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Abstract: Sliced inverse regression (SIR) was introduced by Li (1991) and
Duan and Li (1991) as a dimension reduction technique that determines
the number of linear combinations of the predictor variables needed to
obtain a parsimonious regression model. It is well known that SIR is
not robust to the effects of outliers nor can it always detect symmetric
dependence. In this paper, we briefly outline another technique based on
inverse regression which potentially overcomes these shortcomings of SIR
in an important special case. Finally, we compare the effectiveness of the
new technique with that of SIR on some real data sets.
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1 Introduction
Regression analysis is arguably one of the most widely used statistical tech-
niques. A regression model expresses the mean of a response variable y as
a function, / , of an explanatory variable x, a p-dimensional column vector.
Traditional parametric regression methods assume that the functional re-
lationship between y and x is known apart from some parameters, which
must be estimated. When the assumed functional form is correct, a vari-
ety of methods (including least squares and robust methods) can be used
to estimate the unknown parameters. However, in many applications any
parametric model is at best an approximation to the true one and the search
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for an adequate model becomes increasingly difficult as p, the number of
predictors, increases.

Alternatively, nonparametric regression methods estimate the regression
function without assuming a particular functional form. Recently, Wand
and Jones (1995), Fan and Gijbels (1996) and Simonoff (1996) have pro-
vided comprehensive accounts of this field. Many nonparametric regression
methods are based on the notion of local smoothing, that is, the estimate of
/ at any point of interest is based on a smoothed version of y in that region.
Thus, the success of local smoothing depends on the existence of sufficiently
many data points around each point of interest in the design space to pro-
vide adequate information about /. As the dimension of x increases, larger
and larger sample sizes are needed in order to ensure that there are suf-
ficient data points around each point of interest. This problem has been
appropriately referred to as the curse of dimensionality (Bellman, 1961).
Hastie and Tibshirani (1990, pp. 83, 84) provide a simple, yet effective,
example of this phenomenon. A number of approaches have been proposed
to cope with the curse of dimensionality. Additive models (see Hastie and
Tibshirani, 1990, Chapter 4) approximate / as the sum of nonparametric
univariate functions of each of the p predictors. Alternatively, sliced in-
verse regression (Li, 1991 and Duan and Li, 1991) is a dimension reduction
technique that does not rely on a complicated model-fitting process. Sliced
inverse regression (SIR) determines the number of linear combinations of
the p predictors needed to obtain a parsimonious model for /.

In the next section, we briefly outline a dimension reduction technique
based on inverse regression. Finally, in Section 3 we compare the effective-
ness of this new technique with that of SIR on some real data sets. We
show that the new technique potentially overcomes two of the shortcomings
of SIR, namely, a lack of robustness to outliers and a failure to detect some
forms of symmetric dependence.

2 Inverse regression methods for dimension
reduction

Consider the following general regression model

,...,β'kX,e), (1)

where / is an unknown arbitrary function, x is a p-dimensional vector
of predictors, and e is an n x 1 vector of errors which is assumed to be
independent of x. The integer k(< p) is the number of linear combinations
of the predictors that are needed to summarize the dependence of y on
x. Li (1991, 1992), Cook and Weisberg (1991) and Schott (1994) provide
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methods for determining the value of k based on sliced inverse regression.
The simplest nontrivial case occurs when k = 1, since then β[x contains

all the information from x about y. If k > 2 then commonly the aim is to
reduce k. One possibility, for example, is to seek extra explanatory vari-
ables. These extra variables could include interaction terms, polynomial
terms and/or dummy variables. Alternatively, the current set of explana-
tory variables could be changed using transformations. Further discussion
of this issue can be found in Cook and Weisberg (1994, Chapter 8).

Thus arguably, an important special case is the decision as to whether
k — 1 or k > 1. In this paper, we focus on this problem.

Under the assumptions that model (1) holds with k = 1 and that the
distribution of x is elliptically symmetric, Duan and Li (1991) obtained the
following result

E(xj\y) = E(Xj) + Ίi κ(y) j = 1,.. .p. (2)

This result means that for each predictor Xj, the inverse regression function
E(xj\y) equals the mean of Xj plus some unknown function κ(y) times the
constant ηj. A crucial aspect of this result is that κ{y) does not depend
on j . Hence, a graphical procedure to decide whether k = 1 or not is to
examine the p plots with Xj on the vertical axis and y on the horizontal
axis to see if each plot has the same shape. Such a procedure is advocated
by Cook and Weisberg (1994, Chapter 8).

Sheather and McKean (1997) have developed two nonparametric meth-
ods for testing whether k — 1 or not. The two procedures are based on the
following observation. Suppose that model (1) holds with k — 1 and that
the distribution of x is elliptically symmetric. Then, for 1 < i, j < p

\E{xj\y)-E(x,

E{Xi\y) - E(Xi)

which is independent of y. In practice, the left side of (3) can be replaced

by
, Xj Xj

= log ' -1 ι
χ% χ%

Thus, a test of k = 1 against the alternative k > 1 can be obtained by
testing for each combination of ί and j whether Lij is independent of y.
Sheather and McKean (1997) have developed the following two tests.

• Testl: This test is based on dividing up each plot of Lij versus y into
four quadrants and counting up the number of points in each quadrant.
The quadrants are obtained by splitting both Lij and y into two groups
depending on whether they are larger or smaller than their respective me-
dians. If for a given i and j , Lij does not depend on y then we expect
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n/4 points to fall in each of the four quadrants. Departures from these ex-
pected frequencies are tested using a χ2 goodness-of-fit test. Sheather and
McKean (1997) have found that a significant result on Testl may indicate
that polynomial terms are missing from the regression model.

• Test2: This test of independence is based on a runs statistic. In this
case, the statistic used is the number of runs above and below the median
value of Lij in each plot of Lij versus y. Sheather and McKean (1997)
have found that a significant result on Test2 may indicate that interaction
terms are missing from the regression model.

For a more detailed description and discussion of Testl and Test2 see
Sheather and McKean (1997).

3 Examples

In this section, we discuss several examples involving real data taken from
Cook and Weisberg (1994). In each example, the aim is to decide whether
k = 1 or k > 1 in (1), that is, whether one linear combination of the
predictors can adequately summarize the dependence of y on x. The ex-
amples have been chosen to illustrate that the inverse regression technique
potentially overcomes two of the shortcomings of SIR, namely, a lack of
robustness to outliers and a failure to detect some forms of symmetric de-
pendence.

The R — code software supplied with Cook and Weisberg (1994) was
used to calculate SIR. In each example the default R — code settings for
SIR were used. Rank based regression estimates were calculated using the
experimental MINITAB command rregress. Once again all the default
settings were used.

Example 1 Ethanol Data

The data consist of 87 observations obtained from an industrial experiment
involving a one-cylinder engine using ethanol as a fuel. The response NOx
is a measure of nitric oxide concentration in exhaust emissions. There are
two predictors, E and C. E is the equivalence ratio, a measure of the
fuel/air mixture while C is the compression ratio.

SIR Testl Test2
0.345 <0.0001 0.0003

Table 1: p-values for testing k = 1 against

the alternative k > 1 for model (1).
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Table 1 summarises the results from SIR as well as tose from Testl and
Test2. As discussed in Cook and Weisberg (1994, pp. 125-127), SIR has
failed to detect the symmetric quadratic dependence of E on NOx, which
is obvious in plots. On the other hand, Testl and Test2 find very strong
evidence that more than one linear combination of E and C is needed to
adequately model NOx. In addition, these tests indicate that terms like
higher order polynomial terms and interaction terms may be missing from
the model.

The following regression model was fit to the data using least squares,

NOx = 7o + 7iC + 72-E + 73C2 + 74#2 + 75C E + c. (4)

Table 2 summarises the results. The interaction between C and E is
highly significant as is the quadratic term in E. The adjusted R? value for
model (4) is 84.2% while the corresponding figure is 0.0% when the model
without the quadratic and interaction terms is fit.

Parameter

70

7i

72

73

74

75

Estimate
-24.26

0.22
56.76
0.00

-29.79
-0.24

ί-ratio
-15.702

1.876
20.592
0.565

-21.465
-3.868

p- value
<0.001

0.864
<0.001

0.574
<0.001
<0.001

Table 2: Least squares fit of model (4).

Example 2 Australian Institute of Sport Data

The data were obtained from 102 male and 100 female athletes at the
Australian Institute of Sport. Interest centers on modeling LBM (lean
body mass) as a function of Ht (height in centimetres), Wt (weight in
kilograms) and RCC (red cell count). Following Cook and Weisberg (1994,
pp. 122-125) we shall analyse the data for the female and male athletes
separately.

Female Athletes

Table 3 summarises the results from SIR as well as those from Testl and
Test2 for the data on the 100 female athletes. The p-values reported for
Testl and Test2 are the minimum of those obtained from 3 pairwise tests.
The row headed Ί point removed' gives the results when the case corre-
sponding to the largest value of LBM is removed from the data, while the
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row headed '5 points removed' gives the results when the 5 cases marked
with a x in Figure 8.5 of Cook and Weisberg (1994, p. 125) are removed
from the data.

SIR Testl Testl
All data 0.026 0.686 0.005
1 point removed 0.229 0.836 0.008
5 points removed 0.617 0.724 0.007

Table 3: p-values for testing k = 1 against

the alternative k > 1 for model (1).

As discussed in Cook and Weisberg (1994, pp. 124-125), SIR is not
robust to the effects of outliers. In this case removing just one of the 100
data points produces a 10 fold change in p-value obtained from SIR. On
the other hand, Testl and Test2 change little when a small number of data
points are removed from the data. In addition, Test2 finds strong evidence
that more than one linear combination of Ht, Wt and RCC is needed to
adequately model LBM. In addition, this test indicates that interaction
terms may be missing from the model.

The following regression model was fit to the data using rank based
regression,

LBM = 7o+7i Ht+72 Wt+^RCC+-f4HtWt+Ί5Ht RCC+-f6WtRCC+e.

(5)
Table 4 summarises the results when model (5) is fit to all 100 data

points. In this case, the interaction between Ht and Wt is highly significant.
When the 5 points referred to in Table 3 are removed and model (5) is refit,
the p-value for the interaction between Ht and Wt increases to 0.056. Thus,
some but not all of the significance of this interaction term is due to these
5 points.

Parameter

70

7 i

72

73

74

75

76

Estimate

-61.400
0.719
0.804

-0.007
-0.006
-0.056
0.169

ί-ratio

-2.567
2.958
1.529

-0.134
-2.744
-1.518
1.754

p- value

0.012
0.004
0.130
0.894
0.007
0.132
0.082

Table 4: Rank based regression fit of model (5) to all 100 female athletes.
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Male Athletes

Table 5 summarises the results from SIR as well as those from Testl and
Test2 for the data on the 102 male athletes. The p-values reported for
Testl and Testl are the minimum of those obtained from 3 pairwise tests.
The row headed '2 points removed' gives the results when the cases corre-
sponding to the two largest values of LBM are removed from the data.

SIR Testl Test!
All data 0.017 0.950 0.111
2 points removed 0.173 0.831 0.108

Table 5: p-values for testing k = 1 against
the alternative k > 1 for model (1).

These data also illustrate that SIR is not robust to the effects of outliers.
In this case removing just two of the 102 data points produces a 10 fold
change in p-value obtained from SIR. On the other hand, Testl and Test2
change little when a small number of data points are removed from the
data. In addition, neither Testl nor Test2 finds strong evidence that more
than one linear combination of Ht, Wt and RCC is needed to adequately
model LBM.

The following regression model was fit to the data using rank based
regression,

LBM = Ίo+ΊiHt+j2Wt+Ί3RCC+j4HtWt+^Ht'RCC+jQWt'RCC+€.
(6)

Table 6 summarises the results when model (6) is fit to all 102 data
points. In this case, none of the interactions are significant. When the 2
points referred to in Table 5 are removed and model (6) is refit, once again
none of the interaction terms are significant.

Parameter
70
71
72
73
74
75
76

Estimate
-69.870

0.590
0.716
6.650

-0.002
-0.062
0.058

ί-ratio
-1.072
1.344
1.903
0.544

-1.070
-0.749
0.997

p- value
0.286
0.182
0.060
0.588
0.287
0.228
0.321

Table 6: Rank based regression fit of model (6) to all 102 male athletes.

In summary, for the athletes data the nonparametric procedure of Sheather
and McKean (1997) seems to correctly identify the case (i.e., the male ath-
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letes) when a single linear combination of Ht, Wt and RCC adequately
models LBM as well as the case (i.e., the female athletes) when more than
one linear combination is needed. On the other hand, SIR indicates for
both the female and male athletes that more than one linear combination
is needed when all the data are used while it indicates the opposite when
a small number of outliers have been removed from the data.
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