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1 INTRODUCTION

This paper compares the estimation of mean and dispersion parameters using

(i) extended quasi-likelihood (EQL) and

(ii) optimum estimating equations (OEE).

1.1 Extended quasi-likelihood (EQL)

Quasi-likelihood (QL) was introduced by Wedderburn (1974) as a way of
weakening the distributional assumptions of GLMs (McCullagh and Nelder,
1989) by specifying only the form of the linear parameters β and the variance
function V(μ), which expressed the variance as a function of μ. The linear
score function

dl/dμ = (y-μ)/V(μ)

of GLMs was preserved in the wider class of models, and estimates obtained
from maximizing the QL have many properties analogous to ML estimators.
The importance of QLs is that they allow us to extend the ideas of GLMs
where no exponential family exists to supply an error structure of the original
form.

EQL was introduced by Nelder and Pregibon (1987) to allow comparison
of different variance functions on the same data. It is the key to methods
for the joint modelling of mean and dispersion based on QL ideas.

A QL model defines a deviance component d{ for observation i with mean
μi given by
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The deviance D = Σdi. EQL is most simply stated in terms of its
extended deviance

^ ) . (2)

Here the dispersion parameter φ is allowed to vary over the observations.
For distributions of the GLM family, the EQL can be derived as a saddle-
point approximation in which all the factorials are replaced by their Stirling
approximations. It is thus exact for the Normal and inverse gamma dis-
tributions, which have no factorials, and for the gamma differs only in the
normalizing factor. Note that the EQL corresponds to an exact distribution
of the kind Jorgensen (1996) calls a regular proper dispersion model when-
ever the normalizing factor is exactly one. The quantity D+ can be used as
a criterion to fit models when both the mean and dispersion are assumed
functions of explanatory variables.

1.2 Optimum estimating equations (OEE)

If a function g(Y θ) of a random variable Y, having a distribution depending

on 0, has zero mean for all 0, then g(Y θ) is an estimating function. If θ is

a scalar then the optimum estimating equation (OEE) is based on

h = g.E(dg/dθ)/E(g2)

and for a sample of n independent Ys the OEE is given by

More generally if θ is a vector, V is the conditional covariance matrix of 3,

given a model matrix A and E(g\A) = 0, the optimum estimating function

is given by

where

If U is linear (quadratic) in y we have an optimum linear (quadratic) esti-

mating function (Godambe, 1991).

It may happen that we require more than one estimating function, and

this occurs if we require to estimate both mean and dispersion parameters

in a model. Godambe and Thompson (1989) derive such joint estimating

equations, and use components (y — μ) and (y — μ) 2, orthogonalizing the

second with respect to the first. We discuss this case further in Section 2.2

below.



EXTENDED QUASI-LIKELIHOOD 141

2 JOINT ESTIMATION OF MEAN AND DIS-
PERSION

2.1 The EQL criterion

For φi given, the estimates of β obtained from (2) are just those given by
the Wedderburn QL equations

y μjdμ

dβΣ
ΦiVi dβ

while for given μ, D+ is the same as would be obtained from a QL model
with response variable d and variance function φ2, i.e. that of the gamma
distribution. That this may be a good approximation even when y has a non-
normal distribution may be seen from the result of Pierce and Schafer (1986)
that the deviance function is nearly an optimal normalizing transform.

Figure 1 shows for the Poisson distribution the expectation and variance
of d, which should be 1 and 2 respectively, and also the correlation of (y — μ)
and d, which should be zero. For μ > 3 the approximations are acceptable,
but, not surprisingly, break down for small μ.

We are thus led to form two interlinked GLMs, one for the mean and
one for the dispersion. That for the mean has response y, prior weight φ~ι,
a linear predictor η = ΈβjXj, and some suitable link and variance functions.
For the dispersion we have response d, a linear predictor ξ — Σjk^k with
explanatory variables ui,^2,..., a, variance function φ2 and a suitable link,
usually chosen as log.

An obvious algorithm for fitting the joint model is a 'see-saw' one, in
which the model for the mean is fitted first with current estimates of φι,
then the model for the dispersion is fitted given current estimates of μι and
hence of d{. Three cycles, starting with 0 = 1, are often sufficient to fit the
joint model. Standard GLM techniques may be used to check both models
for internal consistency.

2.2 The OEE criterion

Godambe and Thompson (1989) derive what they call an extended quasi-
score function which gives estimating equations of the form

^ 0, (3)

for the mean parameters β where,

hi = {Vi - μi)2 - φV(μi) - Ίu{φV{μi))ll2{yi - μi) (4)
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and

Σhi = 0,

for the dispersion parameter φ. In these equations ju and 72; are the stan-
dardized third and fourth cumulants and

α* = (7ii - Ίu)/{Φ1/2V(μif
2(Ί2i + 2 - 7ii)2},

where

is the exponential skewness. For simplicity these equations are given as-
suming a constant dispersion. If φ is structured they can be extended in a
standard way.

The form in which α; is defined shows immediately that for distributions
of the GLM family aι is identically zero, because 71 = 7J, so that (3) reduces
to the QL equations for β. Thus for GLM models, the optimum linear, the
optimum quadratic and the quasi-likelihood estimating equations for β are
all the same. In (4) the last term is identically zero for normal errors, or
for gamma errors with a log link, and is usually much smaller than the first;
thus, approximately, (4) is equivalent to equating the Pearson X2 to its
expectation, uncorrected for d.f. lost in fitting β.

3 COMPARISON OF EQL AND OEE CRITE-
RIA

There are two basic (but connected) differences in the equations for the

joint estimation of mean and dispersion produced by the use of EQL and

OEE. The first concerns the response variable for the dispersion; the use of

the function (y — μ)2 in OEE equations leads to the Pearson X2, whereas

the EQL equations use the deviance component. The second difference,

which follows from the first, is that the OEE equations, in general, require

knowledge of 71 and 72, or equivalently the third and fourth cumulants,

whereas the EQL equations do not.

For normal models 71 = 72 = 0, and the EQL and OEE equations

are identical. For GLM non-normal models the equations for the mean

parameters are the same, but those for the dispersion differ, while for non-

GLM models both sets of equations are different. What reasons are there

for preferring one method to the other?

3.1 Pseudo-likelihood v quasi-likelihood

Nelder and Lee (1992) compared estimates from the EQL having

D+ = Σdi/φi + Σlog(2πφiV(yi)),
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with pseudo-likelihood (PL) estimates obtained from minimizing

Dp = ΣXf/φi + Σ\og(2πφiV(μι))

for three non-GLM models. Model (1) involved the NBα distribution, a form
of negative binomial distribution obtained mixing the Poisson with a gamma
where the shape parameter v varies with μ, instead of the scale parameter
a. The response y has

υar(y) = μ(l + α),

i.e. looks like an overdispersed Poisson. We did a 5-factor simulation in
a 2 5 " 1 fractional factorial, the factors being aspects of the configuration of
the means we thought might be important. Model (2) was a mixture of
two Poisson samples with a ratio of means of 4:1; the variance function
was assumed to have the form </>μα, and estimates of a were of interest.
Model (3) was a Poisson-Inverse Gaussian mixture with the inverse Gaussian
distribution parameterized so that the variance function had the form μ+aμ2

(the IG-2 distribution). The experimental factors were sample size and value
of α. For detailed results see our paper. The main conclusion was that
though the bias of the maximum EQL (MEQL) estimator was usually larger
than that of the maximum PL (MPL) estimator, this was more than offset
in moderate sample sizes by the larger variance of the latter; the result was
that in terms of MSE, the MEQL estimator was never appreciably inferior
to the MPL estimator, and was often much better. An interesting result was
that in finite samples the MEQL estimate was frequently better than the
ML estimate.

3.2 The value of knowing 71 and 72

The OEE for mean and dispersion require knowledge of 71 and 72 for non-
GLM models, and knowledge of these can improve estimates. For exam-
ple, Lee and Nelder (unpublished) consider a model with log link and NBα
errors, and two groups having means μ and 2μ. Table 1 shows the asymp-
totic variance ratios for estimates of the group difference for various μ and
φ. The ML estimates are equivalent to those derived by knowing all the
cumulants, the estimates based on quadratic estimating functions (QEF) to
knowing the third and fourth cumulants, and the MEQL estimates to assum-
ing an exponential-family pattern for the cumulants. For large overdispersion
(φ = 5) there is considerable loss of efficiency of MEQL relative to the ML
estimates, with the QEF results showing that a considerable part of this loss
can be recovered if 71 and 72 are known. Similar results were found with
another example using the IG-2 distribution for errors.

While these results are interesting, they assume that the distribution is
known at least up to the fourth cumulant. In practice this is almost never
so.
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Attempts to estimate 71 and 72 from moderate amounts of data may
lead to estimates with considerable errors; for example, for a sample of 10
from a Poisson distribution with μ = 5, 100 simulated samples gave 33%
of estimates of 71 with negative values, i.e. of the wrong sign. We need
to know, therefore, what loss of information arises with various estimators
when we assume values p\ and p2 for the unknown 71 and 72. We shall be
mainly concerned with the optimum quadratic estimating function, the ML
estimator and the MEQL estimator. For simplicity we restrict the argument
to independent Y{.

The QL equations assume a GLM pattern of cumulants. The optimum
QEF equations improve efficiency by using information from the third and
fourth cumulants and the ML equations from the all the cumulants. So the
ML estimator will be most informative if the true model is known. But it is
often not consistent if a model is wrongly chosen.

Consider the trace or determinant of normalized asymptotic variance
rΓλl2coυφ) as the risk. For a given V(μ) with μ fixed, the MEQL estima-
tor is a mini-max estimator among QEF estimators, since its risk remains
constant, i.e. does not depend upon the true values of 71 and 72; it at-
tains the minimum risk under the GLM skewness. The MEQL estimator
is also the ML estimator if a GLM family exists. If so it is again a mini-
max estimator among ML estimators for the class of distributions with a
given V(μ). Therefore, the MEQL estimator would be most conservative
(in the sense that the possible maximum risk is minimal) against a possible
misspecification of either the likelihood or cumulants of the model.

Godambe and Thompson's joint QEFs with p\ — ρ2 = 0 lead to the
Normal ML estimator for β. For Normal heteroscedastic linear models, as-
suming only the first moment is correctly specified, Carroll and Ruppert
(1982) showed that the MEQL estimator is robust against a small variance-
function mis-specification compared with the Normal ML estimator. Under
mild regularity conditions, the consistency of the MEQL estimator depends
only upon the correct specification of the regression while that of the op-
timum QEF estimator requires also the correct specification of V(μ)\ see
Crowder (1987). The QEF equations (2) become the QL equations when
a{ = 0. When V(μ) is mis-specified, the QEF estimator is no longer consis-
tent unless aι = 0; see (2). So the MEQL estimator is most robust among
QEF estimators against a mis-specification of V(μ).

We illustrate the nature of the minimax property of the MQL estimator
by two of the examples from Section 3.1 (Lee and Nelder, unpublished).

In the first the unknown true distribution is the NBα distribution. For

this 71 = 0i/μ1 / 2 and 72 = 02/μ, where θλ = (1 + 2α)/(l + a)1'2 and

02 = (1 + 6α + 6α2)/(l + a). Suppose we assume values p\ = λi/μ1/2 and

p2 = \2Jμ with λi and λ2 being values of Θ2 and Θ2 for which a = 0.2, 1 and
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5, corresponding to small, moderate and large amounts of overdispersion.
Figure 2 shows the lower bound of the variance ratio for the QEF estimator
with respect to the MEQL estimator over the θ\ scale, when μ = 1, an
unfavourable value where the MEQL estimator is known from simulation to
have low efficiency. It is clear that having the assumed value of θ\ too high
can lead to much greater loss of efficiency than the corresponding gain in
efficiency when the correct value is chosen. For larger μ this effect would be
even more marked.

In the second example the unknown true distribution is the IG-2 distri-
bution. Here 71 = 3/v1/2 and 72 = 15/^, where var(Y) = μ + μ2/v. Let
assumed values p\ and P2 be 71 and 72 values at v = 0.5, 1, and 2, so that
the corresponding values of pi are 4.243, 3, and 2.121 respectively. Figure 3
shows similar curves to Figure 2 over 71, the true skewness scale. Here the
losses from using the MEQL estimator when p\ and p2 are nearly right are
much less than the gains when they are too large.

4 CONCLUSION

We can derive the EQL equations for mean and dispersion from the OEEs by
replacing the hi of equation (4) by d{ — φi, where d is the deviance component
and φ the dispersion parameter, which may be structured. If we make three
approximations, namely that E(d) = </>, υar(d) = 2φ2 and corr(y — μ d) = 0,
the resulting estimating equations are given by

and these are just those obtained from the use of EQL. Note that the three
approximations become exact as μ -> 00; however, their joint effects for
small μ need further investigation.

The properties of the MEQL estimator give it a special place among
estimators in the joint estimation of mean and dispersion.

References

CARROLL, R. J. and RUPPERT, D. (1982). A comparison between maxi-
mum likelihood and generalized least squares in a heteroscedastic linear
model. J. Am Statist Assoc, 77, 878-882.



146 NELDER AND LEE

COX, D. R. (1993). Some remarks on overdispersion. Biometrika, 70, 279-
274.

CROWDER, M. (1986). On consistency and inconsistency of estimating
equations. Econometrics Theory, 3, 305-330.

CROWDER, M. (1987). On linear and quadratic estimating functions.
Biometrika, 74, 591-597.

FIRTH, D. (1987). On the efficiency of quasi-likelihood estimation. Biometrika,
74, 2333-245.

FIRTH, D. (1988). Multiplicative errors: lognormal or gamma? J. R.
Statist Soc. B, 50, 266-268.

GODAMBE, V. P. and THOMPSON, M. E. (1989). An extension of quasi-
likelihood estimation. J. Statist. Plann. Inference, 22, 137-152.

GODAMBE, V. P. (Ed.) (1991). Estimating Functions. Oxford: Clarendon
Press.

JORGENSEN, B. (1996). Proper dispersion models. Braz. J. Probab.
Statist, (to appear).

McCULLAGH, P. (1983). Quasi-likelihood functions. Ann. Statist, 11,
59-67.

McCULLACH, P. and NELDER, J. A. (1989). Generalized Linear Models,
2nd edn. London: Chapman and Hall.

NELDER, J. A. (1989). Discussion of the paper by Godambe and Thomp-
son. J. Statist. Plann. Inference, 22, 158-160.

NELDER, J. A. and LEE, Y. (1992). Likelihood, quasi-likelihood and
pseudo-likelihood: some comparisons. J. R. Statist. Soc. B, 54, 273-
284.

NELDER, J. A. and PREGIBON, D. (1987). An extended quasi-likelihood
function. Biometrika, 74, 221-231.

PIERCE, D. A. and SCHAFER, D. W. (186). Residuals in generalized linear
models. J. Am. Statist Assoc, 81, 977-986.

WEDDERBURN, R. W. M. (1974). Quasi-likelihood functions, generalized
linear models and the Gauss-Newton method. Biometrika, 61, 439-447.



EXTENDED QUASI-LIKELIHOOD 147

Table 1: Asymptotic variance ratios of the ML, MQL and optimum QEF
estimators of group difference for NBa distribution

1
φ = 2

5 10 50 1
φ = 5

5 10 50
ML/MQL .875 .963 .980 .996
QEF/MQL .900 .966 .981 .996

.608 .805 .885 .974

.768 .865 .911 .976

2.5-

2.0-!

1.5-

1.0-;

var(d)

Eld)

0.0-1
cov(y-y; d)

0.0 5.0 7 5 10.0 12.5 15.0 17.5 20.0

Figure 1: Properties of the Poisson deviance as a function of μ.
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Figure 2: Asymptotic variance ratio of QEF/MEQL estimators as a function of θ
example with NBα distribution. Curves with increasing λ; correspond

to increasing amounts of actual overdispersion. Abscissa is assumed
amount of overdispersion.

Figure 3: Asymptotic variance ratio of QEF/MEQL estimators as a function
of 7i example with IG-2 distribution. Curves with increasing p - 1
correspond to increasing amounts of actual overdispersion. Abscissa is
assumed amount of overdispersion.




