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Abstract: Similar to standard quantile regressions, the censored quantile
regression estimate interpolates some data points. This paper discusses
the algorithms used in empirical research in light of this interpolation
property and compares their performance in a simulation study. The
results show that the ranking between algorithms differs depending on
the criterion used. The algorithm BRCENS, suggested by the author in
the past, performs best in terms of the frequency that the exact censored
quantile regression estimates are obtained, it is very competitive in terms
of the computation times required and its performance can be noticeably
improved, when trying out various starting values. However, BRCENS is
not optimal in terms of the root-mean-squared deviation of the coefficient
estimates, indicating a high skewness of the distribution of the deviation
from the exact estimates. Overall, BRCENS can be recommended for
moderate degrees of censoring, whereas all practical algorithms perform
quite poorly when a lot of censoring is present.
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1 Introduction
Censored quantile regressions (CQR's), introduced by Powell (1984, 1986),
are an attractive approach to the estimation of the censored regression
model with fixed known censoring points.1 First, compared to Tobit maxi-
mum likelihood estimation, cf. Amemiya (1985, chapter 10), CQR's provide
consistent estimates under far weaker distributional assumptions. Second,

1Buchinsky (1997, section 8) and Fitzenberger (1997) provide general guides to CQR's.
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CQR's allow us to model the conditional quantiles of the dependent variable
as a function of the regressors, cf. Buchinsky (1994), Chamberlain (1994),
or Fitzenberger et al. (1995) modelling the conditional wage distribution.

The computation of the CQR estimates involves minimizing a non-
differentiable and non-convex distance function. When introducing the
censored least absolute deviation (LAD) regression (i.e. the CQR for the
special case of the median), Powell (1984) suggested generic optimization
routines, which do not take account of the special characteristics of the
problem.2 Paarsch (1984) even resorted to grid search when evaluating the
finite sample properties of censored LAD regression. Womersley (1986) an-
alyzed the numerical properties of censored LAD regression for the first time
and suggested an algorithm using a finite direct descent method. However,
to my knowledge, his code is not available to applied researchers.

More recently, Buchinsky (1994) suggested an Iterative Linear Program-
ming Algorithm (ILPA) involving an iteration of the Barrodale-Roberts-
Algorithm (BRA) first developed for standard LAD regression.3 However,
ILPA is not guaranteed to converge and convergence does not guarantee a
local minimum of the CQR optimization problem. Building on the char-
acterization of the CQR estimates by the interpolation property presented
in the following, Fitzenberger (1994) developed the algorithm BRCENS as
an adaptation of the BRA guaranteeing convergence to a local minimum.
Koenker and Park (1996) developed a general interior point algorithm for
nonlinear quantile regression problems (NLRQ), which they apply to the
CQR case. The simulation studies in Fitzenberger (1994, 1997) show that
BRCENS performs best in comparison to ILPA and NLRQ in terms of the
frequency that the exact global minimum of the CQR optimization prob-
lem is obtained. However, the simulation studies show that all algorithms
perform quite poorly in the presence of a lot of censoring.

The purpose of this paper is to give an overview on the computational
aspects of CQR's and to provide more extensive simulation evidence on the
performance of various algorithms currently in use. In the remainder of
this section, I present the interpolation property characterizing the CQR
estimates. Section 2 describes various algorithms in detail and presents
modified versions of the algorithms BRCENS and NLRQ. Section 3 ex-
tends the available evidence from simulation studies. Summarizing the
simulation results, BRCENS performs quite well in comparison and it can
be recommended for moderate degrees of censoring relative to the quantile

2Following Powell's suggestion, Horowitz and Neumann (1987) present an empirical
application based on the Nelder and Mead (1965) algorithm.

3Koenker and d'Orey (1987) provide an extension of the BRA to the general quantile
regression case. For the latter, the following discussion refers to this extension.
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considered. However, in the presence of a lot of censoring all algorithms
perform quite poorly.

1.1 Censored quantile regression and interpolation
property

Introducing some notation, for a sample of size iV, let the dependent vari-
able be the TV x 1 vector, y = (j/1? ...,yτv), t h e design matrix be the TV x k
matrix X = (αi, . . . ,£#) ' , with xι = ( z^i, . . . , ^ ) f c ) , the N x 1 vector of fixed
known observation specific censoring values be yc = (yc\,..., yc/γ), the N x 1
vector of disturbances be e = (ei, ...,ejv)' and the k x 1 parameter vector
be/3.

The following discussion considers a censored regression model with cen-

soring from above. For a given quantile θ G (0,1), the CQR estimation

problem4 is to minimize the piecewise linear distance function given by

Λ

 N

βθ e argmin ^s9ne{Vi ~ min[x'$,yci]) {y{ - min[x'^,ya}) , (1)

β i=i

where the θ weighted sign function is given by

> 0) - (1 - θ)I(eτ < 0)

and I(.) denotes the indicator function. The expression x'φo captures the
^-quantile of the underlying uncensored dependent variable conditional on

Since the CQR distance function (1) is piecewise linear, the CQR mini-
mization problem does not necessarily have a unique solution.5 Analogous
to standard quantile regressions, cf. Koenker and Bassett (1978), the fol-
lowing interpolation property can also be established for CQR's.

Interpolation Property: If the^design matrix X has full rank fc, then
there exists a global minimizer βg of the CQR distance function such
that βe interpolates at least k data points, i.e. there are k observations

,Xii),~'ΛVikiχik)} w i t h

(IP) yit = x'iβe for / = 1,..., k and the rank of (xiλ,..., Xik)
f equals k .

4Fitzenberger (1997) treats censoring both from above and below and provides the
asymptotic distribution of the CQR estimator. The expression "sgnθ(ei) e;" is mostly
referred to as "check function" pθ(u). The notation used here has advantages when
studying the asymptotic distribution of the estimator.

5Womersley (1986, p. 112) and Fitzenberger (1994) provide a more complete charac-
terization of the set of minimizers.



174 Bernd Fitzenberger

When evaluating the IP, the following three points deserve attention. First,
if the CQR distance function exhibits a unique minimizer, it must satisfy IP.
Second, the CQR can interpolate a censoring point where an observation is
censored. And third, in contrast to standard quantile regressions, Koenker
and Bassett (1978), it is not guaranteed that a share of at most θ [(1 —
θ)\ of the observations lies above [below] the estimated CQR line with an
intercept.

The IP is established by analyzing the kinks of the piecewise linear dis-
tance function (1) for which the directional derivative proves an important
tool. The directional derivative evaluated at β in direction w G 5Rfc is given

by

N

H'θ(β,w) = Y\I{x'iβ < yci){-sgno(yi - x'β) - Kx'φ = yjsgπθi-xfjw)}
i=l

(2)
< ych x^w < 0) - ΘI(yi = yci: x[w < 0)}] x[w .

2 Algorithms

Whereas previous simulation studies relied on grid search to determine the
CQR estimates, the interpolation property (IP) discussed above suggests
an enumeration algorithm to determine the CQR estimate exactly, i.e. an
element out of the set of global minimizers. This algorithm, which I denote
by IPOL, consists of an enumeration of the set of all fc-tuples of data points
with linear independent regressor vectors and the corresponding interpolat-
ing regression line. Then the ones minimizing the CQR distance function
are in the set of global minimizers. IPOL involves the evaluation of at
most (^) fc-tuples. In contrast to grid search, IPOL guarantees to find a
global minimum exactly and is typically much faster than grid search. The
computational advantage of IPOL relative to grid search increases with the
required accuracy of the estimates and the number of the regressors k and it
decreases with the number of observations N. The algorithms discussed in
the following, which are typically much faster than IPOL, will be contrasted
in Section 3 with the exact CQR estimates obtained by IPOL.

2.1 BRCENS

The algorithm BRCENS is developed in Fitzenberger (1994) as an adap-
tation of the standard ]3arrodale-Roberts-Algorithm (BRA) for standard
Quantile Regressions to the Censored Quantile Regression case. A stan-
dard quantile regression exhibits a linear programming structure. Bar-
rodale and Roberts (1973) notice that the IP allows for a more efficient,
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condensed simplex approach. Only kinks of the distance function need to
be considered for which k (design matrix exhibits full rank) observations are
interpolated and for which the rank of the matrix formed by the regressor
vectors is equal to k.

Analogous to BRA, the algorithm BRCENS involves two parts. First,
the algorithm starts with all coefficients being zero as the set of nonbasic
variables (NB).6 The algorithm proceeds in k steps, where in each step
that coefficient from NB changes into a direction for which the directional
derivative (2) indicates the strongest decline of the objective. This defines
a one-dimensional search direction and the coefficient is changed along this
direction until the objective starts increasing again. At this point, accord-
ing to the expression for the directional derivative in (2), there is at least
one data point being interpolated. One of these interpolated data points
now replaces the coefficient leaving NB. At the end of the first part, the
algorithm has reached a situation where IP is satisfied. The second part
of BRCENS considers exchanging one of the interpolated observations in
NB with a different observation. With all other data points in the NB re-
maining interpolated, considering one data point defines a one-dimensional
search direction. The algorithm keeps moving into the search direction, for
which the directional derivative indicates the largest decline of the objec-
tive, until the objective cannot be reduced further. At this new point there
exists at least one data point which is added to NB, the set of interpolated
data points. The algorithm stops when the directional derivatives for all
interpolated data points in NB are non-negative, thus guaranteeing that a
local minimum has been achieved.7

BRCENS does not guarantee convergence to a global minimum of the
CQR objective function. The contribution to the directional derivative be-
comes zero at data points z, for which the current estimate of the CQR
line yields a strictly censored fitted value, i.e. x'β > yci at the current β.
Therefore, the simulation study considers a heuristically modified version
of BRCENS, denoted by MBRCENS, which uses different starting values.
MBRCENS starts with BRCENS. Based on the set of coefficients obtained,
new starting values are used which tend to put the current CQR line out of

6In the Simplex setup, the set of nonbasic variables comprises those coefficients and
residuals (including the corresponding data points) which are currently zero and for
which the Simplex tableau provides the linear representation in terms of the variables
in the basis. The variables in the basis (coefficients, data points represented by the
corresponding residuals) are typically different from zero.

7In contrast to the original version of BRCENS, the current version performs the final
directional derivative check for all combinations of k interpolated data points with rank
k as NB. This change improves the reported performance relative to earlier simulation
studies, cf. Fitzenberger (1994, 1997).
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the censored region. The estimates from the first step are used as starting
values for BRCENS in the second step except for the intercept coefficient
being shifted to the 25%-quantile of the estimated residuals. Again the esti-
mated coefficients from the second step are modified such that the intercept
is now shifted to the 40%-quantile of the estimated residuals and the slope
coefficients are multiplied by 0.8 yielding the starting values for a third
round with BRCENS. Among the three available estimates, MBRCENS fi-
nally takes the one yielding the lowest value of the CQR objective function.

2.2 Iterative linear programming algorithm

Buchinsky (1994, p. 412) suggests the following Iterative Linear Program
ming Algorithm (ILPA), which has also been applied in Honore and Po-
well (1993). ILPA consists of successions of standard quantile regressions.
Starting with an initial coefficient estimate βo and a counter j — 1, the
following iterative steps are continued until either convergence is achieved
or a maximal number of iterations is reached:

Step 1: For the jth iteration, determine the set Mj of observations with

x'φj < yci. If j = 1 or Mj φ Mj-\ then continue with Step 2, otherwise

terminate and take βe = βj-\ as the CQR estimate.

Step 2: Calculate βj as the standard quantile regression estimate for the set
of observations Mj by means of the BRA. Set j := j + 1 and repeat Step 1.

Buchinsky states that ILPA is not guaranteed to converge. He motivates
ILPA by the following two claims. First, for an optimal solution β$ of the
CQR problem, the set of observations for which the predicted value lies on
or above the censoring point, i.e. x' βe > yet, could have been excluded
from the estimation and one would still obtain the same estimate. And
second, when convergence is reached, the coefficient estimate represents a
local minimum of the CQR distance function.

In Fitzenberger (1994), I provide counter examples showing that there
exist both designs for which the CQR estimate interpolates a censoring
point and designs for which convergence of ILPA does not result in a local
mi-nimum. The main issue is that the contribution of a single observation
to the directional derivative (2) changes when the regression line hits the
censoring point depending on whether the observation itself is censored and
depending on whether the regression line moves towards or away from the
censored region.

However, under the assumption that the exact CQR estimate does not
interpolate any censored observation, Buchinsky's rationale is true following
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from results on standard quantile regressions. Therefore, ILPA has a lot of
appeal, since asymptotic consistency of the CQR estimate relies on the fact
that population quantiles can be estimated consistently as long as they are
uncensored, cf. Powell (1984, 1986).

There exists an alternative version of ILPA, which coincides with ILPA
except that in step 1 "<" is replaced by "<" when defining the set Mj.s

This allows for the CQR estimates to interpolate censored observations, but
again convergence does not guarantee a local minimum, cf. Fitzenberger
(1994). Since earlier simulation studies showed that this modification does
not lead to an improvement relative to the version of ILPA presented first,
it is not considered further in this paper.

2.3 NLRQ

The algorithm NLRQ ("Nonlinear Regression Quantile") developed in
Koenker and Park (1996) is a generic interior point algorithm for non-
linear quantile regressions defined by minimizing the distance function
Σ ϋ i sgnΘ[yi - fi{xi,β)] [y% - fi(xi,β)] with respect to β. The algorithm
is built on fi(xi,β) being differentiate in β almost everywhere. NLRQ
considers successions of linearized quantile regression problems and at each
succession the algorithm performs two steps. First, it considers the dual
problem to obtain a one-dimensional search direction by interior point
methods. Second, the search direction from the dual problem is translated
into a search direction in the primal nonlinear problem and a conventional
one-dimensional line search is performed. After the two steps, the fts and
their gradients are updated. The algorithm stops when the new iterate fails
to improve the objective function. Koenker and Park provide an S-code,
cf. Becker et al. (1988), for NLRQ. For the subsequent simulation study, I
have translated their code into Fortran. This makes the timing comparison
somewhat unfair for NLRQ since I use grid search for the line search in the
second step.

Considering the use of NLRQ for CQR's, one should note that the /*(.)-
function is not everywhere differentiable in β. At points satisfying the
IP there could be observations for which the regression line interpolates
a censoring value involving a kink in /i(.)5

 s e e the expression for the di-
rectional derivative in (2), i.e. /»(.) is not differentiable here. Therefore, I
also consider a modification of NLRQ (denoted as MNLRQ) in the subse-
quent simulation study, which takes account of the fact that the directional
derivative differs depending on the direction taken when the current CQR

8In contrast to Buchinsky (1994, p. 412), Buchinsky (1997, section 8.1) refers to this
version as the ILPA.
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interpolates a censoring point. In such a situation, MNLRQ tries all pos-

sible permutations of the contribution of interpolated censoring points to

the directional derivative when forming the gradient until a search direc-

tion is found along which the CQR objective function can be improved.9

MNLRQ stops when the CQR objective function cannot be improved fur-

ther resulting in a local minimum of the CQR optimization problem. It has

to be emphasized, that MNLRQ is not constructed to be a serious com-

petitor in terms of computation time. In fact, with a lot of censoring in the

data, my current implementation of MNLRQ performs very poorly in this

respect, cf. Section 3. The goal here is rather to explore whether NLRQ

could be improved by considering more precisely the directional derivative

information at censoring points.

3 Simulation results

This section analyzes the performance of the algorithms described in Sec-

tion 2 by means of a simulation study whose design is similar to Fitzen-

berger (1994, 1997). Table 1 describes the data generating processes (DG-

P's), (A)-(H). For each scenario, 1000 random samples of size 100 are

drawn. The estimation problem is a censored LAD regression with one re-

gressor and an intercept. A sample is dismissed if the exact CQR estimates

(determined by the enumeration algorithm IPOL) are not unique.

DGP Censoring Values True Coefficients Regressor Values

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

yd = Const
ya = Const
yd = Const + 0.5
ya = Const + 0.5

yd ~ N(Const, 1)
yd ~ N(Const,l)
yd ~ N (Const + 0.5,
yet ~ N(Const + 0.5,

1)
1)

(ft, fa) = (0,0)
(01,02) = (0,0)
(βufa) = (0.5,0.5)
(0i,02) = (0.5,0.5)

(01,02) = (0,0)
(01,02) = (0,0)
(0i,02) = (0.5,0.5)
(0i,02) = (0.5,0.5)

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xi,2

Xχ,2

Xi,2

- iV(0,l)
= -9.9 + 0 . 2 i

- ΛΓ(0,1)
= -9.9 + 0.2 i

- JV(O,1)
= -9.9 + 0.2 i
- AΓ(0,1)
= -9.9 + 0.2-2

a) Const denotes some constant taking various values, N(Const, 1) denotes the nor-
mal distribution with mean Const and variance one, and I(.) denotes the indicator
function. The random variables eι are distributed as i.i.d. AΓ(0,1) and i = 1,..., N

Table 1: Data generating processes (DGP) (A) - (H) used in simulation

study for the model yι — min(yci,βι + /% ^,2 + e%)a-

9In cases, when there are too many interpolated censored observations (more than
4xfe), each component of the current coefficient vector is perturbed by a very small
number. This is done to limit the number of permutations to be explored.
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The DGP's differ in four dimensions. First, by whether the coefficients
to generate the data are both 0 (A,B,E,F) or both 0.5 (C,D,G,H). Since
all algorithms start with both coefficients at 0, it could make a difference
whether the starting values are close to the truth. Second, the DGP's differ
by whether the censoring points are the same for all observations (A,B,C,D)
or differ across observations (E,F,G,H). In the first case, if the CQR line is
above the censoring value for a certain regressor value then this is true for all
regressor values in a certain neighborhood. In the second case, the CQR line
can be censored and uncensored for the same regressor values. This could
have an influence on the directional derivative information used locally.
Third, the DGP's differ by whether the regressor is a random variable
(A,C,E,G) or a fixed sequence of numbers (B,D,F,H). The two scenarios
differ by whether all observations exhibit the same a priori distribution.
And fourth, the DGP's differ by the degree of censoring depending on
Const — 1,0.5,0. Table 2 shows the average share of censored observations
depending on the DGP and the choice of Const. Const == 0 represents a
situation where on average 50% of the observations are censored, i.e. the
exact CQR (θ — 0.5) typically reaches the censored region.

DGP Const = 1.0 Const = 0.5 Const = 0.0

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

15.9
15.9
18.7

41.0
24.1

24.1

25.4

41.0

30.9
30.9
32.9
46.0
36.4

36.3

37.1

46.0

49.7
49.8
49.9
50.9

50.1

50.0

50.0

51.0

Table 2: Average share of censored observations in random samples for
various data generating processes (DGP) - In percent.

Convergence: Table 3 presents the absolute frequencies that an algorithm
converges. For ILPA, the algorithm is terminated after 20 iterations, if no
convergence is achieved. Increasing this number to 100 in some scenarios
did not change the results. In such a case, the best coefficient vector during
these 20 iterations (in terms of the CQR distance function) is taken as the
ILPA estimate.10 MNLRQ and NLRQ are considered not to have converged

°In an earlier simulation study, I used the final coefficient estimate after 20 iterations,
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BRCENS, MBRCENS, and NLRQ converged under
all PGP's for all 1000 random samples
PGP Const = 1.0 Const = 0.5 Const = 0.0

ILPA MLRQ ILPA MNLRQ ILPA MNLRQ
(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

999
1000
752
662
750
747
727
726

1000
1000
1000
1000
1000
1000
1000
1000

925
962
494
656
618
641
621
720

1000
1000
1000
1000
1000
1000
1000
1000

537
508
298
642
485
506
526
710

707
1000
989
1000
1000
1000
1000
1000

Table 3: Absolute frequencies among 1000 random samples that algorithms
converged.

after 200 iterations. BRCENS, MBRCENS, and NLRQ converge for all
scenarios. Convergence is a serious problem for ILPA, especially with a
high degree of censoring (Const — 0), with bad starting values (C,P) or
with random censoring points. When ILPA does not converge, it typically
oscillates between two or three coefficient vectors.11 Additional results
(not reported here) indicate that along the iterations ILPA reaches a local
minimum as the best coefficient estimate in almost all cases for Const —
1,0.5 and in at least 76% of all cases for Const = 0. MNLRQ converges in
all cases with low or moderate censoring (Const = 1,0.5) but it exhibits
some convergence problems in the presence of a lot of censoring (Const = 0,
PGP (A) and (C)). Overall, lack of convergence is a very serious drawback
for the application of ILPA.

Optimality: Table 4 is concerned with the frequencies that the global
minimum of the CQR distance function is achieved where the latter (the
exact CQR estimate) is obtained by the enumeration algorithm IPOL. An
algorithm is assumed to have achieved the optimum, if the value of the ob-
jective at the solution is within a tolerance of 10~7 to the value of the exact

cf. Fitzenberger (1994).
11If ILPA does not converge, it must oscillate, since a finite sample allows only for

a finite number of subsamples which a standard quantile regression can be based upon.
Oscillation arises, since an observation, for which the current standard quantile regression
implies a censored fitted value, still contributes to the distance function. In the next
iteration, this observation is excluded from the sample, which can result in a new estimate
for which the fitted value at the aforementioned observation is now uncensored.
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CQR estimates. The results are very favorable for BRCENS in comparison.
The relative performance of BRCENS is better, when the degree of censor-
ing is higher and when there are more observation specific censoring points.
However, for large degrees of censoring, all algorithms (including BRCENS)
perform very poorly. Given that BRCENS, MBRCENS, and MNLRQ only
guarantee convergence to a local minimum, this poor performance is to
be expected, since the CQR distance function is already highly noncon-
vex with moderate censoring. Unfortunately, a local minimum does not
guarantee a solution close to the global minimum, see also the following
results on the properties of the coefficient estimates. The modified ver-
sion MBRCENS yields a substantial improvement compared to BRCENS.
ILPA performs better than NLRQ. Again the modified version, MNLRQ
improves upon NLRQ and performs better than ILPA in many cases. All
algorithms perform quite satisfactorily with moderate degrees of censoring,
a common censoring point, and good starting values, DGP (A) and (B)
and Const = 1.

Properties of Coefficient Estimates: The quality of the coefficient esti-
mates obtained by various algorithms is an important issue, which has been
mostly neglected in my previous simulation studies. Therefore, Tables 5 and
6 also provide results on the root-mean-squared deviation and the 90%-
percentile of the absolute deviation of the respective estimates from the
exact CQR estimates for moderate degrees of censoring (Const = 0.5).12

According to the root-mean-squared deviations criterion, BRCENS and
ILPA exhibit almost the same performance and NLRQ performs notice-
ably better. This is in contrast to the optimality results presented be-
fore. Considering results for Const = 0 (not reported here) reverses the
relative performance of BRCENS and NLRQ (BRCENS also outperforms
ILPA in this case).13 The modified algorithm MBRCENS improves upon
BRCENS, whereas there is no clear ranking between MNLRQ and NLRQ.
MBRCENS performs slightly worse than MNLRQ and NLRQ. Turning to
the 90%-percentiles, the numbers are considerably smaller than for the
root-mean-squared-deviations, however, the relative performance between
the algorithms is only slightly changed (MBRCENS performs better than
NLRQ/MNLRQ in a considerable number of cases). Overall, these findings

12Further results for Const = 1,0.5 and results on the median and the 75%-percentile
are available from the author upon request.

13At this point, it remains a topic for further research to investigate why NLRQ proves
less outlier sensitive than BRCENS or ILPA for moderate censoring. It seems to pay
off that interior point methods do not move too close to the contraint set (in linear
programming terminology) in an early stage of the iteration process. Some local minima
on the contraint set can actually imply quite extreme coefficient values.
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indicate that for all algorithms the distribution of the absolute deviation
from the exact CQR estimates is very much skewed to the right. This effect
is strongest for BRCENS and ILPA.

DGP

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)

ILPA

993
1000
655
526
655
642
630
628

873
924
353
526
501
511
511
599

90
81
159
487
332
374
391
603

BRCENS

995
1000
864
843
866
874
855
874

936
942
687
850
818
802
804
837

330
174
474
806
702
720
706
826

MBRCENS
Const = 1.0

995
1000
908
938
904
932
913
958

Const = 0.5
942
958
745
932
861
876
884
936

Const = 0.0
379
408
596
911
774
845
809
942

NLRQ

829
863
445
332
387
400
229
426

730
782
219
361
283
310
222
451

2
53
100
358
197
189
150
465

MNLRQ

983
995
705
633
499
487
454
646

870
934
467
586
397
393
433
639

7
149
261
592
293
296
339
646

Table 4: Absolute frequencies among 1000 random samples that algorithms
achieved global optimum of CQR distance function.

Timing: Table 7 provides the relative average CPU time requirements
of the different algorithms depending on the degree of censoring in the
data (Const). Timing is of particular importance when bootstrapping the
CQR estimates. The results show that BRCENS exhibits the lowest time
requirements. ILPA and MBRCENS are next with no clear ranking between
the two. In comparison, NLRQ and MNLRQ exhibit a much larger time
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DGP

(A)
(B)
(C)
(D)
(E)

(F)

(G)
(H)

(A)

(B)
(C)
(D)
(E)

(F)

(G)
(H)

ILPA

.565

6.409

.181

.113

.045

.048

.051

.121

.309

.662

.162

.018

.051

.007

.050

.019

BRCENS I

Const = 0

.566

6.409

.179

.108

.036

.043

.045

.114

Const = 0.

.309

.662

.156

.018

.048

.007

.049

.018

VIBRCENS

.5-

.5-

NLRQ

- Estimates for β\

.566

6.409

.175

.075

.033

.039

.037

.058

.475

6.408
.141

.075

.029

.034

.037

.073

- Estimates for /%

.309

.662

.155

.012

.046

.006

.041

.009

.260

.662

.110

.012

.037

.005

.037

.013

MNLRQ

.440

6.408

.146

.078

.027

.038

.030

.079

.247

.662

.122

.013

.036

.006

.030

.013

Table 5: Root-mean-squared deviation of coefficient estimates from exact

CQR estimates.

requirement. For a low degree of censoring, BRCENS is about 60 times
faster than the exact determination of the CQR estimates by means of
IPOL. This advantage is reduced to a factor of 10 when a lot of censoring is
present. In comparison, the incremental time requirement for MBRCENS is
fairly small, whereas NLRQ and MNLRQ are considerably more expensive.
For the case with a lot of censoring, MNLRQ even uses more time than
IPOL. However, for fairness sake, it has to mentioned that my Fortran
implementation of NLRQ and MNLRQ is likely to be somewhat inefficient.
Given the poor performance of all other algorithms in the presence of a lot
of censoring, IPOL appears a viable alternative in such a situation.

Summary and Recommendations: Summarizing the simulation re-
sults, BRCENS performs quite well in comparison. It outperforms ILPA
and NLRQ with respect to the frequencies that the exact CQR estimates are
reached. BRCENS is very competitive in terms of the computation times
involved and when trying out different starting values its performance can
be improved considerably at a fairly small computational cost. All algo-
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DGP

(A)

(B)

(C)
(D)
(E)
(F)

(G)
(H)

(A)

(B)
(C)
(D)
(E)

(F)
(G)
(H)

ILPA

.000

.000

.276

.239

.108

.097

.099

.267

.000

.000

.324

.039

.112

.014

.096

.043

BRCENS MBRCENS NLRQ

Const = 0.5 -

.000

.000

.256

.221

.072

.084

.091

.213

Const = 0.5 -

.000

.000

.267

.034

.084

.017

.112

.036

- Estimates

.000

.000

.243

.000

.046

.022

.030

.000

- Estimates

.000

.000

.259

.000

.050

.007

.032

.000

for/?!

.013

.011

.054

.040

.049

.057

.080

.050

for &
.013
.002

.073

.014

.051

.010

.091

.012

MNLRQ

.000

.000

.030

.027

.051

.051

.057

.029

.000

.000

.045

.008

.050

.010

.055

.007

Table 6: 90%-quantile of absolute deviation of coefficient estimates from
exact CQR estimates.

rithms perform the worse, the higher the degree of censoring. Based on the
simulation results reported here and recognizing that BRCENS guarantees
convergence to a local optimum, its application can be highly recommended
in situations with low or moderate degrees of censoring (relative to the
quantile θ being estimated). For high degrees of censoring, one might want
to determine the exact CQR estimates by means of IPOL. The results for
NLRQ show that its performance can be improved when using more precise
directional derivative information. However, this could result in consider-
ably higher computation cost (or lack of convergence, when only a small
number of iterations is allowed for).
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Const

1.

0,

0.

.0

.5

.0

IPOL

66.

64.

61.

.24

.19

.96

ILPA

1.

2.

6.

.77

.12

.86

BRCENS

1.

2.

6.

.00

.05

.41

MBRCENS
1.

2.

7.

.69

.69

.27

NLRQ

24.50

27.25
25.55

MNLRQ

21.
24,

700.

.90

.19

.87

a) The reported numbers are the ratios of average computation times across
DGP's (A)-(H) for different degrees of censoring (Const = 1,0.5,0), cf. ta-
ble 2, relative to BRCENS, Const = 1. The time results are obtained with
the UNIX 'time' command on an IBM RS 6000 workstation, based on a
Fortran implementation of the various algorithms.

Table 7: Average computation timesα.
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