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On computation of regression quantiles:
Making the Laplacian Tortoise faster

Stephen Portnoy

Department of Statistics, University of Illinois, Champaign, USA

Abstract: In "The Gaussian Hare and the Laplacian Tortoise", the au-
thors present a two-pronged attacked on the computation of L\ and other
regression quantile estimators in linear models for large samples. The
first prong involves the application of interior point linear programming
methods, specifically designed to treat the absolute error and related re-
gression quantile objective functions. The second prong applies a form of
stochastic preprocessing, somewhat reminiscent of the O(n) algorithms
for computing the median of a single sample. These ideas provide com-
putational methods that are in theory faster than least squares as n —> oo
(with probability tending to one), and in practice are faster than Splus
least squares functions for n larger than 104 (and the number of param-
eters moderate). Here some issues concerning this algorithm are consid-
ered, and some improvements are proffered.
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1 Introduction

Consider the standard linear model: there are observations {Yi : i =

1, ..., n}, satisfying

Yi = x'iβ + ui i = l, . . . ,n (1)

where Xi are vectors in R p , β G R p is a vector of unknown parameters,
and {ui} form an i.i.d. sequence of errors. Though we consider the model
conditionally on {xi}, we will generally assume that these design vectors are
realizations of an independent random process. The traditional approach to
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statistical analysis of (1) is to use least squares to estimate the conditional
mean of Y given x: E [Y\ x] = x'β. However, this provides an analysis
only of the center of the conditional distribution. To get a more complete
picture of the relationship between Y and x, Koenker and Bassett (1978)
introduced regression quantiles as the solution to the problem: for each
τ G [0, 1], let β(τ) achieve

| ( ^ - ^ ) (2)

where pτ(u) = τu+ + (1 - τ)u~. When r = .5, /3(.5) is just the usual L\
estimator, which corresponds to the conditional median estimator. Under
model (1) (and more generally), the line y = x'β(τ) estimates the condi-
tional quantile of Y given x. These methods have been applied successfully
in a wide variety of examples.

Computation of regression quantile estimators has depended on the
recognition that the minimization problem (2) is equivalent to a linear
program, viz.:

min y"(τu + (1 - τ)v) (3)

subject to

Yi = x\b + u — v, Ui > 0, υi > 0 ί = 1, ..., n

This equivalence was first presented in the literature in the mid 1950's.
However, it is not unlikely that it was known earlier but dismissed as hav-
ing little or no computational implication until the power of the simplex
algorithm was appreciated. In fact, in the early 19th century Gauss (1809)
already recognized that the L\ estimator could be characterized as having
p zero residuals. As described in Portnoy and Koenker (1997), efficient
algorithms based on Danzig's simplex algorithm were developed, and they
proved quite effective for sample sizes n < 1000 (or so). However, these
algorithms were extremely slow for sample sizes significantly larger than
1000. Thus, Portnoy and Koenker(1997) were led to develop a new com-
putational approach based on two fundamental ideas.

The first idea involved replacing simplex approaches with interior point
methods, which originated in the mid 1980's and have been under extremely
active development since then. The traditional simplex method is based on
the idea that the constraint set for a linear programming problem is a
simplex: that is, a convex set defined as the set of convex combinations
of a finite number of extreme points (viz., the vertices of the constraint
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set). In the regression quantile problem, the vertices are just the β-values
defined as having p zero residuals (which are often called "elemental' solu-
tions). One proceeds iteratively by evaluating the linear objective function
at a vertex and finding the adjacent vertex in the direction of steepest de-
scent of the objective function. The solution is found after a finite number
of such steps (called "pivots") when the algorithm reaches a point where
no descent direction remains. Unfortunately, in large sample regression
quantile problems, the number of vertices is of order np, and this tends
to require the algorithm to pass through a very large number of vertices
before reaching the solution. Fortunately, under moderate distributional
assumptions in model (1), it is possible to show that with probability tend-
ing to one, each pivot moves a fraction \jn towards the solution. Thus,
since each pivot takes O(np2) operations, the simplex algorithm might be
expected to take Op(n2p2) operations (much larger for large n than the
O{np2) operations required for least squares algorithms). In fact, this rate
should be reducible to (9p(n3/2p2), since one can generally obtain a initial
estimate within Ov{n~1'2) of the solution (e.g., the least squares estimate
will work as an initial estimate of the median for symmetric distributions).
Nonetheless, this is substantially longer than least squares, especially since
the constants implicit in the big-0 terms are larger for simplex pivoting
than for least squares methods.

Modern interior point methods escape this problem by avoiding the
boundary of the constraint set. Consider the canonical linear program

min [dx \ Ax = 6, x > 0 } (4)

(where c is a vector, A is a matrix, and the inequalities are taken coordinate-
wise). Associate with this problem the following logarithmic barrier refor-
mulation, which severely penalizes points close to the boundary:

min {B{x,μ) \Ax = b} (5)

where

B{x,μ) = cfx- μ^2\ogxk.

In effect, (5) replaces the inequality constraints in (4) by the penalty term
of the log barrier. Solving (5) with a sequence of parameters μ such that
μ —> 0, we obtain in the limit a solution to the original problem (4). For
each μ, problem (5) can be solved relatively effectively by iterative Newton
or quasi-Newton methods: at each trial solution, one approximates the
problem locally by a quadratic minimization problem and moves as far as
possible towards the solution of the approximating problem without leaving
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the constraint set (that is, remaining in the interior). The historical context
of these methods and the details of our use of this approach for regression
quantiles is presented in Portnoy and Koenker (1997). It appears that such
methods can be as reliable as simplex methods, and are substantially faster
for large n.

Nonetheless, the interior point algorithms were still much slower than
least squares for very large n. In fact, the best rates for complexity avail-
able from the interior point literature are of the order (9p(n5/4p3) computer
operations for random problems, though it has been conjectured that the
n 5/ 4 factor can be reduced to n logn. The second approach to accelerating
the computation of regression quantiles is based on a stochastic preprocess-
ing step that begins with a much smaller random subset of the data. To
describe this approach, consider the L\ problem:

a/M. (6)

Suppose for the moment that we "knew" that a certain subset J # of the

observations N = {1, ..., n} would fall above the optimal median plane

and another subset JL would fall below. Then, since knowing the sign of a

residuals permits the replacement of the absolute value by the appropriate

sign,

Σ \γ*~ χlM ~ Σ ft -
i£N\JLUJH

It follows that

\YH-x>Hb\ (7)

2=1 i£N\JLUJH

where xκ = Σiejκ *i, and Yκ = Σiεjκ Yi for K G {H,L}. We will refer
to these combined "pseudo-observations" as "globs" in what follows. It is
not hard to show that minimizing (7), under our provisional hypothesis on
the signs of the residuals, yields exactly the same solution as (6), but the
revision has reduced effective sample size by #{ JL U JH } — 2 (essentially
by the number of observations in the globs).

To find JL and J#, consider computing a preliminary estimate β based
on a subsample of m observations. Compute a simultaneous confidence
band for x'β based on this estimate for each % G N. Under plausible sam-
pling assumptions the length of each interval is proportional to 1/y/πi, so if
M denotes the number of Yi falling inside the band, M = Op{n/φn).
Take JL,JH to be composed of the indices of the observations falling
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outside the band. So we may now create the "globbed" observations
{Xκt^κ)iK G {L,H} and reestimate based on M + 2 observations. Fi-
nally, we must check to verify that, in fact, all the observations in JH->JL

have the predicted residual signs. If so, we are done; if not, we must repeat
the process. If the coverage probability of the bands is P, presumably near
1, then the expected number of repetitions of this process is the expecta-
tion of a geometric random variable, Z, with expectation P~ι. We will call
each repetition a cycle. As described in Portnoy and Koenker (1997), it
is possible to show that the optimal choice for the initial subsample size
is m = (9(n2/3), and that the resulting size of the globbed sample is then
M = (9p(n2/3). Under modest distributional assumptions, this provides an
algorithm with complexity Op(n2/3(log n)2p3) + O(np), where the last term
comes from the computation of the globs and the checking of residuals.
For n large and p moderate, this is strictly better than the rate O(np2)
for least squares; and in fact the algorithm in Portnoy and Koenker (1997)
is essentially as fast as Splus least squares algorithms for n < 106 and p
moderate; and it is undoubtedly strictly faster for n much larger than this
range.

The algorithm presented in Portnoy and Koenker (1997) can be de-
scribed formally, but briefly, as follows:

Z<-0

m <
while(fc is small) {

k = k + l

solve for initial rq using first m observations
compute confidence interval for this solution
reorder globbed sample as first M observations
while (1 is small) {

1 = 1 + 1
solve for new rq using the globbed sample
check residual signs of globbed observations
if no bad signs: return optimal solution
if only few bad: adjust globs, reorder sample, update M, continue
if too many bad: increase m and break to outer loop

Here, αrq" is the regression quantile problem, and an interior point
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method is used to "solve" this problem. The remainder of the paper de-
scribes several approaches to improving this algorithm and to obtaining a
better understanding of its performance.

2 Some simple improvements

Three relatively simple and straightforward improvements in the algorithm
above have been made and tested. The first concerns the choice of the initial
random subsample. The algorithm above assumes that the sample comes
already randomized. For samples that are not simulated, this requires and
initial random permutation of all the data - a rather time-consuming task
if n is very large. Note that the above algorithm does not permit simply
taking an initial random subsample of size ra, since m increases with each
cycle in order to ensure termination of the iterations. One could take a ran-
dom subsample of size m(k) (where k is the cycle number) at the beginning
of each cycle, but this is still rather time-consuming. A faster approach is
to form the "random" subsample by taking a random observation from
each consecutive n/m observations. Although this is slightly different from
taking a fully random permutation, is appears to be sufficiently random
in all cases checked so far. It is extremely quick, requiring only m ran-
dom uniforms and no sorting. It has the added advantage for real data of
avoiding any large gaps in the sampling (as can occur with fully random
permutations). The current implementation uses a simple multiplicative
congruential generator. It appears to provide a modest improvement in
timings at the cost only of keeping track of an addition random seed.

The second relatively simple improvement involves choice of the simul-
taneous confidence bands used to determine the residual signs for the first
subsample. The algorithm above was originally programmed using the tra-
ditional Scheffe bands of the form

' /στ

where c is a constant (from F-tables) and σ2 is an estimate of τ( l —
r)/ / 2(F~ 1(r)). Unfortunately, these bands require np2 operations, a value
that can make the algorithm very time-consuming and, in fact, does not
even attain the complexity rate claimed above. To get a faster approach,
note that it is preferable to choose the constant c to optimize the speed
of the algorithm rather than to attain a given coverage probability. Thus,
different conservative alternatives might prove better. One method that
seems to work well is based on the inequality,
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3=1

where Sj is σ times the diagonal element of the (X'X)~ι matrix, and
σ computed as for the Scheffe intervals. This approach provides conser-
vative (though not "exact") confidence bands with width CgΣ?=i \χij\sj
Note that this requires only O{np) operations; thus providing the rate re-
quired for the result of Section 1. Choice of the constant, cg, is somewhat
problematic, but some experimentation with simulated data showed that
cq could be taken conservatively to be approximately one, and that the
algorithm was remarkably independent of the precise value of cq. Although
our initial experience with this approach is extremely promising, the next
improvement discussed below permits the selection of cq to be replaced by
a simpler selection of an alternative parameter.

A third improvement concerns the size of the globbed sample. If the
constant, c, in the simultaneous confidence intervals is fixed, the size of the
globbed sample, M, is random. Since it is optimal to have M approximately
equal to m, where m is the initial sample size, we have tried to choose the c
so that M is near m with high probability (this is possible under model (1)
as n —> oo). In practice, M varies significantly, and this leads to difficulties.
If M is too small, the final estimates are likely to be wrong, thus requiring
extra cycles. If M is too large, the interior point algorithm takes much
more time that it should. Since in the limit, M will be very near its mean,
which is a constant times ra, it seems reasonable to fix the sample size
M = αra, where a is a constant near 1. The globbed sample consists of the
M = am observations with the smallest values of \ri\/zi, where T{ is the
residual and z\ is the constant in the confidence intervals depending only
on the design matrix. That is, Z{ — (x'i(X'X)~lXi)1/2 for Scheffe intervals,
and Z{ — YJj=\ \χij\ Sj for the conservative intervals described above. This
is asymptotically equivalent to fixing c, but always provides an appropriate
globbed sample size. In a small scale simulation study, it appeared that
a = .8 was a good choice over a variety of data set sizes and distribution
assumptions. The lack of randomness in M provides a much more reliable
and faster algorithm, whose performance varies substantially less from trial
to trial. The result that a < 1 probably arises from the fact the the globbed
sample is not like a random sample (as discussed in Section 4). Thus the
interior point algorithm takes somewhat more time on a globbed sample
than on a random subsample of the same size (perhaps 20 to 40 per cent
more time, depending of the specific problem).
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3 On the interior point algorithm

For n < 106, the algorithm of Section 1 spends almost all of its time in the
interior point optimization steps for the random and globbed subsamples.
However, the full advantage of the preprocessing step isn't realized until the
operations of complexity O(np) dominate (that is, until most of the time is
spend in creating the globs and in checking residuals). Thus, improvements
in the interior point algorithm should provide the most important sources
of faster performance (for n < 106). Furthermore, the use of nonlinear op-
timization methods requires the specification of a number of performance
parameters. These include: (i) choice of starting values for the variables
over which optimization is carried out, (ii) choice of direction at each step
(for example, use of gradient direction for steepest descent, or use of the
Newton direction to solve the approximating quadratic, or some combina-
tion of these), (m) specification of the distance to move along the chosen
descent direction, (iv) selection of a method for updating the penalty coeffi-
cient μ in equation (5), and (υ) selection of stopping criteria. Specification
of these parameters provides ample room for fine-tuning the algorithm to
provide better performance.

Interior point methods for L\ problems generally replace the linear pro-
gram in equation (3) by a related problem, called the dual problem

max{y7α | X'a = \x'e, a € [0, l]n}. (8)

where Y is the vector of response observations and X is the design matrix.
Here the coordinates of α, {α;}, correspond to the signs of the residuals,
Ti = Yi — α^6*, at the final solution, α*, where 6* is the optimal solution to
equation (3). Precisely, at a solution, aι = 1 if V{ > 0, α̂  = 0 if Ti < 0, and
aι is strictly between 0 and 1 if r; = 0. In the regression quantile setting,
the values ai{r) (0 < r < 1) are exact analogues of the rank functions of
Hajek and Sidak (1967): see Gutenbrunner and Jureckova (1992). Thus,
the solution b* to the primal problem (3) can be determined from the
solution to (8); and, in fact, the objective functions are the same at the
solutions. The "primal-dual" algorithm of Portnoy and Koenker (1997)
proceeds by establishing first order conditions depending on both a and
6, and solving for both simultaneously. That is, in each iteration, both
a and b are moved in a Newton direction toward the solution. At each
iteration, the difference between the primal and dual objective functions
is positive until the solution is reached. At the solution, this difference,
called the "duality gap" becomes zero, and this provides a reliable test for
convergence of the algorithm. Although each iteration of the primal-dual
algorithm is somewhat more complicated, the number of iterations tends
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to be somewhat smaller than other approaches, and the algorithm appears
to be quite robust to idiosyncrasies in the data.

8 0 9 0 VQ ZQ 0 0
|BΠP

80 90 *Ό ZQ 0Ό

|enp

0 1. 80 90 V0 Z Q 0Ό

01 80 90 ΓO ZQ 00

01 80 90 V0 ZQ 0Ό

01 80 90 frΌ 20 OΌ
Iβnp

01 80 9Ό ΪO ZΌ 00

01. 8Ό 90 V0 ZQ 00
lenp

The algorithm in Portnoy and Koenker (1997) chooses the initial starting
values as follows: 60 is chosen to be the least squares estimator, and αo is
chosen to be a constant vector with all n elements equal to .5 (halfway
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between the bounds 0 and 1). In an effort to see how this algorithm works,
the values of the dual variables, α̂ , were plotted against i at each iteration.
Plots were made for several random data sets with sample size 1000 or
2000, values near typical initial sample sizes for problems with n between
104 and 105. One picture of successive iterations on normal data with
p = 6 appears in Figure 1. The first plot gives the a-values after one
iteration. Note that the values have separated from the initial constant .5
and have begun to move toward 0 and 1. Remarkably, the vast majority of
the values move exactly the same fraction of the distance to the extreme
limits, 0 and 1. The values quickly approach the limiting values, except
for the observations with zero residuals at the solution. The last iteration
represents a very minor fine tuning of the next to last one, which already
identified the zero residuals. This suggests the possibility of stopping a bit
earlier, but in practice early stopping provides only a modest improvement
in timings (at the cost of potentially less reliable performance).

Similar plots were made when the primal-dual algorithm was applied to
the globbed sample. Here the α^-values were plotted against \ri\/z{, where
T{ are the residuals and the ^-values are defined in the third improvement
discussed in Section 2. That is, the α̂  are plotted against the order at
which observations enter the globbed sample. A picture for Cauchy data
with p — 3 is given in Figure 2. At first glance, the results appear even more
remarkable. With the residual ordering taken into account, it is clear that
the α^-values for smaller residuals tend to their limits much more slowly
than those for larger residuals (among the globbed sample, for which all
but the last two observations - the globs - have small residuals). Again,
the di-values tend to fall along lines, but the lines are not symmetric about
.5, and the become highly curved after iteration 6.

It is possible that the use of the least squares estimator as the initial
starting value for applying the interior point algorithm to the globbed sam-
ple might be responsible for some of the oddities in the plots. An alternative
that should be somewhat better and might be somewhat faster is to use the
β from the solution to the initial random subsample as the starting value
for the globbed sample. It turns out that this does not affect the plots
of the α^-values for the specific example plotted in Figure 2. However, in
various simulation experiments, use of the initial β as the starting value
for applying the interior point algorithm to the globbed samples appeared
to provide a modest but definite improvement. These figures give some
tantalizing hints as to why this is so, but significantly better understand-
ing of the performance of interior point methods should provide even more
substantial improvements.
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4 On applying the algorithm recursively

An obvious source of improved performance for very large samples would
clearly be to apply the algorithm recursively. Since the algorithm gives the
fastest computation of regression quantiles, the use of interior point meth-
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ods should be replaced by the full algorithm using preprocessing whenever
the subsample sizes are sufficiently large to make this replacement notice-
ably faster. Generally, this would occur when n is somewhat larger than
105. Unfortunately, there is a serious problem with this replacement for
solving the globbed problem. The stochastic preprocessing step assumes
that the sample is a random one. The globbed sample is far from random
- it is chosen to consist of the smaller residuals from the initial sample plus
the two globs. Thus, the preprocessing step cannot be expected to provide
any real reduction in sample size for the globbed sample. Figure 3 should
make this clear. The first graph in Figure 3 plots a Normal sample of size
10,000 together with the the whole-sample L\ line, the initial subsample
L\ line and the confidence bands (based on the subsample). The solution
to the initial subsample should differ from the correct sample regression
quantile by an error of order Op{rn~1/2) (where m is the initial subsample
size). This error is of the same order as the width of the confidence bands.
Therefore, as the first graph shows, the lines and confidence bands are ex-
tremely close together on the scale of the data. The second plot of Figure 3
shows just the globbed sample together with the correct L\ line and an L\
line based on a random subsample of the globbed sample. Clearly, any con-
fidence band about this subsample line that contains the correct line must
contain all but a relatively modest fraction of the globbed sample. That
is, since the residuals should be roughly uniformly distributed between the
bands (assuming the random errors have a smooth density near the desired
quantile), it is clear that an appreciable fraction of them must have their
residuals from a subsample estimate differ in sign from those of the correct
estimate. Thus, for the globbed sample, it would be impossible to replace
the problem by one with a sample size smaller than a constant fraction of
the globbed sample size. This contrasts markedly with the reduction from
n to n2/3 that preprocessing affords for random samples.

It is possible to use the preprocessed algorithm for the initial random
sample. A few simulations with n > 106 and p < 4 were tried with this
modification, and a modest improvement (about 20%) was obtained. Un-
fortunately, computer space limitations precluded more extensive testing,
which remains to be done.
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