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In the well-known e-contamination class of prior distributions I' =
{r(6) : 7(8) = (1—¢€)mo(0) +£q(6), ¢ € Q} , € represents the degree of
uncertainty on the base prior mo(6) and Q the allowed class of contami-
nations. We argue here that the uncertainty we have on 7 () typically
is stronger on its tails than on its body. This idea is formalized through
a more general £(0)-contamination class that might be seen as a local
robustification of m(#). When @ is defined by quantile constraints, the
admissible classes of functions £(6) capable of maintaining the prior in-
formation for the resulting priors m(6) are characterized and robust
posterior analysis is carried out. Influence analysis is also considered.
In this setting Fréchet derivatives are useful tools: they are easily inter-
preted and easily computed. Interactive robustness based on influence
analysis is discussed.

1. Introduction. Let x be a set of data which will be assumed to arise
from a density f(x | 6), where 6 denotes unknown parameters in the space 0.
Robust Bayesian Analysis assumes uncertainty on the prior distribution 7 (8)
and models such an uncertainty by considering classes of priors for which
robustness analyses are carried out. One of the most interesting classes is
the contamination class

(1) ['={n(8):7(8) = (1-¢)mo(d) +€9(6), ¢ € @},

which is proposed as follows. Some prior beliefs are established and a base
prior mo(#) matching these requirements is elicited. A constant £, 0 < ¢ <
1, reflecting our degree of uncertainty on the functional form of mo(8), is
specified. Finally, the class @) of all possible priors compatible with the prior
beliefs is considered.

Prior beliefs are expressed by the probabilities of some sets C;, ¢ > 1,
which form a partition of the parameter space ©. Therefore, the prior should
be any probability measure 7() such that P™(C;) = a4, © > 1, where o; are
known. The base prior mo(8) is then chosen such that P™(C;) = a;, ¢ > 1,
and the class @ is

(2) Q = {q(8) : PU(C;) = P™(Cy), i > 1}.
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A more general quantile information than that given in (2) might be
natural. Suppose that § = (61, 6,) € R? and we are confident on the marginal
m01(f1) and on the conditional probabilities

Pﬂo(Cilol)z/c.'. 7T0(d02 | 01)7 1= 1)"'>na

where {C;, ¢ = 1,...,n} is a partition of R. In this case the prior probabili-
ties of the sets in the o-field B = ¢(C X C;; C is any Borel set, i =1,...,n)
which is non-generated by a countable partition of R?, are completely spec-
ified. Class ) would then be

(3) @5 =14(0): [ a(@0) = [ mo(d6), B € BY.

Symmetry or sphericity, are also usual constraints that we also could
bring to this analysis.

References on contamination classes where several types of prior beliefs
are considered include Berger (1994), Berger and Berliner (1986), Berger
and Moreno (1994), Berger and O’Hagan (1988), Bose (1994), Delampady
and Dey (1994), Lavine, Wasserman and Wolpert (1991), Liseo, Moreno and
Salinetti (1996), Moreno and Cano (1991, 1995), Moreno and Pericchi (1993),
Sivaganesan (1988, 1989), Sivaganesan and Berger (1989), and O’Hagan and
Berger (1988), among others.

In the class T' given in (1) for @ as in (2) or (3) the confidence on
70(0)1¢;(0) or mo(61,602)1cxc;(61,02) is the same for any ¢ > 1. It seems,
however, more reasonable to assume that the confidence degree on m(8)1¢,(0)
or mo(61,02)1cxc;(01,02) might depend on the position of the set C;. That
is, on the tails of mo(#) we will generally be more uncertain than on its
body. This implies that ¢ should instead be a function of §. To replace ¢
with () in (1) will result not only in a more realistic model of our prior
uncertainty but it will also have an important impact on the size of the
class and consequently on posterior robustness. Notice that if ) is a convex
class, then ¢; < g5 implies that the £;-contamination class is contained in
the £2-contamination class.

It is clear, however, that arbitrary functions £(6), 0 < £(f) < 1, cannot
be used if the prior beliefs, given by the conditions (2) or (3), have to be
satisfied. In Section 2 we characterize the admissible class of functions £(8)
such that the resulting priors in I' satisfy the constraints (2) or (3). For a
given quantity of interest ¢(6) the posterior range as the prior ranges over
this €(#)-contamination class is also given.

A procedure to analyze which of the sets C;, ¢ > 1, is the most influential
on the posterior range is given in Section 3. In this aspect restricted Fréchet
derivatives are shown to be simple and useful tools. Based on this influence
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analysis and ideas in Berger (1994) interactive robustness is discussed in
Section 4. Finally, Section 5 gives some concluding remarks.

2. Contamination classes with quantile constraints. An exten-
sion to the class T given in (1), where @ is the class of priors defined by (3)
is the ¢(6)-contamination class

(4) I'={r(6) : 7(6) = (1 - &(8))mo(6) + £(0)9(6), ¢ € Q},

where the function (1 — ¢(f)), 0 < €(f) < 1, expresses our confidence on
mo(6) for each of the points 8. For an arbitrary £(8) the resulting prior 7(6),
however, will not satisfy the prior beliefs stated in (3). The question is to
characterize the class of functions () that satisfies those beliefs. The next
theorem gives the solution in the case of prior information as in (3). The
case (2) is obtained as Corollary 1.

THEOREM 1. Let (©,.A) be the measurable parameter space of the
statistical problem, and let B be a sub sigma field of A. Consider the class

I'g = {m(6) : 7(8) = (1 — &(6))m0(0) + (6)q(6), ¢ € @5}
where £(0) is an A-measurable function 0 < ¢(8) < 1, and
Qs ={a(0): [ a(ds) = [ mo(ds), B € BY.
Then, (i) if €(0) is B-measurable it follows that for any = € I'g and
B € B, the equality [g7(df) = [gmo(df), holds.
Conversely (ii) suppose that for any # € T and B € B the equality

[gm(d8) = [gmo(dB) holds. Then, if B is such that for any set A € A— B
there exist q;(d) and go(d@) belonging to Qp such that

/A ¢1(d6) = (x5, (A), /A g2(d6) = (x8)*(4),

where (78)., (t8)* are the inner and outer measures of the restriction of mo
to B respectively, it follows that £(8) is a B-measurable function a.s. [xf].

Proor. (i) If ¢(6) is B-measurable, the conditional expectation to B

with respect to ¢ € @Qp satisfies E9e() | B] = £(8), a.s. [r5]. From the
definition of conditional expectation we have that for any B € B

[, <(@atan) = [ Ele(6) | Bla®(ae) = [ Eoe(0) | Blnf(d6) = [ e(oymo(ds),

and this proves assertion (i).
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(ii) Suppose that £(6) is not an a.s. B-measurable function. Then there
exists an interval [0,a], @ > 0, such that e71([0,a]) = A € A - B and
(78)«(A) < (x8)*(A). Let By, By be sets in B such that By C A C B,
mo(B1) = (78).(A) and mo(Bz) = (78)*(A). Consider the set B, — By € B.
Then,

/B - £(0)q1(db) = /B - £(0)q1(d6)+ /A s (0)g1(dB) = /B
> a(mo(B2) — mo(B1)),
/Bz—BI £(0)g2(d6) = /32_ , E(0)qa(db)+ /A . e(8)g2(d8) = /A

< a(mo(B2) — mo(B1)),
but since that ¢1,¢2 € @ the inequalities above are not possible. So that,
() has to be a.s. B-measurable. This proves assertion (ii). O

£(8)q1(df)
A

>~

€(0)g2(d8)
B

COROLLARY 1.  Let B = o(C;, i > 1) be the sub sigma field of A
generated by the partition {C;, i > 1}. Then, any = € T'g and B € B satisfy
g m(0)d8 = [ mo(0)d6, if and only if £(8) is a B-measurable function.

Proor. For any set A, we have that

B _ FO(C), if ADC = Uie1Cs,
(mo)«(4) = { 0, otherwise,

where [ is some subset of indices of {1,2,...}.

Therefore, there exists g1 € @Qp such that [, g1(df) = (75).(A). The
existence of g € @p can be similarly proved and Theorem 1 applies. This
completes the proof. O

Theorem 1 means that the expert can choose () in the class of B-
measurable functions to express his degree of uncertainty on different parts
of mo(#), maintaining at the same time fixed the probabilities of every set in

B.

COROLLARY 2. If Q is the class of all prior distributions the only
possible contamination model T' is that given in (1), € being a constant in
the interval [0, 1].

Proor.  The proof follows from Corollary 1 by observing that B =
o(0,0), so that the B-measurable functions £(6) are now constant functions.
m]
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The sup and inf of E™[¢(0) | x|, as 7 ranges over I'g are derived with
minor changes from results in Moreno and Cano (1991). For simplicity we
give the sup and inf of E™[p(8) | x] as 7 varies over I'g where B = o(C;, 1 <
i < n). Notice that in this case the admissible class of €(6)’s are step
functions, i.e., () = Y €;1¢;(0), where 0 < ¢; < 1,1=1,...,n.

THEOREM 2. For any integrable function ¢(0) with respect to = € I'g,
the supremum of the posterior expectation of p(8) as © ranges over I'g, is
given by

Supery E[0(0) | X] =

ey D= ) o PO OO d8) + T ciplB) S0
0:€C1i=1,.n i=1(1 — &) Jo, f(x|0)mo(dO) + 321y € f(x]6i) i

where a; = [o, mo(df), i > 1.
The infimum is obtained replacing sup with inf.

The case where ¢(0) = 14(8) is more simple as Theorem 3 shows.

THEOREM 3. Let A € A be an arbitrary set. Then, the extreme values
of the posterior probability of A as © ranges over I'g are given by
SUpery PT(AJX) =
[ Yim1(1 = &) Jgeno, f(X|0)mo(dO) + ek €icviinfoec; f(x]0) ]—1

1+ =
i:l(l — &) fAnc,» f(x|0)mo(db) + ZieJ €{Q; SUPge AnC; f(x|6)

infrer, PT(A|x) =
i=1(1 —¢i) fAcnc,- f(x[0)mo(df) + 37y i SUPge AcnC; f(x]6) ]—1
1(1 = &) [anc, F(x|0)mo(dB) + 3;c €0 infoec; f(x[6) ’

where the subsets of indices I,J, K of the set {1,2,...,n} are defined by
i€l ifand only if C; C A, i€ J ifandonly if C;NA# 0,1 € K if and
only if C;N A =0.

[1+

ExaMPLE 1. Let X be a random variable A'(6,1) distributed. Suppose
we are interested in testing Ho : 0 < 0. It is elicited that the distribution of
6 is approximately symmetric around zero and that the probabilities of the
sets Cy = (—o0,—0.954], C; = (—0.954,0.954], and C3 = (0.954, c) are

-0.954 0.954 0
/ r(6)d6 = 0.25, / r(6)d8 = 0.5, / r(6)d6 = 0.25.
—c0 —0.954 0.954
The base prior mo(#) = AM(0,2) matches these quantiles and is typically used

to form the class I'g

Lo = {m(8) : 7(6) = (1 — &)mo(f) + £q(6), q € Q},
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where € = 0.2 and

—0.954 0.954 o0
Q=1{q: / ¢(6)d8 = 0.25, ¢(8)d6 = 0.5, / ¢(8)d6 = 0.25).
—o0 —0.954 0.954

The posterior imprecision of Hy with respect to this class for various
values of x are displayed in the second column of Table 1. This imprecision
is defined as

Ar,P™(Ho | x) = sup P"(Hp | x) — inf P™(Hp | x).
wely n€lo

If in the class T'g € is replaced with ¢(8) = 01¢,(8) 4 0.51¢¢(6), where C5
denotes the complement of C, only an uncertainty of 0.5 on the tails of mo(6)
is allowed. Let us denote by Ar, , P"(Hp | x) the posterior imprecision of Hy
with respect to the class associated with this ¢(6). Values of this imprecision
for various observations x are given in the third column of Table 1.

TABLE 1
Posterior imprecisions of Hg for I'g and T'o5
x Ar,P"(Ho [X) Are,P(Ho %)
0 0.21 0.13
0.5 0.18 0.12
1.0 0.14 0.09
1.5 0.09 0.04

Table 1 shows that a significant reduction of posterior imprecision is
obtained if only uncertainty on the tails of mo(6) is considered, even when
this prior uncertainty is as big as 0.5. Probably the situation considered in
the last column is a better reflection of our posterior uncertainty on mo(6)
than that of the second column and therefore those numbers would be a
more realistic measure of robustness of mo(6).

3. Influence and sensitivity. In the ¢(6)-contamination class I';(g),
where £(0) = Y &;1¢,(8), the uncertainty on mo(f) has been decomposed
into local uncertainty on each of the elements of the partition {C;, i > 1}.
A natural question is which set C; of the partition has the largest effect on
the posterior range of our quantity of interest () as the prior varies over
FE(B)'

A way to answer this question is as follows. Consider the class
(5)  TI'={m(6):7(8) = mo(6) + €ilc,(8)[a() — mo(9)), ¢ € Q},

where only uncertainty on C; is allowed. This class is derived from I';(g) for
g; = 0,7 # i. Let R;(x) be the posterior imprecision of ¢(#) as m varies over
I, ie., Ri(x) = sup,eri E™(p(0) | x) — inf, cri E™((6) | x) and R(x) the
corresponding one as the prior varies over I'c(g).
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LEMMA 1. For any sample observation x, the inequality

R(x) > max R;(x)
holds.

PROOF. Any 7(8) in I? can be written as
m(8) = mo(6) + D _eilc,(6)[a(8) — mo(8)],

where

q(0)={ q(8) iféeC,

mo(f) otherwise.

Since mo(f) € Q it follows that I C T (g) for any i. This proves the assertion.
a

Lemma 1 means that posterior robustness related to the class I',(4) cannot
be achieved if the classes I'*, ¢ > 1, are not robust. Therefore, if Ri(x) =
max;>1 R;(x) is not sufficiently small, the prior elicitation effort should be
concentrated on the set Cy.

EXAMPLE 1 (continued). In the situation of Example 1 consider the
class T'g. For various values of x the posterior imprecisions R(x), R;(x),
i =1,2,3, of p(0) = 1,(0), are given in Table 2.

TABLE 2
Values of R;(x) and R(x)
X  Ri(x) Ry(x) Rs(x) R(x)
0 0.03 0.17 0.03 0.21
0.5 0.02 0.16 0.03 0.18
1.0 0.01 0.14 002 0.14
1.5 0.00 0.09 0.01 0.09

Table 2 shows that the biggest posterior imprecision corresponds to I'?
which is associated with C3 = (—0.954,0.954), for all the considered sample
points. Notice that the values of Ry(x) are very close to those of R(x). Thus,
we should try to reduce uncertainty on Cy. This explains the dramatic
reduction we obtained in Example 1 on the posterior ranges of Hy with
respect to the e-contamination class I'g (¢ = 0.2) when no prior uncertainty
on C, were considered, even when the uncertainty on C;UC3 was assumed to
be very big, i.e., £(6) = 01¢,(0)+0.51¢,uc, (). Note also that as x increases
the set C3 is becoming more influential than C; which is intuitively obvious.
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The way shown above to study the posterior influence of the sets {C;, i >
1} is very understandable and only requires the computation of the posterior
ranges for the sub classes I', 7 > 1.

Other tools even easier to compute are the Fréchet derivatives (see Cuevas
and Sanz (1988), Ruggeri and Wasserman (1993) and Sivaganesan (1993)).

It is felt, however, that the main drawback of the functional derivative is
that it is not clear how to interpret its value (see for instance Berger’s reply
to Gustafson and Wasserman, in Berger (1994) p. 121). In this section we
consider restricted derivatives of the Bayes operator for which somehow the
difficulty of interpretation is avoided as long as we used them comparatively.

For a given bounded quantity of interest ¢(6), a prior 7 in Le(p) with
@ the class of all discrete prior distributions satisfying (2), and £() =
> €ilc,(8), consider the following functional

[ p(8)f(x | 6)(db)
6 T,(7) = .

© o= T T T oye(an)

Let us denote N(7r) = [g ¢(0)f(x | 0)n(df), and D(r) = [ f(x | 6)x(d6).
@ is taken as the discrete probability measures because the posterior ranges
of Ty(m) are attained at discrete priors.

The Fréchet derivative T,(7) at point mo can be expressed as (see Dia-
conis and Freedman (1986), Ruggeri and Wasserman (1993)),

(7) T, (o) = D(mo) " {N(8) — T,(w0)D(8)}.

For the signed measures 6§(6) = 3, &;1¢,(8)(q(0) — mo(8)), (7) turns out to
be

(8) T(r0) = Dlma) ™ Sei [ {1(6) ~ Tl x| 6) + 2 }a(ds),

where a; = P™(C;), and kio = [g, f(x | 0){Ty(m0) — (6)}mo(db).
If g is non-atomic, then the norm of é§ related to the total variation
distance is ||6|| = 3, €ia;, and from (8) we have

: |Tp(m0)| _ymax{}; eieiLi(8), — ¥, eii Li(6)}
I T, (mo)ll = 2‘618 le«” = D(mo)™" S0y ’

where L;(0) = supgec, Li(0), L;(0) = infgec; Li(8) and

Li(6) = f(x| 0){p(8) — Ty(mo)} + 2.

Q;

Consider the operator

ng(ﬂ_) = T‘P(ﬂ-)lejzo,j;&i'
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This is the Bayes operator related to the class
(9) T* = {n(8) : 7(8) = 70(8) + £:1c,(6)[a(6) — mo(8)], ¢ € Q(discrete)},
For 6;(8) = €i1¢,(6)[q(8) — mo(8)] the norm of the Fréchet derivative

| T4 (o)|
6l

IT5(mo0)|| = sup
q€Q

is going to be taken as-the measure of sensitivity to small changes in 7 in
the class I'*. This would give an indication on the posterior influence of the
set C;.
These derivatives turn out to be the restrictions of || T,(mo)|| to€; = 0, # 1,
||T’(7r0)|| = ||T, (7r0)}hE _ojgi» U= 1,...,m, and therefore, their expres-
sions are

(10) I Tg(mo)ll = max{Li(), —L;(6)}.

( 0)
Note that ||Tj,(7ro)|| does not depend on ¢; # 0, the degree of contamination
allowed, although it depends on the prior mass that the class puts on C;.

EXAMPLE 1 (continued). For the classes I given in (9) associated with
the three sets Cy, C3 and C3 in Example 1 and several values of x, the norms
of the derivatives for ¢(6) = 1g,(0), say ||T};,0(7r0)||, calculated from (10) are
displayed in Table 3.

TABLE 3
Norms of derivatives HT;(wo)”; 0(0) = 1m,(0)
X T, (Il 175, (vl (1T, (mo)ll
0 0.31 0.87 0.31
0.5 0.26 0.97 0.31
1.0 0.17 0.87 0.30
1.5 0.08 0.63 0.23

Table 3 shows that the biggest values of the norms of the derivatives
correspond to the class I'? for any of the considered sample values. It is also
observed that as x increases ||T?Io(7r0)|| becomes bigger than 7%, (mo)l-

The posterior ranges of Hy as m ranges over I'*; ¢ = 1,2,3, given in
Table 2, are in agreement with the corresponding values of the norms given
in Table 3. These derivatives are also easier to compute than the posterior
ranges.

4. Interactive robustness. The idea of using Bayesian robustness to
guide the elicitation process has been pointed out in the thoughtful paper by
Berger (1994). He argues that Since we are eliciting in terms of quantiles,
this means that a new quantile 6* must be chosen with the associated o* (for
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the new interval created) being elicited. This idea will be implemented in the
e-contamination context.

It is relevant to appropriately choose in which set we put the new quan-
tile. In fact, it might be that we do not gain in robustness even when we
add an infinite number of quantiles. This is a consequence of Lemma 1.

For instance, if in Example 1 we consider the observation x = 1 we can
create as many new intervals inside either C; or C3 as we want but the
posterior ranges of Hy remain 0.14 (see third row in Table 2).

The influence analysis in Section 3 gives clear indications on which set
Cr = (6k-1, 0] the new quantile must be chosen. Furthermore, if our
confidence on my(#)1¢, (6) is not small it seems reasonable to take a* such
that

o
o = / ro(d8).
Ok—1

If R*(z,6*) denotes the posterior range of our quantity of interest as the

prior varies over the contamination class

) .
D= (0 7@ €Ty [ 7@ = [ wo(as)),

k— k-1

the point 6* is determined as the most favorable point in C}, that is
*(x,60%) = inf R*(x,b).
R(x,67) = inf R*(x,0)

When our prior confidence on 7o(6)1¢, (8) is small, 79(8)1¢,(6) should
be replaced by some other base m1(6)1¢, (#). This means that we are acting
as if we were starting again the problem of modelling prior uncertainty but
instead of considering the whole parameter ® we consider the set Cy where
the quantile 6* is subjectively elicited and the new m1(6)1¢,(6) is chosen in
agreement with it.

It is clear that the set in which the new quantile has to be chosen is
depending on the observation x we have. Thus, it can be argued that the new
class I'* is designed depending upon the observation which somehow might
be seen as a data-dependent elicitation. However, interactive robustness
means that we jump from samples to priors and therefore some dependence
is inherent in the idea.

EXAMPLE 1 (continued). Consider Example 1 and the class I'q. We
saw in Table 2 and Table 3 that for all the samples considered C; was the
most influential set. The values for 6* € Cy and the corresponding o™ turn
out to be * = 0 and a* = 0.25 for all the considered values of x. The
posterior imprecisions R*(x), R}(x), ¢ = 1,2,3,4 are given in Table 4.



Local Robustness And Influence 147

TABLE 4
Values of R}(x) and R*(x)
x  Ri(x) Ri(x) Rs(x) Ri(x) R*(x)
0 0.03 0.016 0.016 0.03 0.087
0.5 0.02 0.032 0.004 0.03 0.082
1.0 0.01 0.037  0.008 0.02 0.081
1.5 0.00 0.031  0.007 0.01 0.062

From Table 4 it follows that the most influential set is now either C7, or
Cj for x = 0, and C5 = (—0.954, 0) for the other sample values (notice that
P7™(C3 | x) is not the biggest P™(C> | x), + > 1, x = 0.5,1,1.5).

The norms of the restricted derivatives for the class I'* are displayed in
Table 5.

TABLE 5
Norms of derivatives ||T%(mo)||; ¢(8) = 11,(8)

x_ |Th,(mo)ll 1T, (ro)ll 175, (mo)ll 11 Tg, (o)l
0 0.31 0.21 0.21 0.31
05 026 0.33 0.05 0.31
1.0 017 0.40 0.10 0.30
1.5 0.08 0.36 0.08 0.23

From Table 5 follows that the biggest norm of the derivatives corresponds
to I't, I';, for x = 0 and I'} for the other sample values. They give the same
indication on the influential set than that given by Table 4. For complex
problems, however, these norms of the derivatives are easier to compute than
posterior ranges.

5. Conclusions. In this paper an extension of the £-contamination
class of priors suitable to model local robustification of the base prior has
been introduced. The motivation is that elicitation difficulties are typically
on the tails of the prior distributions. If C;, ¢ > 1 are the sets in the partition
assumed to be ordered from the body to the tail, our recommendation is to
increase the corresponding values ¢;’s. A reasonable choice would be to start
with ¢ = 0.1 for sets in the body to ¢ = 0.4 for sets in the tails.

It should be remarked that in the formulation of this concept no new
difficulties arise either in computation or interpretation with respect to the
Global Robustness Analysis. The analyses in the first three Sections of the
paper are valid regardless the dimension of the parameter space.

A procedure for analyzing the influence on the posterior ranges of the
sets in the partition and interactive robustness have been given. In this
setting, Fréchet restricted derivatives are interpreted comparatively and are
proved to be useful tools for a better understanding of some facts of the
priors that provoke imprecision on the posterior answers. The suggestions
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derived from the comparisons of the values of the norm of the derivatives
are very reasonable in the examples we have considered. The hope is that
for local and interactive robustness these derivatives are in general good
indicators, even when we are aware of the asymptotic poor behaviour of the
Fréchet derivatives (see Gustafson, 1994). However, this general relationship
between infinitesimal sensitivity and posterior robustness still deserves more
research.
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Local Robustness And Influence For Contamination Classes
Of Prior Distributions

discussion by
LARRY WASSERMAN
Carnegie Mellon University

I would like to begin by congratulating the authors on an interesting pa-
per. Their main point is that uncertainty about a prior need not be constant
across the parameter space. We might, for example, be less confident about
the tails than the center of the distribution. The authors recommend that
we generalize the e-contamination class to explicitly account for this.

To begin, let us briefly review the class of priors under consideration. Let
C ={C4,...,C,} be a fixed partition of the parameter space, let €;,...,¢,
be such that 0 <¢; <1,i=1,...,n and let €(8) = 3, €;lc,(0). The authors
define

(1) I'={m(0);7(8) = (1 - €(6))m0(6) + €(6)q(6), ¢ € Q}

where Q = {q; [ q(6)d0 = [ 7o(0)dd,C € C}.

The idea is to set ¢; large if we have great uncertainty about the form of
the prior over C;. Table 1 of their paper verifies that if our uncertainty is
only in the tails, then the posterior bounds will be narrower than a standard
e-contamination class. Table 2 of Section 3 contains the surprising result
that the center of the prior, not the tails, produces the greatest effect on
the posterior. This may be due to the fact that the table stops at X = 1.5.
When n is large, X, could easily be far in the tail of the prior. In this case,
Table 2 might look quite different. This leads me to my first question: Why
is Ry (the sensitivity due to perturbations to the center) greater than R;
and Rs (the sensitivity to the tails)? Specifically, what are the conditions
that imply greater sensitivity in the tails?

At this point I would like to mention an alternative method for quan-
tifying local uncertainty which was developed in Wasserman (1990, section
6). There I define a “local perturbation” to a prior m using the notion of a
random set. Associate with each 8, a set Ny such that 8 € Ny. Then T is
defined to be the set of priors formed by moving mass from 6 to any point in
Njy. Loosely, we replace the random point # with the random set Ny. More
formally, let F be the set of measurable mappings f : £ — Q such that
f(6) € Ng and let T' = {rf~%; f € F}. Then suppcr [ hdP = [ h(6)7(db)
where h(6) = sup,en, h(u). Bounds on posterior expectations can be found
using linearization. The bound on the posterior probability of a set A is
given by
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J suPuenyna L(u)m(d6)
[ supyen,na L(u)n(d0) + finfuen,nae L(u)m(d0).

One might set Ny = [0 — €(8),0 + €(0)], say. This approach seems to offer
slightly more flexibility than the authors’ method though it does not preserve
fixed quantiles. It would be interesting to compare this approach with the
authors’.

In section 3, the authors also consider the Frechet derivative of the pos-
terior with respect to the prior, as various pieces of the prior are perturbed.
The authors observe qualitatively similar behavior here as with the global
analysis.

I like the idea of using these derivatives. Unfortunately, these derivatives
have some problems. As noted in Gustafson and Wasserman (1995), the
norm of the derivative, ||T|| often has poor asymptotic behavior. The norm
of the Frechet derivative of the posterior with respect to the prior is

L(f)
J L(8)n(d6)

P(Alz) =

1] =

where L is the likelihood and 6 is the maximum likelihood estimator. Typ-
ically, we find that ||T||, = O(n!/?) assuming that the parameter is scalar.
This diagnostic is clearly inappropriate since it implies that the posterior
has increasing sensitivity in n. If we compute the derivative of the posterior
expectation of a given function, rather than the whole posterior, we find that
||T|| is bounded but still does not go to zero. I expect that the authors’ will
find that the norm does not tend to zero at least for the partition element
containing the true value. Note that restrictions like quantile restrictions
are generally not strong enough to correct the asymptotic behavior. Unless
the diagnostic is o(1) its value is questionable; see Gustafson (1994). This
suggests two things. First, the derivative is an inappropriate measure of
sensitivity (unless some modification is made). Second, the agreement be-
tween Table 2 and Table 3 may break down for large n. Have the authors
investigated examples where n is large?

Finally, the authors suggest that their diagnostics could be useful for
interactive elicitation. This sounds like a fine idea and I look forward to
further developments in this area. This leads me to my final question. To ask
this question, I must first step back and ask: what is the purpose of robust
Bayesian analysis? In my opinion, the main purpose of robust Bayesian
inference is to simplify the process of specifying assumptions. To clarify this
point, consider two different types of Bayesian analyses:
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Type (I) analysis:
(Step 1): Carefully and fully elicit a prior 7.

(Step 2): Calculate the posterior. Stop.

Type (II) analysis:
(Step 1): Carelessly and quickly construct a prior mo.
(Step 2): Calculate the posterior.

(Step 3): Carry out a sensitivity analysis. If answers are not robust, go
back to Step 1. Otherwise, Stop.

Now a Type II analysis appears to involve more work. But as long as
sensitivity analysis is simple, then the work involved in a Type II analysis
can be substantially less than the work involved in a Type I analysis even
though the former has more steps. But if the work involved in Step 3 is
substantial, then little, if anything, is gained by taking the second route.
My concern is that the authors’ methods require much input, making Step
3 quite difficult. Their method requires that we specify {mo,C, P, €} where
C ={Ci,...,Ca}, P = {P(Cy),...,P(Cy)} and € = {e1,...,€,}. It seems
like a lot of work to specify all this information. I am concerned that this
might not be feasible in hard problems. I’d be interested in the authors’
comments on this point.

In summary, I find the author’s methods to be quite interesting and I
enjoyed their paper. The idea that uncertainty about the prior should vary
across the parameter space is important. The authors deserve much credit
for taking an important first step in this direction.
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ELias MoOoRENO, CARMEN MARTINEZ AND JUAN A. CANO

We thank Professor Wasserman for his interesting and stimulating com-
ments.

His first comment is on the results in Tables 2 and 3. Values of R;(z)
and R(z) for values of z greater than 1.5 are given in Table 6.

TABLE 6
Values of R;(z) and R(z)
T Ry(z) Ry(z) Rs(z) R(z)
2 2.0 107% 52.0 10~ 9.7 103 0.069
3 1.5 10-4 920 10~* 28.0 10% 0.013
4 0.1 10-4 85 100* 4.1 107* 0.001
6 001 10-7 11.0 1007 59 107 1.810°°
10 1.0 10-20 58 107 20 10°'¢ 8.810°1¢

From table 6 follows that as the data goes far from zero, the influence of
the prior becomes smaller and robustness is achieved. However, the relative
influence of C; still remains bigger than that of C3 (or Cy). It should be
noted that the prior mass on Cj is twice that of C3 (or Cy).

The approach with belief functions in Wasserman (1990, section 6) has
indeed the same aim than than the approach taken here. However, from the
beginning our analysis was derived to maintain the prior beliefs stated in
terms of quantile constraints.

We share his perceptive comments on Frechet derivates. In fact the
quantile class of prior distributions behaves asymptotically poorly too.

In Moreno and Pericchi (1993) a normal sampling model was assumed
and the asymptotic behavior of the posterior probabilities P™(I, | z1,...,25),
where I, = {#:2 — 2 < 0 < 7+ 2} and 2, = ®~'(12), as 7 ranges over
the quantile class

Fo ={n(0) : 7(6) = (1 — e)mo(8) + €q(6), q € Q},

was analyzed. There it was found that

limy, e infrer, PT(Ly | 21,...,2,) =0,
limp, o0 SUPrer, P (Ly | T1,. -5 %0) = 1,

and that the correction term 6, needed to ensure that

BEU o) =
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where I, = (Z — 27:6",12' + z”j;s"), is 6, = O(y/logn). This disturbing
behavior from I'c can be corrected if, in adition, unimodality is imposed on
the contamination class.

The conclusion is that to process so weak information as that stated by
quantile constraints has a price to pay, say this non-reasonable asymptotic
behavior.

This, however, does not mean that I'c is not useful. It contains accesible
prior information which might be enough for the inference. Otherwise, by
adding shape constraints the asymptotic hehavior is corrected.

On the other hand, when comparison behavior of sets C; are considered
the problem is less important.

We specially like the final question as long as it affects the foundation
of Robust Bayesian Analysis. Apparently we have at hand two types of
Bayesian Analysis, denoted by Professor Wasserman as Type (I) and Type
(IT). We would like to be able to deal with Type (I) analysis. However,
we have to say that even when it is the most rational way to deal with in
statistics, step (1) is so difficult that gives a clear justifaction to Type (II)
analysis. The same appplies to the sampling model selection. Thus, in our
view, robustness analysis, in its wider possible sense, is absolutely necessary.

Therefore, in the context of contamination we are left in the case of the
classical e-contamination class (e being a constant, say 0.2) or as here in the
case of inputs (C1,...,Cp; o) and €1,...,€,.

Now take Type (II) analysis as follows. Start with a few sets C’s. For
those in the center of the distribution of 7y take € = 0.2 as usual. For those
in the tails increase this value. If robustness is not present, analyze the
influence of the sets C’s. Choose the more influential one and split it. Carry
out a robustness analysis. Continue until robustness is achieved.

All of us agree that prior elicitation is, in general, a hard task. What
we are proposing here is to elicit step by step. In the contamination context
considered here this decomposition results in an understandable way with a
very little increment in complexity.
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