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THE GAMBLER'S RUIN PROBLEM FOR PERIODIC WALKS

LESTER E. DUBINS

University of California, Berkeley

As a general formula due to T.E. Harris makes evident, the probability,
P, that a nearest-neighbor random walk, X, initially at 0, ever increases by
a preassigned amount, #, is a rather complicated function of the distribution,
2), of X. I happened to make a simple observation - which I hope will elicit
one of Dave Blackwell's inimitable grins - that there are cases, herein called
periodic, somewhat more general than the classical ones of de Moivre, in
which P continues to be a simple function of D. The observation applies,
in the discrete case, to periodic, nearest-neighbor walks on the integers or,
by projection, to walks on the vertices of a polygon, and, in the continuous
case, to periodic diffusions on the line or, by projection, to diffusions on the
circle.

1. The polygonal walk. In this section, X is a nearest- neighbor
random walk on the set, F, of the g > 2 vertices of a polygon, Q. Though
Q is arbitrary , possibly knotted or intersecting, it is convenient to assume
that it is planar and convex, for then the notions of clockwise and winding
angle become available. Let W{, strictly between 0 and 1, be the probability
that X makes a transition from the ith vertex, Vi, to its successor, Vi+i,
where addition of integers is modulo g, so, vg is vo, and v_χ is v^-i. Let Xo
be vo> and, for each positive integer, ί, Xt is the position at time ί, and X1

designates the partial path of X over the time interval [0, ί].
Let: the unit of angle be a full circle (360 degrees); At be the wind-

ing angle of Xι\ T+ be the first time, t, that At equals 1; T~ be the first
time, t, that At is —1. The focus herein is on the event, C"1", that X com-
pletes a winding of the entire polygon that is clockwise before one that is
counterclockwise. Plainly, C4" is the event T+ < T~.

Let T, the DURATION, be the lesser of T+ and T " . There is precisely
one path for which T = g and T+ < T", namely, /+, the one for which
Xt = vt for all tin [0, g]. Likewise there is a unique path / " for which T = g
and T~ < T+. So, /+ and / " are the only paths for which T = g. Plainly,
the probability that Xτ is /+ is the product of the g Wi, say W, and the
probability that Xτ is / " is W", the product of the corresponding [1 - wi].
So, conditional on the event that Xτ is either /+ or / " , or, equivalently,
that T = g, the probability of C+ is W/[W + W~]. As the next theorem
asserts, this is also the unconditional probability of C + .
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Theorem 1. The probability that a clockwise winding of the polygon occurs
before a counterclockwise winding is W/[W + W"\. Moreover, the event is
stochastically independent of the occupation measure, M.

For the benefit of those who, like the author, have barely heard of the
OCCUPATION MEASURE, M, it is the finite measure that assigns to each
subset i?, of Q, the measure of the set of t in [0,T] for which Xt is in B.
The last occurrence of "measure" refers, in the present context, to counting
measure and, in the continuous context, to Lebesgue measure.

The program of proof for Theorem 1 is to exhibit a pairing of the ele-
ments of C+, that is, the paths for which T+ < Γ", with the elements of
C", the paths for which T" < T+, such that, given any pair, the condi-
tional probability that T+ < Γ~ is the same as for the pair /+ and / " . The
existence of such a pairing obviously implies Theorem 1.

Let C be the union of C~ and C+. A DUALITY is a bijection of C,
say / to /*, that satisfies each of these four conditions:

[a] Γ = /;
[b] /isinC+ iff/* is in C";
[c] The occupation measures of /, and of /*, are identical;
[d] Pf/P[f*\ is constant for / in C + .

L e m m a 1. Dualities exist.

Associate to / not only T, but also the last time, z, that / is at the
initial vertex, VQ. Then define the one-one map t to ί* of [0,T] onto itself by
letting t* be t or T+z-t according as t < z or not. Define /* by f * t = /[**].
Call the map that associates /* to / the FLIP operation.

L e m m a 2. The flip operation is a duality.

Proof. That the flip operation satisfies the three conditions, [a], [b] and
[c] is easily verified. As for [d], Pf is plainly some product of Wi's and ^'s,
where qι is an abbreviation for [1 - wi]. The number, U{, of W{ that occur
in the product is the number of upcrossings by / of the edge, E{ = (ΐ, i +1);
and the number, Di, of <ft+i that occur in the product is the number of
downcrossings of Ei by /. Plainly, for / in C+,

(i) Ui = l + Di.

Let U* and JD*, functions of / and i, be the number of up and down
crossings of E{ by /*, the flip of /, or, as is equivalent, the number of W{ and
of qi+i that occur when P[/*] is expressed as a product of w '̂s and q^s. So
Pf/P[f*]> s a y Rf->is a product of Ui - Uf factors w* divided by the product
of Df - Di factors q{+i. As is easily verified, U* = D, and D* = U. So
U-U* = U-D = lby (i), and D* -D = U- D = 1. Therefore, Rf is the
product of Wi/qi+ι for i in [l,ρ], which plainly equals the product of the g
odds ratios tι;»/g», so [d] holds. |
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Plainly, Lemma 2 implies Lemma 1 and Lemma 1 implies Theorem 1.

Remark 1. The flip operation is universal in that it serves as a duality
for all nearest-neighbor walks on Q. Whether there are others, and if so
which, is not studied herein.

Subsets of C, and functions defined on C, are FLIP INVARIANT if,
upon replacing / by /*, their value does not change. As is evident from
Lemma 2:

Corollary 1. The event, C+, that a clockwise winding occurs before a
counterclockwise one, is stochastically independent of the ήip-invariant ran-
dom variables and events, and, therefore, of the occupation measure, and, a
fortiori, of the duration.

Adapting an argument well-known in the classical de Moivre case of
constant w, one obtains from Theorem 1:

Corollary 2. The probability that a random walk on the vertices of a poly-
gon, Q, ever achieves a full clockwise winding ofQ is the minimum of 1 and
W/W~.

2. Periodic walks on the integers. For a slight modification of
Theorem 1 and Corollary 2, transfer the walk on the g vertices of the polygon,
Q, to the integers, where it becomes a nearest- neighbor walk, X, of period g,
meaning W{ = Wί+g for all integers i. Let XQ be 0, and call the first moment,
T, that X reaches an endpoint of the interval \-g, g] the DURATION, and
let C + be the event that X at time T is g.

Theorem 1A. The probability ofC+ is W/[W + W~], which is the same
as its conditional probability given that T = g; the probability that X ever
reaches g is the minimum of 1 and the ratio W/W"; C+ is stochastically
independent of the duration.

That, for walks with constant w, C+ is stochastically independent of
the duration was observed by S. Samuels and reported in [3].

Remark 2. In contrast to Theorem 1, C + is not stochastically indepen-
dent of the occupation measure, M. This is evident since the probability
of C+ is positive but its conditional probability given that M([0, #]) is less
than 5, is zero.

Of course, Theorem 1A can be obtained either by imitating the obser-
vations made for the polygonal walk or by deriving it as a corollary to those
observations.

3. Diffusions X on the line, L. This section and the next concern
applications to the continuous case of the observations made above for the
discrete case. Suppose that, for each x on L, and each finite, open interval, J,
containing rr, the expectation of the time, t[x, J], say T[z, J], for X, initially
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at x, to exit from J, is finite. Let P[x, J] be the probability that this exit
occurs at the right-hand end-point of J.

The next lemma and proof must surely be known, and in the literature,
but aware of no reference, I record it here.

Lemma 3. The hitting times T[x, J] determine the hitting probabilities,
P[x,J\.

Proof. Let 6 < c be the end points of J. Verify that J is a subinterval
of some finite interval, K, for which the difference, £>, between T[c, K] and
T[6, K] is not 0. Verify, too, that T[x, K] minus T[#, J] is equal to the sum
of two terms, say F and G, where F is the product of P[x, J] with T[c, K],
and G is the product of (1 - P[x, J]) with T[b,K]. Since D, the coefficient
of P[x, J] in this equality, is not 0, P[x, J] is the ratio of T[x, K] — T[x, J] —
T[b,K] toίλ I

If T[x, J] remains unchanged whenever both x and J are translated to
the right by #, then X is of PERIOD g. If the weaker condition that P[x, J]
remains unchanged by those translations, then X is of QUASI-PERIOD g.
By the argument for Lemma 3, one may verify:

Lemma 4. Diffusions of period g are also of quasi-period g.

Remark 3. The converse does not hold. For example, each unbounded
martingale diffusion, X, is quasi-periodic for all g, but, it is not of period 1
if, for instance, it behaves like Brownian motion, of speed 1 for X < 0, and
of some other constant speed for X > 0.

{A Digression Concerning Existence. That the existence of such X is
a consequence of general results in the diffusion literature has been persua-
sively assured to me by Steve Evans and Jim Pitman independently. Ex-
changes with Gideon Schwarz led to a seemingly more direct approach to
existence, probably also known to cogniscienti. Namely, consider a discrete
version of X: that unique martingale, nearest-neighbor, random walk, Y,
with YQ = 0, that has for its state space, the set theoretic union, J, of the
negative integers and the non-negative even integers, and show, via a limiting
argument, that the discrete Y leads to a continuous X. These two related
approaches to existence may be supplemented by an equally related third:
modify standard Brownian motion, 5, by an appropriate, path-dependent
change of the time scale: if, up to time t, B spent time, n, below 0, and
time, p, above 0, let h[t] be n + cp, where c is a positive constant, and let X
at time h[t] be Bt.}

Assume henceforth that the scale function of X has an everywhere pos-
itive derivative, s', and that Xo = 0.

Theorem IB. IfX is of quasi-period g, and, a fortiori, if it is of period g,
then the probability that X reaches g before —g is the ratio ofs'0 to the sum
ofs'0 and s'
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Proof. Without real loss, let the quasi-period be 1. For a fixed positive
integer, g, let βj be the sign of the jth change by X of size 1/g, and let Z
be the sequence of the partial sums of the βj. As is easily verified, Z is a
nearest-neighbor random walk of period g. Moreover, Z reaches g before —g
iff X reaches 1 before — 1. As Theorem 1A implies, P, the probability of
success, satisfies P/[l - P] = W/W~, where W is the product of the g wi}

the probability that, when at i/g, X gains 1/g before losing 1/g, and W~
is the product of the [1 - Wi], Express, Wi, 1 - Wi, and their ratio, ri, in
terms of the increments of the scale function, s. That is, each point i/g is
the end point of two intervals, Li and Ri, of length 1/g, where Li is to the
left of Ri, and the ratio of the increment of s over Li to its increment over
Ri is ri. So, in calculating the product of the 7̂ , say R, most increments
of s cancel, and R is seen to equal the ratio of the increment of s over the
interval of length 1/g whose right-hand end point is 0 to the increment of s
over the interval of length 1/g whose right-hand end point is 1. This ratio
has the same value as the ratio of the slopes of the chords of 5 over these
two intervals. The conclusion follows by letting g approach infinity. |

4. Diffusions X on a circle S. Each process, Y, on the line projects,
via the exponential map, to a process, Y~, on the circle, S. As is easily
verified, if Y is a diffusion of period equal to the perimeter of S, then Y~ is a
diffusion on S, and each diffusion, X, on S is such a Y~, for some essentially
unique periodic diffusion, Y.

In particular, the scale function, s, for Y is determined by X. There
should therefore be no confusion if s is referred to as the scale function of
X. For simplicity of exposition, the regularity assumption that the scale
function for X has an everywhere positive derivative, sf, continues to be in
force.

Because of the relationship between a diffusion X on the circle and its
sister diffusion, Y, on L, from Theorem IB easily follows:

Theorem 1C. The probability that a diffusion, X, on a circle completes
a clockwise winding of the entire circle before one that is counterclockwise,
is the ratio of sr

0 to [sf

0 + s'g], where g is the perimeter of the circle. The
probability that X will ever attain a positive winding of the circle is the
minimum of 1 and the ratio of s'Q to s'g.

Query. Can one describe interesting events associated with non-peri-
odic nearest-neighbor walks, and/or some, beside C + , associated with peri-
odic, nearest-neighbor walks, whose probabilities are simple functions of the
transition probabilities?
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