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Abstract: The paper discusses the behavior of residuals from least-absolute-
deviations (or L1) fits of linear models. Particular emphasis is given to
data arising by way of designed experiments. The paper argues that the
L1 method of fitting such models should be discouraged. The method is
inefficient when compared to other robust methods while not being any
simpler to compute. The residuals obtained by L1 fitting exhibit several
weaknesses. First of all they are ambiguous in the sense that there are
a multitude of L1 fits, sometimes quite far apart. Second, typical algo-
rithms produce as many exact zero residuals as there are contrasts fitted.
As a result, the non zero residuals do not give an accurate reflection of
the errors that occurred during the experimental runs.
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1 Introduction

Let y = Xθ + ε be a linear model with uncorrelated, centered, and h o
moskedastic errors ε i , . . . , ε n . As indicated, we take n to be the number
of observations, whereas p denotes the dimension of the regression param-
eter θ. The least-squares residuals are r = (/ — H)y, where y = Hy =
X(XτX)~ιXτy is the least-squares fit. If the error distribution has two
moments, it follows that E(r) = Xθ - HXΘ = 0, and Var(r) =σ2(I-H).
The use of such residuals for outlier detection and other diagnostic pur-
poses has been explored in great detail in the statistical literature (see for
example Belsley, Kuh and Welsch, 1980; Cook and Weisberg, 1982).

Residuals from an L 1 fit are not so easily described. Throughout this
article, we denote by θ a parameter fit obtained by minimizing the least-
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absolute-deviations and designate by e the corresponding residuals e =
y — Xθ. Because M* equipped with the L1 norm is only a weakly convex
normed linear space, the best approximation to y of the form Xθ is in
general not unique. In fact, the best approximations form a convex set
in the p-dimensional column space of X. It is widely-known that among
the best approximations there is always one, for which at least p of the
components of e are exactly equal to zero. The algorithms based on linear
programming techniques always identify one of these solutions, because
they correspond to extremal points of the linear programming problem.

For Gaussian errors, the least-squares fit θ is fully efficient, whereas
the least-absolute-deviation fit θ reaches an asymptotic efficiency of 2/π =
63.7%. In balanced factorial models the element h{j of ΐf, proportional to
the covariance of the least-squares fit iji and yj, depends in a simple way on
the factor settings at runs i and j. In the case of a two-way ANOVA with
factors /i and /2, for example, there are four cases, distinguished by the
comparison of (fu^f2i) and (/ij,/2j) In particular, the diagonal elements
ha are all equal to p/n, where p is the dimension of the column space of
X. In the following, we restrict our discussion to this case of a balanced
factorial model.

The asymptotic behavior of the residuals is for L1 and L2 the same,
as long as pjn tends to zero with increasing n. The residuals are asymp-
totically equivalent to a sample from the error distribution. Asymptotic
considerations are, however, of minor interest when one discusses proper-
ties of residuals. The case p « n is of much more practical concern.

2 Identifying a small flock of outliers
Least-squares residuals have a tendency to behave much like a sample from
a Gaussian distribution. Stem-and-leave plots or normal plots do often not
reveal anything of interest. This is due to the dependence imposed on the
residuals by the requirement that rτX = 0. For that reason, glaring error
structures will be lost or not faithfully translated into residual structures.
An example of this sort concerns the presence of a few outliers among the
measurement errors. To illustrate what happens, suppose the residual r has
a fixed size, e.g. rτr — 1 and we seek to maximize wτr for a fixed vector
of component weights w. The solution to this constrained optimisation
problem yields a maximal value of wτw — wτHw achieved, when r oc
(/ — H)w. Thus, if we maximize a single component of a (unit) least-
squares residual r, the largest possible value is \/l — ha = y/(n ~~ P)/n- ^
we maximize the sum of two components, the largest value for the sum of
the ith and jth residuals is y/2 — ha — hjj — 2/ι̂  , etc.
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Example 1 A simφle illustration of these facts can be given by using the 22

main effects model If all observations are zero except one, which is equal
to c, the residuals are equal to ±c/4. This residual vector has I?-norm
equal to c2/4 and c = 2 normalizes it The largest possible component of
a unit residual is, therefore, equal to 1/2 = ^ ( 4 - 3)/4, which means that
the largest percentage of the L2-norm of a residual that resides on a single
component is 25%.

In a 3 x 3 main effects model, the corresponding number is 2/3 =
y/(9 — 5)/9, which implies that the largest percentage of the L2-norm re-
siding in a single residuals is equal to 44.4%. These examples illustrate the
fact that the ability of a design to show a single outlier by way of a large
individual residual depends on the ratio p/n.

The general formula given above can be used to judge the ability of a
given design to point out in a single experiment two outliers by two large
residuals. It is immediately clear that this capacity is dependent on the
positions (on the indices) of the outlying observations, since hij depends
on i and on j .

The picture is maybe clarified, if we pose the question differently. Given
a residual vector r, what maximal percentage of its L2-norm rτr can be
explained by 1, or 2, or 3, etc. components. Let / = {i i , . . . , i m } C
{1,. . . , n} denote a set of m indices. It turns out that the answer to the
above query is equal to 1 — λ m i n (/), where λm i n(J) denotes the smallest
eigenvalue of the minor Hj of the hat matrix determined by the intersection
of the rows and columns from /. This is easy to show and we leave it to
the reader to check the statement.

Example 2 When the number m of residuals we wish to check is equal to
1, the minor Hi is equal to the scalar h^^ — p/n and 1 — λmin(/) = I—p/n,
which is a result we already knew. If we pass to ra = 2 for the 22 design,
all minors of dimension 2 have a, minimal eigenvalue of 1/2. The largest
percentage of the total norm, explained by two components, i.e., by half the
components j is equal to 50%. The situation in the 3x3 case is different. The
smallest eigenvalue of 2-dimensional minors is either 1/3 or 4/9, depending
on the position of the pair within the 3 by 3 table. The maximal percentage
of the total norm, that can be explained by 2 of the 9 residuals is, therefore,
66.7%. Since with a single component, one can at most explain a percentage
of 44.4%, this is a bit disappointing. Evidently, two outliers will result in
two residuals that stick out much less than was the case with a single outlier.
This kind of behavior is typical for least-squares fits.

What is the answer to the same question in the case of least-absolute-
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deviations residuals e? For values of m smaller than the exact-fit-point
of the L1 method, the residuals can be completely concentrated on any of
set of m components. The exact-fit-point JVef of an equivariant fitter can
be defined as the largest number of non zero obserservations that one can
add in any position to the vector of observations y — 0 without changing
the fit from y — 0. In the best of situations, this point is equal to or close
to n/4 — 1 for the least-absolute-deviations regression method (for details,
see Ellis and Morgenthaler, 1992).

A thorough discussion of the break down and oulier resistance problem
in designed experiments is given in Mίiller (1995). If we wish to be able to fit
all contrasts in a given model, the crucial quantity is the maximal number
of experimental runs that by themselves are not enough to determine a
fit of the model. In the 3 x 3 main effects design this number is equal
to six, which is bigger than the five dimensions of the parameter space.
Any equivariant fitter breaks down, as soon as a majority of the 3 = 9 - 6
remaining observations are faulty.

For m > JVef, depending on the position of the outliers, different out-
comes are possible.

Example 3 In a 3 x 3 design, Nef = 1. For m = 2 and m, = 3, the
following tables show some of the possiblities.

a

0

0

b

0

0

0

0

0

a

0

0

0

b

0

0

0

0

a

0

0

0

b

0

0

0

c

In the left-most case, the residual e has in general two non zero components.

They can be in the sam,e position as the outliers a and b this happens
when they are of opposite sign — or they can be spread to other positions,
one at the third position of the first line, the other indicating the m,ore
important outlier am,ong a and b. In the middle case, the non zero residuals
are confined to the two positions where a and b are observed as long as they
have the same sign. Otherwise, the L1 fit is not unique and a second and
third non zero residual can pop up in the first and the last line. If a is
—300 and b is 290; the residual table can be as disparate as the follwing two
examples:

-300

0
0

0

290
0

0

0
0

-10

0
0

0

0
-290

290

0
0
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1
0
0

0
- 1
- 1

1
0
0

Since the vector

lies in the column space of the design matrix X, one can smoothly transform,
between these two residual vectors without changing the L1 norm,. In the
right-most case, the situation is even m,ore complex. If the outliers a, b and
c are of equal sign, the residual matrix faithfully reflects this structure. If
they are of unequal signs, surprising things can happen. The observed table

300
0
0

0
290

0

0
0

-250

leads to a unique L1 fit with residual table equal to

50
-250

0

-250

40
0

0
0
0

In this case, there exists an additive fit explaining the data with (merely)
two sizable residuals. When m — 3, we are beyond the range, where we
can generally expect to distinguish outliers from, additive structure in 3 x 3
tables. Most robust procedures prefer the fit found by the L1 m,ethod over
the fit y — 0. But one can, of course, im,agine procedures that are able
to identify any additive structure as long as it is exactly adhered to by a
majority (LMS, Rousseeuw and Leroy, 1987). Such a procedure could not
distinguish between the two fits which both have at least 5 of the 9 residuals
equal to zero.

3 Maximal residuals
The size of the largest residual will often be taken as an indication, whether
faulty runs occured during a designed experiment. As we saw in the last
section, when only a small number - less than the exact-fit-point of the runs
are faulty, and stick out very clearly, then the L1 fit will produce residuals
that can safely be used to identify the faulty runs. Beyond this number
of grossly wrong observations and when the outlyingness is less clear cut,
the L1 method is not successful. We also noted in the last section that
the L1 fit has two drawbacks. Firstly, it does in general not produce a
unique answer. This may at first sight seem not to be a concern, but in
the case of designed experiments, multiplicity of possible answers is very
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common and the set of L1 solutions can be very varied. Secondly, the
solutions found with the known algorithms produce at least p exact zeros
among the residuals. Such least-absolute-deviation fits are typically not
very appealing when one analyzes them in detail. The greed for exact zeros
tends to make the non zero residuals "too" big.

There are several simple arguments which allow us to estimate the aver-
age inflation factor that we should expect when passing from least-squares
residuals to least-absolute-deviations residuals. First, the L1 criterion will
be about the same between the two solutions, i.e. Σ£=i \ei\ ^ Σ?=i Kl
with rough equality for large values of n/p. If this were so and if we further
imagine that the exact zeroes are created by randomly selecting the cells,
then the fact that the first sum contains p exact zeros makes |e^| on average
n/{n — p) times larger than \ri\. This is equivalent to imagining that the
non-zero L1 residuals are constructed from a L2 residual to which p/(n—p)
parts oίp/n L2 residuals are added. Both of these arguments over-estimate
the inflation factor. A final check can also be made on the level of the vari-
ance. Suppose that a random selection of (n — p)/n of the L2 residuals
were multiplied by the above inflation factor, i.e., n/{n — p), whereas the
others were put equal to zero. Under such a process, the variance of the
non zero L1 residuals would be equal to (n/(n — p))2 times the variance
of the L2 residuals. If we take the rough equality of the L2 criterion as a
guide, we would expect the variation in e to be the same as the variation in
r. Since the components in e contain a mixture oίp/n exact zeros with zero
variance and (n —p)/n non zeros, the variation of the non zero residuals is
expected to be n/(n — p) times bigger than the variation in r. This leads
to an inflation factor of y/(n — p)/n, but this time one underestimates the
true size. Both factors tend to 1, as p/n tends to zero and both are true
some of the time. Typically, when we have only a few degrees of freedom for
the error, then the factor n/(n—p) is correct. This is the case for example,
when we fit a 2k design up to the (fc — l)-factor interactions. But, it is also
roughly true for a 2 x k factorial design, where the number of degrees of
freedom for the error is fc/2 and thus arbitrarily large. The last example
shows, that it is also the design itself that has an influence on the behavior
of the L1 method.

In the 3x3 design, the inflation factor for the size of residuals is between
y/9/4 = 1.5 and 9/4 = 2.25. Figure 1 illustrates what really happens for
four simple designs. Note that an innocent interpretation of the L1 residuals
e would quite often lead to the conclusion that outlying experimental runs
were present, because of the large maximal residual size. The simple minded
adjustment given above works reasonably well.

Figure 2 repeats the experiment explained in Figure 1, but this time
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with errors from a contaminated Gaussian with \jn contamination having
a five-fold standard deviation.

Among the 300 simulated experiments, roughly 60% resulted in the cor-
rect identification of the faulty run in the sense that the largest sized resid-
ual was indeed associated with the contaminated run. This is true for both
methods of fitting. However, in the least-squares case, the largest residual
does not stick out clearly when compared to the next largest one.

m
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2 by 3 (2 df)
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Ω

3
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by 3
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(4df)

Least Sq Least Abs Dev Ratio Least Sq Least Abs Dev Ratio

2 to 3 (4 df) 4 by 4 (9 df)

Least Sq Least Abs Dev Ratio Least Sq Least Abs Dev Ratio

Figure 1: The figure shows the behavior of the maximal residual size in
four different design. The expected inflation factors are (1.73, 3.00) for
the 2 x 3, (1.50, 2.25) for the 3 x 3, (141, 2.00) for the 23 main effects
and (1.33, 1.78) for the 4x4 . The average inflation factor of the maximal
residual observed in 300 replications are 2.54, 1.93, 1.61 and 1.51. The
ratios between the maximal residual sizes computed for each replication is
also shown in the plots. These ratios are surprisingly stable.

Compared to the least-squares residuals, the L1 residuals do fairly well.
But, when challenged by a standard robust estimator, they do worse. If
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one uses the simulations shown in Figure 2, but replaces the least-squares
residuals by robust residuals based on Tukey's biweight with 6x MAD,
both produce about an equally large maximal size. However, the ratio
of largest to second largest is usually more important for the robust fit,
which, therefore, results usually in a clearer picture. This is due to the
higher degree of smoothness of such estimators when compared to the L1

fitter. This also results in an improved relative efficiency.
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Figure 2: The figure shows the behavior of the maximal residual size in
four different design for an error distribution which is Gaussian in all runs
except one. In the exceptional one the variance of the Gaussian error is 25
times larger. The average inflation factor observed in 300 replications are
2.61, 1.97, 1.75 and 1.58 and thus remarkably close to the ones observed for
Gaussian data. The similarity with the Gaussian case is a bit surprising,
since the L1 method is supposed to be able to identify more clearly the faulty
run. In order to check this, each figure contains a boxplot of the ratio of the
largest sized residual to the next largest one - the corresponding boxplots
are labelled aOut LI" and ίCOut L2".
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4 Non uniqueness of the L1 fit

The ambiguity of the L 1 fit is another problem that the user of this method
should be aware of. In the case of the 2 x 2 main effects model, for example,
the common L 1 algorithms will result in a residual e consisting of three
exact zeroes and one non-zero residual whose size is exactly four times as
large as the size of the L2 residuals. The run in which the single non zero
residual is placed, is completely arbitrary. All intermediate fits preserve
the L 1 norm. The same problems occurs in sufficiently balanced replicated
2 x 2 designs such as the one presented in Sheather and McKean (1992,
Example 2, p. 153). In their example, the L 1 solution is not unique. In
fact, there is a 1-dimensional family of fits, which contains in the center a
solution close to the I? fit.

In the 2 x 3 design, the L1 fit results in general in 2 non zero residuals,
which are placed in two different columns. The placement of the these two
residuals is arbitrary to the extent that we can make them switch rows. All
intermediate solutions preserve the Lι norm. In the 3 x 3 design, things be-
come more complicated. In general, there are four non zero residuals. The
values and placements of the non zero cells are usually not unambiguously
determined. If the pattern of the non zero cells - indicated by * - is of the
form

*
*
0

*
*
0

0
0
0

then the fit is unique. If we have, however, a pattern of the form

*
0
0

0
*
*

0
*
0

there is in general a 2-dimensional set of L 1 solutions.

If we want to recommend the use of L 1 fitting, it seems important to

me to produce an algorithm which enumerates all extremal points of the

polygone of L1 fits instead of simply picking one, somewhat at random.

This will allow the user to judge, inhowfar the criterion is really identifying

outlying points or whether it simply produces large residuals by artificially

zeroing others.

5 Estimating error variation
The undesirable features of the L1 residuals that we have discussed above
will, of course, have an effect on their ability to predict the error variability.
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The p exact zeroes among the residuals are a property of the design, the
fitter and the algorithm. They contain no information about the error
distribution. It is, therefore, quite natural to compute the variance of the
non zero L1 residuals as an indication of the variance σ2 of the errors.
Consequently, consider an L 1 solution with at least p zero residuals and
at most n — p non zero residuals. It is evident that the sum of squares of
the non zero residuals over-estimates the error variation and the question
is by how much. To answer this question, suppose we tried to reconstruct
the L2 residuals r on the basis of the L1 residuals e. If p = n — 1, then e
would contain a single non-zero residual, which we would evenly distribute
over the n |r;|. These reconstructed L2 residuals would then have a sum
of squares and, since there is a single degree of freedom, a mean square
equal to Σ Γ=i e ? / n Now, suppose we have several non zero L 1 residuals,
which are all of equal size |e^| = R. Evenly distributing them over all n
observations, leads to a size of \rι\ = R(n—p)/n. The mean square of these
reconstructed n is equal to (n — p)/n2γ^=1 R2 = Σ™=1 e?/n, i.e., the
same formula as before. One proposal for estimating the error standard
deviation from an L1 fit would, therefore, be the following:

n

1 = 1
\

e2/n.

Because of the non-uniqueness, J2?=i \ei\-> which is uniquely determined,
is in some sense a more appropriate basis for estimating σ, the standard
deviation of the error. In this case, the over-size of the L1 residuals does not
play any role either. If we re-size them and in some way reconstruct pseudo-
L2 residuals, their sum of absolute values would remain the same. How
would one estimate σ based on a set of I? residuals r? Since the marginal
distribution of each ri has expectation zero and variance σ 2 ( l — ha) =
σ2{n—p)/n, we have - for Gaussian errors - E{\ri\) = yj2/πyj{n —p)/nσ.
The statistic

is, therefore, an unbiased estimate of σ. In replacing Σ?=i \ri\ by Σit=i le l̂?
we obtain an estimate that underestimates σ, but should still be a useful
indicator:

ττ/2 "

Figure 3 shows with various plots, how the two estimates behave for
Gaussian errors.
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A similar behavior is found for other error distributions with a finite
second moment.

CO Ί

: : : ! : •

Figure 3: The boxplots show the behavior of the two estimates u and v for
various balanced designs and Gaussian errors. The labels indicate for each
boxplot the number of observations n and the dimension of the parameter
space p. Each design is represented with two boxplots, the first one for
u, the second one for v. The true value of σ is equal to 1. The average
values over 300 replications are: 0.811, 0.778, 0.843, 0.819, 0.877, 0.968,
0.885 for u and 1.02, 0.853, 0.888, 0.803, 0.897, 0.984, 0.887 for υ. Both
estimates tend to underestimate σ.

6 Conclusions
The L 1 method has several drawbacks and in particular leads to some
undesirable features built into the residuals. In my opinion it is not a
suitable method for fitting of ANOVA data the following reasons:

(1) The computation of the L1 fit is not as easy as the computation of the
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L2 fit. It is comparable in difficulty to robust fits.

(2) The L1 residuals have some idiosyncrasies that should be known to
the user of this method. Ignorance will lead to wrong interpretations.
They cannot in a straighforward manner replace I? residuals.

(3) The non-uniqueness of the L1 fit in ANOVA problems is the rule rather

than the exception. We lack easily available algorithms which exhibit

the whole solution set.

(4) The resistance of the L1 fit to outliers is not good enough. One can do
better with competing methods that are computationally about equiv-
alent.
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