyman-Scott problem.

Our next task is to evaluate the G-criterion of (5) using g*=Scnd=0 of
(10) and understand its deeper meaning. Clearly, the Dg* in (5) equals
the Fisher information matrix Ip = —E[d2Lτ/{dθdθ')]. Let us denote this
"second order partial" (Hessian) form of IF by /2op The E(g*g*') in (5)
equals the "outer product of gradients" form, denoted here by Iopg. Thus
we denote:

Iopg = E{(dLτ/dθi)(dLτ/dθj)}, hop = -Ei&LT/dθidθj}, (i,j = 1, ,/>)•

(11)
Result 2: If g* proportional to a score vector similar to Sr,

G-criterion = I^}v hpgl^p ( 1 2)

For proof use (5) and (11).

White's (1982) "information matrix equivalence theorem" states that:

when the model is correctly specified,

IF = hop — Iopg (13)
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White further developed (13) into a specification test.
Corollary of Result 2: Only when the model is correctly specified in
the sense of (13) the G-criterion minimand (12) reduces to J^ 1, which is
proportional to the variance.

Rather than using the normal likelihood of (3), we recall μ=Xβ notation
and verify this corollary in a simpler setting of estimating the mean μ of
independent and identically distributed (iid) variates:

yt~ΠD{μ,σ2). (14)

Now, the simpler quasi-log-likelihood of an observation is

, σ2) = -0.5log2π - O.blogσ2 - 0.5(y* - μ)2/σ2. (15)

Defining θ — (μ, cr2), the Fisher information lF=hop is a 2x2 diagonal
matrix having: (σ~2, 2~ισ~A) along the diagonal. Since its inverse has
variances along the diagonal, we have verified that Ip1 is proportional to
the variance. Next, we have:

/opg -
σ " 2

4-^72
(16)

where 71 = E(yt — μ) 3/σ 3 and 72 =E(yt — μ) 4/σ 4 — 3, measure skewness
and kurtosis. Clearly, only if 71 = 0 and 72 = 0, hop=Iopg are both diagonal
matrices satisfying (13). Thus, by avoiding (13) the G-criterion offers (ro-
bustness) some protection against misspecification. This discussion of the
corollary is intended to help the intuition.

Remark 4: The practical success of EF methods reported in biostatistics,
sampling and elsewhere may be due to the corollary. The G-criterion of (12)
seeks efficiency (low variance), as it adjusts for misspecification arising from
hpg Φ hop in finite samples. Minimizing the G-criterion (12) is not directly
attempted in econometrics, though minimizing variance (efficient estimation)
is ubiquitous. The G-criterion needs only finite mean and variance, and
quasi (not actual) likelihood functions. By contrast, the ML is sensitive to
misspecification of the likelihood function. In short, EFs provide a more
general and flexible estimation theory, which remains applicable in finite
samples and is insensitive to possible misspecification or nonexistence of the
likelihood function.

4 Further Results On Instrumental Variables And
GMM

Consider the class G of all estimating functions of the form g = Ae, where A
is a pxT matrix, and Ee = E(y — μ)=0. In this section, we eliminate σ2 for
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brevity and redefine Ω = Eee'=E(y - μ)(y - μ)1. Also, let H(β) denote any
pxp nonsingular nonstochastic matrix whose components depend on /?, and
let the superscript + denote a generalized or pseudoinverse of the matrix.

Result 3: In the class G, g* is an optimum estimating function (OptEF) if

and only if

g* = H(β)[d(y - μ)/dβ]'n+(y - μ). (17)

The proof is analogous to Vijayan (1991), who has proved a special case
when Ω is a diagonal matrix, which is of interest in survey sampling. Despite
possibly nonzero off-diagonals, essentially the same arguments apply here.
In particular, for the GLS we have μ = Xβ, X = d(y - μ)/dβ. Hence the
choice A = XΏ+ gives the OptEF. This reduces to (2), the EF for the GLS,
when H(β) = I and Ω is nonsingular. Thus (2) is the OptEF under certain
assumptions. If the EF is biased, EA(y-μ) φ 0, we replace A by Az = ZΏ+
choosing the instruments Z which satisfy EAz(y - μ) = 0 = Eg*. This is
when giυ of (7) is the OptEF.

Result 4: If Z is a Txr matrix (of rank r) of instrumental variables, instead
of (5) our new G-criterion minimand is

(Z'Ω+X)+(ZΏ+Z)(XΏ+Z)+ . (18)

To derive (18), use (7) and write gιυ = Z'Ω+€. Now, verify that Egivg'iv =
Z'Ω+ Z, and that the Dg* from (5) becomes (Z'Ω+X). Since each instrumen-
tal variable is observable (inside the information set), our Az is observable
in the linear case. Ogaki's (1993, p. 459) extension to the nonlinear case
can be adapted here.

The term "overidentification" in econometrics refers to simultaneous
equation models when r>p, where r denotes the number of exogenous (pre-
determined) variables in the complete model, and p denotes the number of
parameters in a single equation. The minimand (18) is designed for the
overidentified GMM case, where r>p means that there are more (moment
conditions) instrumental variables than regression parameters. In the EF
theory, since one can combine many EFs into one, overidentifying restric-
tions can be superfluous. For example, we can combine g\ =0 and g2=0 into
g\ +92=0. The "hierarchical conditioning" mentioned earlier obtains OptEF
by replacing the X in (2) by a matrix of conditional expectations denoted
here by Xc. The i-th column of Xc may be obtained by regressing i-th col-
umn of X on a column of ones (intercept) and any or all r columns of Z
for.i=l, , p. Now we list some advantages of Xc over the Z matrix of
instruments from (7): (i) The column dimension of Z as regressors does not
matter, and one need not worry about overidentification, let alone have a
complicated formal test for it. (ii) It is easy to guarantee that Xc columns
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are highly correlated with the X columns, (iii) A simpler G-criterion can be
used to attain optimality. For an example, see our appendix.

For the overidentified case, the GMM moment condition (8) becomes
E(Zf

t(yt — μt)) = 0 for any t, where Zt denotes the t-th row of Z. Also, the
GMM minimand becomes:

(y-μyZWZf(y-μ), (19)

where W is an rxr matrix of weights. Assuming that X is of full rank p
and r>p, i.e., we have enough instruments, then GMM estimator βgmm is a
solution of the following p EFs:

99mm = (X'ZWZ'X)β - X'ZWZ'y = 0. (20)

Recent GMM theory notes that the optimal rxr weight matrix W is: W =
STΩ^S'T, where Sτ= Z/Ω,~1(y — Xβ) is the r x l score vector similar to (7).
Since score equations are OptEFs this brings GMM and EF theories closer.
However, substituting this W in (20) seems to be unnecessarily complicated.

Remark 5: Only when the W matrix which minimizes (19) also minimizes
the G-criterion of (18) will the GMM solution coincide with the EF solution.
Otherwise the GMM is suboptimal, as we have already noted in remark 3.

Result 5: Denote the root of an EF by βef, and let the corresponding vector

containing T residuals be e = y — μ(βef). Since the GLS normal equations

(2) are EFs, their "equation residuals" are (degenerate) identically zero, or

XΏ~ιe =0. Recall that we may avoid biased EFs by replacing X by Xc, a

conditional expectation based on Z instruments. Denote Aze = X^Ω^e = 0.

To verify SSGCy we set e = 0 and note that this amounts to solving the

normal equations. Thus, we always have SSGCy for these unbiased EFs.

However, the true unknown "equation errors" g* — Aze are a non-degenerate

vector of random variables with zero mean and variance

V = Var(g*) = Eg*g*' = EAzee'A'z = AzVAf

z. (21)

Since Aze = 0, it is incorrect to replace e in (21) by e. Instead, our estimate

of variance is:

V = XC'Ω+XC. (22)

Remark 6: Equation (22) needs a consistent estimate of Ω+ (or Ω"1, if it

exists). If regression errors follow an AR(1) process with parameter p, it is

well-known that Ω"1 is proportional to a tridiagonal matrix: It has 1+p2

along the main diagonal, except for ones in the two corners and a — p along

the sub and super diagonal. More generally, we find the parameters of ap-

propriate (by Schwartz criterion) autoregressive integrated moving average
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(ARIMA) process for residual e and indirectly determine autocovariances φj
for j=l , , q<T. Next, create a (symmetric) Toeplitz matrix Ω from φj and
substitute in (22). To achieve robustness against both autocorrelation and
heteroscedasticity, we need consistent estimates of heteroscedastic variances
to insert into the diagonals of Ω.

Remark 7: Kadane's (1970) small-sigma asymptotics explained in Vinod
and Ullah (1981, p. 162) is an implementation of SSGCy. It rewrites the
error as u = σe, Euu' = σ2Ω and finds limits as the constant σ —» 0. Con-
sider a biased EF arising when appropriate instrumental variables Z are
unavailable: g — Axe — Ax(y — μ), where Ax — XΏ+, Axe ψ 0. Denote the
bias by Bs = EAxe = EAx(y - μ + μ - μ) = EAxiίσ + EAx(μ - μ), where
g = Axύσ + Ax(μ — μ) is now a function of Kadane's σ. Since EAxuσ -> 0
as σ -> 0, small-σ approximate bias is Bsσ = EAx(μ — μ), linking the bias
of EFs with the bias of estimators μ. Writing the bias, variance and MSE
as a power series in σ, one obtains small-σ approximations by ignoring high
powers of σ. The variance of the biased EF is

E(ggf) = (EAxee'A'x) = {EAxuu'Ax)/a2 (23)

If μ = Xβ, small-σ bias is Bsσ = EX'Ω+X(βef - β). If μ = Xβ and X is
nonstochastic, E{gg')= (X'Ω+X), where we use Euu' = σ2ίl and cancel the
σ2 in the denominator of (23). More research is needed to explore small-
sigma methods for EFs.

5 Estimating Functions In Further Settings

Cox's (1975) partial likelihood score, which is a sum of appropriately condi-
tioned scores (10), is widely used in biostatistics and elsewhere. Godambe
(1985) proves that the optimal coefficient in g* is Et-i {d2Scnd/dθ2)/Et^ι {Scnd)

2

= —l2op/Var(SCnd) Next, he proves that the EF theory implies optimality
of the partial likelihood scores, which have been used by practitioners since
the late 1970's.

Wedderburn (1974) considers a general linear model (GLM) with inde-
pendent responses. The GLM is specified by a known (monotonic differ-
entiable) link function v{μt) = v(X[β), and the random part is from the
exponential family. The Box-Cox transformation is one kind of link function
well-known in econometrics. The quasi-score function for GLM is

z? /Ω"1(y-μ) = o, (24)

where μ = v~ι{Xβ), D = dμi/dβj is a pxp matrix, and Ω = diag(Ωt) is
TxT diagonal matrix. The logistic model has μt=exp(X[β)l[l+exp(X'tβ)],
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dμ/dβj=xtjμt(l-μt) Its familiar link function μt = log(yt/(l-yt)) provides
a useful simplification and linear estimating functions.

Godambe and Heyde (1987) show that the quasi score function (which
minimizes the G-criterion) is an optimal estimating function. Godambe and
Thompson (1989) extend the quasi score function to include the quadratic
wt = (yt — μt)2 and show that the variance matrix for (yt, wt) involves
skewness and kurtosis parameters in (16). The GLS estimating functions
(2) are a special case when D = X.

For repeated k measurements (panel) of correlated data, the D matrix
of (24) becomes block diagonal, and we have similar estimating functions
with an additional summation over k blocks. These are called generalized
estimating equations (GEE) defined by:

Ytj—iDjΩ" (yj — μj) = 0, (25)

where the matrices have subscript j to distinguish them from those of (24)
in analogous notation. This will correctly account for the correlations φ
incorporated in Ωj(φ) if they are known. Otherwise, one uses the feasible
version by replacing them by consistent estimators denoted by Ωj. The
asymptotic covariance matrix of GEE estimates of β is given by

Varφgee) = σ2A~ιBA~ι, with A = Σ^Dfi^Dj and

B = Σ^DjΩ^ΩjΩ^Dj. (26)

Although repeated measurements are rare in econometrics, the above
methodology can be useful. For example, Vinod (1989) uses a fuzzy range
of rounding errors around each measurement to artificially create repeated
measurements. In biostatistics, GEE has been applied to study various situa-
tions where y is continuous, binary or count. Hence econometric applications
to similar data (e.g., panel) are worth considering.

6 Statistical Testing And Inference With New Boot-
straps

Statistical testing is important in econometrics and the bootstrap has been

proved to be useful for difficult inference problems, Hall and Horowitz (1996),

Vinod (1993). Denote Fisher's pivotal for i-th regression coefficient as:

ep = Φ% — βi)/SEi, where SEi denotes the standard error. This pivot

is asymptotically standard normal, N(0,l), and since it is a function of

(y,X,/3), it is an EF itself. Inverting Fisher-type pivotals (having βi — βi in

the numerator) always yields symmetric confidence intervals. For the 95%

case, inversion yields φi qF 1.96£E?i), a symmetric confidence interval for βi.
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Godambe and Heyde( 1987) prove that EFs yield asymptotically shortest
confidence intervals. Lele (1991) suggests a symmetric EF bootstrap for de-
pendent time-series data. Vinod (1995) suggests using the double bootstrap
to deal with the problem of a lack-of-a-pivot, whereas Vinod (1996b) con-
siders asymmetric intervals and uses the double bootstrap. Thavaneswaran
(1991) notes that the sequence of EFs based on Godambe (1985) is a "mar-
tingale difference sequence" and provides Wald, Rao's score and nonpara-
metric test statistics involving martingales and semimartingales. His ap-
plications include testing for structural change, common in econometrics.
Heyde and Morton (1993) show that the restricted OLS estimator (RLS in
econometrics texts) can be derived from projections in EF theory without
using Lagrangians. For testing linear restrictions, one can use their EF
estimators and corresponding Fisher information as covariance matrices for
construction of test statistics. However, we propose a different approach
where the pivotal is constructed from g and Egg' rather than the usual
{0ef-β]x[Var(βef)}-V2.

Given Eg = 0 (unbiased g) we seek the square root matrix of the pxp
variance matrix V = Eggr of EF if V is known. Otherwise, we use a consis-
tent, robust and nonparametric estimators V of V from (22). For related
literature, see Ogaki (1993) and Andrews and Monahan (1992), among oth-
ers. Now consider a square root decomposition:

V = σ£,σ#, if available, or V = GLGR, (27)

where GL denotes the pxp left-square-root matrix decomposition of the ma-
trix, and GR a similar right-square-root matrix, assuming they exist. The
computations may be based on either the Cholesky or symmetric versions.
If Eg φ 0 due to nuisance parameters being estimated, Godambe (1991,
p.144) suggests using g^g—Eg as the revised EF, where the expectation is
conditional on minimal sufficient statistic for the nuisance parameter. For bi-
ased estimators, Vinod (1984) argues that it is useful to replace the variance
in the denominator of the usual t ratio by the square root of an unbiased
estimate of the mean squared error (^/UMSE). However, he shows that
the resulting distribution is similar to a noncentral Chi-square, depending
on unknown noncentrality; hence the revised t-ratio is only an approximate
pivotal. Thus, if g is biased, we may replace the V in (27) by a matrix
containing the UMSE. Further work is needed to explore the use of UMSE
here.

Result 6: An approximate pivotal for the EF estimator βej obtained by

solving g = 0 can be

U = σlιg, (28)

where we assume E(g) = 0 and use the square root decomposition in (27).



ESTIMATION IN ECONOMETRICS 227

For example, substituting V from (22) and Ώ from Remark 6 in (27) one
can incorporate autocorrelations and heteroscedasticity. As a pivotal, we
know that asymptotically, U is well behaved and Var(U) -> I. By contrast,
a pivotal for βef needs variance of the sampling distribution of the root βef
of g = 0, which can be more complicated. When nuisance parameters φ
are present, the distribution of g may depend on φ. To solve this problem
Morton (1981) considers a pivotal g, where the distribution depends only on
the parameters of interest β. Parzen et al (1994) provide two mild regular-
ity conditions on general EFs for asymptotically valid bootstrap confidence
intervals.

Now we outline typical steps of a bootstrap for time-series regressions,
designed to overcome the time dependence (among regression errors). These
should be modified to suit specific examples, and all computations should use
numerically reliable methods (e.g., use SVD of Remark 2 when applicable).

Steps for a Parametric Bootstrap using EFs:
(i) Denote i-th columns of X and Xc by X{ and x\, respectively. Let

χ9 = Xi for (deterministic or exogenous) variables in X known to be uncor-
related with errors, (y — μ). Regress each of the remaining (correlated) X{
on a column of ones (for intercept) and all relevant instruments Z. Use the
predicted value from this regression to complete the Xc matrix. Construct
p optimal EFs g* = Xc/Ω+(y — μ(/?)), where we permit some nonlinear func-
tions μ(β)) instead of the usual Xβ. Unless Ω is known, use Ω = /, to obtain
a preliminary px l vector βpre by solving g* = 0.

(ii) Use the T residuals et — yt — μ(βPre)t and Remark 6 to construct q
autocovariances φj and hence a TxT Toeplitz matrix Ω to approximately
represent time dependence. Make further adjustments to the diagonal terms
to allow for heteroscedasticity, if desired.

(iii) Solve the revised g* = XcfΩ+(y - μ(β)) = 0 to obtain /3e/, new

residuals et=yt — μt{βef) > and revised Ω. In some examples it may be useful

to repeat this step until βef values converge within a given tolerance.
(iv) Obtain a (Cholesky) factorization of the pxp matrix V = XcfΩ+Xc =

VLVR, from (22) defining σ^ and GR.

(v) Generate J(=999, say) simulated pxl vectors e*j=σLV, of "equation
errors," where υ is a px l vector of N(0,l) unit normal deviates and j=l ,
J.

(vi) Solve J different EFs: e* = Xc/Ω+(y - μ(β)) to yield J estimates
of the pxl vector β denoted by β*^. If some function f(β) is of interest,
(e.g., long-run elasticity), compute J estimates of that function denoted by

£(*/)•
(vii) Order the p components of β separately in an increasing order and

denote the order statistics by β*efuy For a 95% two-sided confidence interval
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use /?e/(25) a s the lower limit and βlf,97^ as the upper limit. Similarly, from

the function estimates fjΦlf) = fj the confidence interval is [/(25), /(975)]

Since the EFs are "more normal" than estimators of β (due to averaging),
and since we are using EFs as pivots, we have reliable statistical inference
according to the bootstrap and EF theories. A null hypothesis regarding
functions f(/3), similar to long-run elasticities of Remark 1, can be tested
by using appropriate confidence intervals from f(/3*j) in step (vii). The
following nonparametric bootstrap can avoid estimation of Ω.

A Nonparametric Bootstrap using EFs:

Vinod (1996a) suggests using scaled recursive residuals, recently surveyed
by Kianifard and Swallow (1996). For regressions with dependent data
they are attractive, because they are iid with zero mean and unit variance.
Denote by X τ a r x p matrix consisting of the first r rows of X, provided
r > p + l . Let yτ denote the r x 1 vector of initial τ observations of y, and let
bτ = (Xίj-Xr)"1 X'τyτ denote the corresponding OLS estimator. Denote xτ

such that yτ — x'τbτ-ι is the "conditional forecast" of yτ for τ=p + 1, ,T.
Instead of using y r, we define recursive residuals in an equivalent simpler
form:

wr = (yτ - x'τbτ)/στ, where σr = [1 - x'^X^X^Xr]1'2, (29)

where the residual in the numerator, yτ — μτ, is scaled by σ r to achieve

Var(wτ) = l. Kianifard and Swallow (1996, p. 393) provide a computational

strategy and write the (T — p) x 1 vector w = wτ=Cy, where C is a (T— p) xT

complicated matrix. They show that CX = Q,Ew = 0, Eww' = σ2lτ-p, and

w'w = e'e. Denote the residual sum of squares by RSST = (yr — xr

τbτy(yτ-

-xr

TbT). Since RSSτ = RSSτ-ι+w2, this gives a numerically reliable method

of estimating στ.

From the OLS normal equations, the EFs are (T-p) separate sets for

r = p + 1, ,T: g* = Xct(yT - μr)loτ, where μτ = x'τβτ. Each r leads to

p equations g* = 0 yielding T - p sets of βefτ. However, we are mainly

interested in the last solution βef=βefT using all available data. Bootstrap

shuffling of the T - p iid wτ residuals avoids the problems with bootstrap

for time series (dependent) data. Denote shuffled recursive residuals as

wTj for j = l , , J(=999). Substitute wτj in (29) to get yrj = yτ + wTjdT.

Next, we assemble yj = (yi, yp,yij, '-yTjr- VTJ)', into a Tx 1 vector of

y values for the j-th bootstrap resample. Now, solve Xcf{yj - μ(β)) = 0, to

yield J estimates of p x l vectors denoted by /3*^. Finally follow the step

(viii) mentioned earlier for statistical inference and confidence intervals. An

Appendix implements this for the C-CAPM model using the GAUSS and

RATS computer languages.
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7 Conclusion And Final Remarks

This paper discusses EFs, which are functions of parameters and data,
g(y,X,β) = 0, in the regression context of econometrics. The main les-
son of the EF theory is to focus attention on EFs while deemphasizing their
roots (or estimators) β. The EFs are shown to be "more normal" than
the roots, leading to better behaved pivotals for inference and easier condi-
tioning arguments. Applied researchers sometimes wish to avoid the ML
estimator, since the likelihood exists only under the (often unverifiable) nor-
mality assumption. If they are confident about the existence of the mean
and variance, Wedderburn's (1974) quasi likelihood score can be the opti-
mal EF. Using the EFs econometricians can avoid some fancy asymptotic
theory and Όveridentifying restrictions'. Also, some recent unit root and
other estimators of autoregressive distributed lag (ADL) models are shown
to be unnecessarily complicated and suboptimal in small samples compared
to Durbin's (1960, p.151) two regression (TR) estimator, further justified by
the recent EF theory.

We show that the optimum EF estimate β based on the quasi score "at-
tains Cramer-Rao," and is small-sample Gauss-consistent (SSGC). Further
advantages of EFs proved in the literature are: minimization of the asymp-
totic mean square error, ability to yield shortest confidence intervals, solve
the Neyman-Scott problem and provide efficient Newton-Raphson iterates.
Our references also give examples of practical uses of the EFs. We include
an appendix where a familiar econometric example of dynamic rational ex-
pectation model (C-CAPM) shows that EF estimates are similar to GMM
estimates, while avoiding some of the ad hoc features of the GMM. For
inference on this example, we implement the nonparametric bootstrap using
the iid recursive-residuals from (29). Our EFs yield shorter confidence inter-
vals and our estimates of both risk aversion and time preference parameters
are economically more meaningful than the GMM estimates. This applica-
tion using commonly available data demonstrates that EFs are practical and
potentially valuable tools for econometrics.

This paper also includes several "results" and "remarks" which are poten-

tially useful, and provides detailed steps for two new time series bootstraps

for possibly dependent data. Since Euler equations or first-order condi-

tions are readily regarded as EFs, there are many potential applications

in economic dynamics. We can test complicated dynamic economic theo-

ries directly by using the EF methods, and recommend using the bootstrap

when inference becomes analytically complicated. We have demonstrated

that EFs can improve upon some esoteric econometrics and simplify appli-

cations.
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APPENDIX A
GMM and EFs for C-CAPM

Generalized Method of Moments and Estimating Functions
for Estimation of Consumption-Based Capital Asset Pricing Model
Consider a representative agent model leading to C-CAPM, see Tauchen

(1986) and Ogaki (1993). Denote ct= consumption, pit=price ex-dividend
of i-th asset, and cf^=real dividend. Let an intertemporal budget constraint
be: ct + Σfίtfitpit =^iLiQi,t-i(Pit + da), where <^=amount of the i-th asset
the agent carries into the next period t+1. Now the intertemporal utility is
assumed to be additively separable. Lifetime utility of an agent with infinite
time horizon (due to bequests) is

EtΣfβku{ct+k), (AΛ)

where Et is conditional expectation using all information till time t, and
0< β < 1 is subjective rate of time preference. If the constant subjective
interest rate is iβ, the parameter β is defined as l/(l+i8). The market
interest may determine is and an "instrumental variable" may be based
market interest rate data. In (A.I) the first and second derivatives (denoted
by primes) of the utility function satisfy: υ! > 0 and u" < 0. A popular
utility function is: u(c) = c 1 ~ 7 / ( l — 7), with 7 > 0, hats υ! = c~7 and v!1 =-
—7c" 7 " 1 where u" < 0. Since cu"/uf = —j, is a constant, this u(c) belongs
to the constant relative risk aversion (CRRA) family of utility functions.
The estimation of risk aversion parameter 7 is more important than that of
the discount parameter β. We do not permit the agent to continuously roll
over the debt. The already mentioned first-order conditions for maximizing
the lifetime utility, subject to the budget constraint, are the Euler equations:

pitv!(ct) = βEt[u'{ct+ι)(pitt+1 + di>t+i)], (A.2)

where (i=l, ,M). Using the CRRA utility function for u, we rewrite (A.2)

as

Pi^Ί = βEtpi^ιc^ι + βEtditt+ic£!v (A3)

which can be written in terms of observable growth variables defined as ratios

dij = dί,tM,t-i, and Ct = Q / Q - I and the price dividend ratio πa = Pi,t/d>i,t

for the i-th asset as the estimating function (EF)

= 0, (4.4)

where all terms are observable, except the parameters denoted by # = (/?, 7).

Denote the gross return per dollar invested on the entire market from t to

t+1, [(1 + πt+i)/πt]d ί +i, by Rt+i and rewrite (A.4) as:

Σj=ιgmom,t(θ) = Σj=ι[βRt+ιC^\ - 1] = 0, (A.5)
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Typical GMM estimation involves following steps: (i) Choose r instrumental
variables defined from lagged C and lagged asset returns to form an rx l
vector zt for each t. (ii) Define gt{θ) = gmom^t- (ϋί) Compute time aver-
ages gτ(θ) = Σf=ιgt(θ)/T. (iv) Compute A = (l/T)Σj=1gtg

f

t with diagonals
at. (v) Use the starting Wj for j = l as a diagonal matrix having (1/αt).
(vi) Compute the θj for j = l by minimizing a quadratic form gt{θ)'Wjgt(θ).
(vii) For j=2 let Wj = [(l/T)ΣjL1gt(θj-ι)gt(θj-iY]-1. (win) Compute θj as
minimizers of gt{θj-i)'Wjgt(θj-ι)- (ix) Repeat steps (vii) and (viii) till
convergence and obtain the GMM estimator θgmm. It is assumed that Wj
converge to WQ = [Egtg't]~ι evaluated at the true value θo, and that Egtg[
is nonsingular and symmetric, (x) The final step is to find the covariance
matrix Var(θgmrn) = D^WQD^ where D% = EtDt, where Dt matrix contains
partials oΐgtφ) with respect to θ. In practice, one substitutes time averages
of Dt for Df and replaces Wo by the time average [(l/T)Σj=ιgtgr

t]~ι, where
the gt are evaluated at the θgmm, Tauchen (1986).

Now we turn to our EF estimation. We rewrite (A.5) as E(βRt+iC£j!i)=l,
which may be written as a nonlinear regression model with errors (not util-
ities) denoted by subscripted u:

C^ = 1 + ut+u Eut+ι = 0, rxt+i = σet+i, (A6)

where σ refers to small-sigma asymptotics (Remark 7). Now consider limits
as σ -> 0. The SSGCy requires that the method of estimation should yield
the correct estimates when the model equation errors ut = 0 for all t. In
models containing forward-looking economic time series, it is reasonable to
extend SSGCy to require that the estimation method performs correctly
when "expectational errors" are zero. Log of the right hand side of the

regression in (A.6) is log(l + ut+ι)=ut+ι - ^?+i/2 H = 0^+1 — σ2*?+i/2.
Since σ -> 0, we can omit terms with σ 7 for j> 2. Next, we replace t+1 by
t, and σet+ι by ut to write a new C-CAPM linearized regression:

logRt = -logβ + ηlogCt + ut. (A.7)

This new method suggested by the EF approach is potentially useful
elsewhere in macroeconomics. Of course, the EFs are explicitly nonlinear
functions, and small-σ asymptotics leading to (A.7) is not at all essential
for selling the EFs. Since the correlation, corr(ut,logCt), between the error
and the (stochastic) regressor of (A.7) may be significant, we use k lagged
values as instruments. We construct Xc from predicted value logCt from
an AR(k) regression: logCt = &o + Σkj=ιlogCt-j. The k is chosen by the
information criteria (AlC-type). It is well-known from the econometric
literature dealing with two stage least squares that corr(ut,logCt) -» 0.
This supports similar "hierarchical conditioning" arguments from the EF
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TABLE la GMM estimation by RATS package and Nonlinear Instrumental
Variables. (Quarterly data from 1960:01 to 1987:04) GMM estimates of β
and 7 with t-statistics in parentheses:

Case 1) T(Usable Observations)=110, df( Degrees of Freedom)=108, iter-
at ions^, NLAG (Lags used for instruments)=l, Residual Sum of Squares
(RSS)= 0.0092, Durbin-Watson statistic (DW)=1.6104. /3=0.99097 (54.86),
7=1.24629 (t-value=0.4823, SE=2.58). Upper limit of confidence interval
for 7 (UpL) is much larger than 2 ( U p L » 2). The χ 2 ( l ) = 2.3841 < 3.8415,
the tabulated 95 % value for df=l.

Case 2) T=109, df=107, iterations=3, NLAG=2, RSS= 0.0092, DW=1.5633.
0=0.99058 (72.83), 7=1.18231 (0.6077, SE=1.94). Again UpL for 7 » 2.
The χ 2 ( l ) = 4.0682.

literature mentioned after (7). Here, (7) becomes:

1 (A8)

where Z = [L, logCt], where L is a column of ones, y = logRt, X = [/,, logCt],
and θ={-logβ,Ί)'.

Table la reports estimates for the GMM (using RATS software, rather
than Tauchen's). Tables lb to Id have our EF estimates of (A.7). Both
methods use the same quarterly US data from 1960:1 to 1987:4, used by
many others and which comes bundled with the RATS software. We find
that the EF results are quite comparable in terms of the Durbin-Watson
statistics and residual sum of squares as measures of fit. Both methods
correctly estimate β < 1, (βef « 0.99).

We use subscripts to compare 7 across tables. Using the subscript 0 for
the no instrument case in Table lb we have 70=2.26782. Similarly, when
AR(3) is the instrument to obtain logCt in Table lc, 7 α r 3 = 1.62983. When
AR(4) is used in Table Id, we have %rA = 1.24253. The GMM estimate (Case
1, Table la) when NLAG (the number of lags used to form instruments)
equals unity is % m m = 1.24628. This is close to %r4 = 1.24253.

Recall from the comments before (7) that good instruments should be (i)
highly correlated with the replaced regressors, and (ii) uncorrelated with the
errors. In the GMM literature, lagged values of variables are directly used as
instruments. The users of GMM software often throw-in many lagged values
as instrumental variables, with little attempt to check both requirements
of good instruments. Tauchen (1986) notes that Hansen's two-step GMM
estimator with lagged endogenous variables as instruments may not "possess
moments." He recommends reporting medians and interquartile ranges.
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TABLE lb EF estimation (No instrument used)
T = l l l , df=109, RSS=0.009, DW=1.635, R2=0.206.
άo=intercept=O.OO225 (0.7208), β=exp{-άo)=O.99775. Since the transfor-
mation exp(-άo) is needed, only Taylor series approximate t-values for β
are possible, 7=2.26782 (5.32).

TABLE lc (Instrument created using AR(3) )
T=108, df=106, RSS=0.011, DW=1.624, i?2=0.006
άo=intercept=O.OO644 (0.4605), β = exp(-άo)=O.99358, 7=1.62983
(0.8241).

TABLE Id (Instrument created using AR(4) model )
T=107, df=105, RSS=0.011, DW=1.619, i?2=0.005
άo=intercept=O.OO921 (0.729), β = ezp(-άo)=O.99O84, 7=1.24253 (0.6966).

They are not needed here, since our C-CAPM does not suffer from the
infinite moment problem. In any case, the GMM strategy for choosing
instruments is somewhat ad hoc.

Since the GMM routinely involves overidentified models (r>p), it needs
a χ2 test for overidentifying restrictions. Since the observed χ2=2.3841 for
Case 1 in Table la is smaller than the tabulated 95 % value of 3.8415 for
df=l, we do not reject the overidentifying restrictions of the GMM. However,
Tauchen (1986, p. 412) cautions that these χ2 values are slightly biased to-
ward accepting model specification. The Case 2 of Table la does reject the
GMM model restrictions. To avoid problems with nonstationarity of vari-
ables most researchers follow the current literature. They use consumption
growth Ct = ct/ct-ι and dividend growth in the definition of Rt instead of
Ct and dt levels. However, then we have to pay a price: the statistical fits
are often poor when level variables are absent. The R2 values are artificially
small and do not imply that the model specification is flawed. Unfortunately,
the low R2 values are rarely reported in the GMM papers. Perhaps, some
alternatives to the usual i?2-type criteria are needed.

Tauchen and others use the "reliability" of confidence intervals, as well
as, Varφgmm) for evaluating the reliability of GMM estimation. Plots of
simulated sampling distributions in Tauchen seem to be new. They are
generally skewed to the right and suggest nonnormality. For EF estimation
it is easy to use the standard t-ratios based on Var(βef)=σ2(XrΩ,~ιX),
although the nonnormality (skewness) implies that the bootstrap may be
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better. However, when the residuals are shuffled for a bootstrap, they lose
the time subscript and fail to retain original time dependence. Hence recent
literature suggests that bootstrap of time series residuals is problematic.
Following Vinod (1996a) we use the recursive residuals defined in (29) to
develop a proper (iid) bootstrap.

Table 2 reports the bootstrap 95 % confidence intervals for β and 7.
Note that our upper limit (UpL) of the interval for β does not exceed unity.
By contrast, for NLAG> 2, the GMM estimate β > 1 is economically mean-
ingless, since it implies perverse discounting (negative interest rate). The
bias corrected (BC) upper and lower limits move the confidence intervals
slightly to the right, consistent with the positive skewness (the mean over
999 resamples exceeds the median). Our UpL for 7 is 1.9744, while both
GMM UpL's (Table la) are very large. Since Mehra and Prescott (1985)
concluded that "sensible" values of 7 should be less than 2, our intervals are
more "sensible" than the GMM's.

Table 2: Bootstrap results based on J=999 resamples

Mean Median Low Up Low-BC Up-BC Coefficient
0.99069 0.99066 0.98630 0.99550 0.98674 0.99633 ~β
1.2204 1.2196 0.59527 1.8924 0.65285 1.9744 7

where Low and Up are the lower and upper limits of percentile confidence in-
tervals. BC refers to (median) bias correction. Since the median < mean for
both, the estimated sampling distributions are skewed to the right (similar
to Tauchen's simulations).

Acknowledgements

I am grateful to Parantap Basu, V. Godambe, Denis Kwiatkowski, Bruce
McCullough and two referees for helpful comments. I am especially grateful
to Avi Singh for generously taking the time to explain some EF theory,
when I presented a version in March 1996 at the Symposium on Estimating
Functions at Athens, Georgia.

References

Andrews D. W. K. and J. C. Monahan (1992). An improved heteroscedastic-
ity and autocorrelation consistent covariance matrix estimator. Econo-
metrica 60 (4), 953-966.

Bhapkar, V. P. (1991). Sufficiency, ancillarity and information in estimating
functions: an overview, Ch. 18 in V. P. Godambe (ed.) Estimating
Functions. Clarendon Press, Oxford.



ESTIMATION IN ECONOMETRICS 235

Christiano, L. J. and M. Eichenbaum (1992). Current real-business-cycle
theories and aggregate labor market fluctuations. Amer. Econ. Rev.
82,430-450.

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269-276.

Crowder, M. (1986). On consistency and inconsistency of estimating equa-
tions. Econometric Theory 2, 305-330.

Dhrymes, P.J. (1994). Topics in Advanced Econometrics. Vol. II, Springer
Verlag, New York.

Dunlop, D. D. (1994). Regression for longitudinal data: A bridge from least
squares regression. Amer. Statistician 48, 299-303.

Durbin, J. (1960). Estimation of parameters in time-series regression models.
J. of the Roy. Statist. Soc. Ser. B, 22, 139-153.

Godambe V. P. (1960). An optimum property of regular maximum likelihood
estimation. Ann. of Math. Stat. 31, 1208-1212.

Godambe, V. P. (1976). Conditional likelihood and unconditional optimum
estimating equations. Biometrika 63, 277-284.

Godambe, V. P. (1985). The foundations of finite sample estimation in
stochastic processes. Biometrika 72, 419-428.

Godambe, V. P. (1991). Orthogonality of estimating functions and nuisance
parameters. Biometrika 78, 143-151.

Godambe, V. P. and C.C. Heyde (1987). Quasilikelihood and optimal esti-
mation. Intern. Statist. Rev. 55, 231-244.

Godambe, V. P. and B. K. Kale (1991). Estimating functions: an overview,
Ch. 1 in V. P. Godambe (ed.) Estimating Functions. Clarendon Press,
Oxford.

Godambe, V. P. and M. E. Thompson (1989). An extension of quasi-
likelihood estimation. J. Statist. Planning and Inf. 22, 137-152.

Hall, P. and J. L. Horowitz (1996). Bootstrap critical values for tests based
on generalized-method-of-moments estimators. Econometrica 64 (4), 891-
916.

Hamilton, J. D. (1994). Time Series Analysis. Princeton Univ. Press,
Princeton, NJ.

Hansen, L. (1982). Large sample properties of generalized method of mo-
ments estimators. Econometrica 50, 1029-1054.

Hendry, D. F. (1995). Dynamic Econometrics Oxford Univ. Press, New
York.

Heyde, C. C. and R. Morton (1993). On constrained quasi-likelihood esti-
mation. Biometrika 80, 755-761.

Kadane, J. B. (1970). Testing overidentifying restrictions when disturbances
are small. J. Amer. Statist. Assoc. 65, 182-185.

Kendall, M. and A. Stuart (1979). The Advanced Theory of Statistics.
MacMillan, Vol. 2, Fourth Ed. New York.



236 VINOD

Kianifard, F. and W. H. Swallow (1996). A review of the development and
application of recursive residuals in linear models. J. Amer. Statist
Assoc. 91, 391-400.

Lele, S. (1991V Resampling using estimating functions. Ch. 22 in V. P.
Godambe (ed.) Estimating Functions. Clarendon Press, Oxford.

Lindsey, B. (1982). Conditional score functions: some optimality results.
Biometrika 69, 503-512.

Liang K. and S. L. Zeger (1995). Inference based on estimating functions in
the presence of nuisance parameters. Statis. Sc. 10, 158-173.

Mehra, R. and E. C. Prescott (1985). The equity premium: A puzzle. J. of
Monetary Econ. 15, 145-162.

Morton, R. (1981). Efficiency of estimating equations and the use of pivots.
Biometrika 68, 227-233.

Neyman, J. and E. L. Scott (1948). Consistent estimates based on partially
consistent observations. Econometrica 16, 1-32.

Ogaki, M. (1993). Generalized method of moments estimation, in G. S.
Maddala, C. R. Rao, and H. D. Vinod (eds.) Handbook of Statistics:
Econometrics. Vol. 11, North Holland Elsevier, New York. Chapter 17,
455-488.

Parzen, M. I., L. J. Wei and Z. Ying (1994). A resampling method based on
pivotal estimating functions. Biometrika 81, 341-350.

Sawitzski, G. (1994). Testing numerical reliability of data analysis systems.
Computa. Statist & Data Anal 18, 269-286.

Singh, A. C. and R. P. Rao (1997). Optimal instrumental variable estimation
for linear models with stochastic regressors using estimating functions, in
Godambe V. P (ed) IMS Symposium of Estimating Functions New York.

Small, C. and D.L. McLeish (1988). The Theory and Applications of Sta-
tistical Inference Functions. Lecture Notes in Statistics No. 44, Springer
Verlag, New York.

Sprott, D. A. (1983). Gauss Carl Priedrich, in Kotz and Johnson (eds.)
Encyclopedia of Statistical Sciences. Vol 3. J. Wiley, New York. 305-308.

Tauchen, G. (1987). Statistical properties of generalized method of moments.
J. Bus. and Econ. Statist. 4 (4), 397-425.

Thavaneswaran A. (1991). Tests based on an optimal estimate. Ch. 13 in
V. P. Godambe (ed.) Estimating Functions. Clarendon Press, Oxford.

Vijayan, K. (1991). Estimating functions in survey sampling: Estimation of
super-population regression parameters. Ch. 17 in V. P. Godambe (ed.)
Estimating Functions. Clarendon Press, Oxford.

Vinod, H.D. and Ullah, A. (1981). Recent Advances in Regression Methods.
Marcel Dekker, New York.

Vinod, H. D. (1984). Distribution of a generalized t-ratio for biased estima-
tors. Econ. Letters. 14, 43-52.



ESTIMATION IN ECONOMETRICS 237

Vinod, H. D. (1989). Resampling fuzzy data and Latin Squares: Application
to regression. 1989 Proc. Bus. & Econ. Sec. Amer. Statist. Assoc.
Washington, D.C. 304-309.

Vinod, H.D. (1993). Bootstrap methods: Applications in econometrics, in
G. S. Maddala, C. R. Rao, and H. D. Vinod (eds.) Handbook of Statistics:
Econometrics. Vol. 11, North Holland, Elsevier, New York. Chap. 23,
629-661.

Vinod, H.D. (1995). Double bootstrap for shrinkage estimators. J. of Econo-
metrics 68, 287-302.

Vinod, H.D. (1996a). Comments on "Bootstrapping time series Models".
Econometric Reviews 15 (2), 183-190.

Vinod, H.D. (1996b). Foundations of Asymptotic Inference Using Modern
Computers. Economics Dept., Fordham University, New York, discussion
paper, Sept. 1996.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear
models and the Gaussian method. Biometrika 61, 439-447.

White, H. (1982). Maximum likelihood estimation of misspecified models.
Econometrica 48, 817-838.






