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In Betro ei ai (1994) the optimization of posterior functional Eπ(g \
x) with respect to prior measures TΓ has been considered for the class of
priors defined by a number of generalized moment conditions f Hidπ <
ai. Constraints of this type are very general as they include for in-
stance, besides ordinary moment conditions, bounds on prior quantiles
or bounds on marginal probabilities of data. This paper presents an
algorithm for the numerical solution of the above optimization prob-
lem based on ideas suggested by the interval approach to numerical
optimization as well as from semi-infinite linear programming.

1. Introduction. The interest for robust Bayesian analysis is steadily
increasing (see Berger, 1994 for a recent survey). In particular the attention
is focussed on robustness with respect to the prior and various examples of
classes of priors which are convenient for the analysis have been studied.

In Betro et aL (1994) the class of priors defined through the so called
generalized moment conditions have been analyzed. It has been shown in
particular that the infinite dimensional problem of finding the extrema of
posterior functionals under such a prior class reduces, under rather general
conditions, to a finite dimensional one. This latter, however, is typically
a global optimization problem, and therefore its solution is in any case a
difficult task from an algorithmic point of view. It has to be noted that the
solution of a global optimization problem is usually searched for repeatedly
starting a local search routine from different points within the feasible re-
gion; this gives, in general, only an approximation from below to the global
maximum and from above to the global minimum, and therefore it might
erroneously indicate that robustness holds.

An interesting approach that is able to provide intervals which are guaran-
teed to contain the global extrema in global optimization problems has been
proposed in the literature (see e.g. Hansen, 1992; Ratscheck and Rokne,
1988; for a survey, see Ratscheck and Rokne, 1995). The approach exploits
the ideas of Interval Analysis for building up functions mapping intervals
/ in IRn into intervals in IR containing the range over / of the function to
be optimized. On the other hand, the connection recently pointed out (see
DalΓAglio and Salinetti, 1994) between robust Bayesian analysis with gener-
alized moment conditions and semi-infinite linear programming has disclosed
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the possibility of prompting solution approaches developed in this latter con-
text.

Merging Interval Analysis and semi-infinite linear programming ideas, we
shall construct here, after a suitable transformation of the original problem
into a new one in which only linear functional on a measure space are con-
cerned, a general algorithm based on finite dimensional linear programming
problems whose solutions bracket the supremum of the posterior function of
interest. We remark that the linearization here proposed requires a single
step, unlike the one in Lavine (1991). Obviously in a quite analogous way
the infimum of posterior functional can be dealt with.

We start in Section 2 recalling some features of the generalized moment
classes of priors, stressing the fact that such classes extend far beyond ordi-
nary moment classes and are also able to accomplish restrictions to the prior
as unimodality or 6-contamination. In Section 3 we exhibit the linearization
of the problem, and how to build up the linear programming problems whose
optimal solutions bound from above and from below the required extremum,
while in Section 4 we show how to refine the bounds. After the definitions
of basic notions in Interval Analysis, in Section 6 we sketch a proof of con-
vergence of the bounds to the extremum considered, when the parameter is
real, under some rather general conditions. In Section 7 the implementation
of the bounding procedure in the Maple programming language, exploiting
its symbolic manipulation facilities, is discussed. Finally, in Section 8, two
numerical examples are given.

2. The problem. Let X be a random variable on a dominated statis-
tical space (X,Tχ,{Pe,θ G (Θ,^*)}), with density f(x\θ) with respect to a
dominant measure λ, where the parameter space (Θ,^7) is such that Θ is a
subset of a finite-dimensional Euclidean space; denote by lx(θ) = f(x\θ) the
likelihood function, which we assume Tx ® /"-measurable.

Let Q and M be respectively the space of all probability measures and
the space of all finite measures on (Θ, F) and define

(1) Γ = {π eQ : / Hi(θ)π(dθ) < αt , i = 1,... , m},
JΘ

where Hi are given π-integrable functions, and α2- are fixed real constants,
i = 1,... , m. Suppose that Γ is nonempty.

Let

be a functional of the posterior density, where g : Θ —> IR is a given function
such that F exists.
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Conditions of the type (1) will be referred to as generalized moment con-
ditions. The simplest case is obviously H{(θ) = θ\ but we might consider

n.i\u) = / lx\ϋ)αx,

where K{ is a measurable subset of Λ', so that

Hi(θ)ττ(dθ) = I τnπ(x)dX)
JKi

/
e

where mπ(x) = / θ lx(θ)π(dθ), and consequently deal with bounds on the

marginal probabilities; bounds on conditional marginal probabilities

P(xx £ Ai I x2) < α t

can be considered as well as they can be written in the form:

/ mπ(xι,x2)dxι-0Li mπ(xux2)dx1<0,

where mπ(xι^X2) = / θ l(χiiX2)(θ)π(dθ) On the other hand, restrictions of Q
in (1) to a class of e—contaminated priors or to a class of mixture priors can
be accomplished within a suitable generalized moment class. Indeed, in the
first case, if π = (1 — £)τro + eg, q G Q, then for a generic function / it holds:

(3) J fdπ = J{J[(1 - e)fdπ0] + ef}dq

so that we still deal with constraints of the form (1) and with a functional

of the form (2). In the second case, we have for any function /

ί f(θ)π(dθ) = ί ί f(θ)π(dθ I α)dv(α)

and therefore generalized moment conditions are still preserved. We remark
that, according to Khintchine's Theorem (Feller, 1971) the class of unimodal
priors π in IR is a particular mixture class.

In any case, our aim is to find out algorithms to calculate

(4) inf F(τr)

(5) supF(τr).
TΓGΓ

3. Approximation by finite dimensional problems. We consider
here the following transformation from the linear ratio form (2) into a linear

one without altering the linearity of the constraints. We refer to problem (5),
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but obviously problem (4) can be addressed as well, considering -g instead
of g.

Consider v £ M given by

assuming that /Θ lx(θ)π(dθ) > 0; (6) yields

(7) / lx{θ)v{dθ) = 1.

Jθ

Thus, by (6) and (7), it is easy to show that π can be written as

and the problem turns into

(9) G* = sup / g(θ)lx(θ)u(dθ) = sup F'(i/)>
i/GΓ' •/© i/GΓ'

where

(10) Γ' = {v e M : / fi(θ)u(dθ) < 0, i = 1,... , m, / lx(θ)u(dθ) = 1}

and /t (0) = #;(#) — αt , i = 1,... ,m. We observe that linearization can be
also achieved through the posterior measure μ(A) = f^lχ(θ)n(dθ)/ JQIX(Θ)

π(dθ), A e T (see Betrό and Guglielmi, 1994); however this introduces
division by lx{θ) which typically yields numerical instabilities. For a review
of linearization techniques in robust Bayesian analysis see Perone Pacifico et
αl. (1994).

The basic idea in the algorithm we propose is to formulate two finite
dimensional optimization problems whose solutions are an upper and a lower
bound, respectively, of the optimum value (9) under the constraints (10). Let
us start from the upper bound.

Consider a partition Π^ of Θ into a finite number of subsets, say Θ =

Θf U . . . U Θ{i. If φ : Θ —> IR, then φ and φ_ will denote an upper and a
lower bound, respectively, of the function φ over the subset Θ .̂ We assume
that the bounds are such that if fc, k1 are two integers, k1 > fc, and, for some
/ and j , Θf' C Θj , then

Φ, < Φj

(11) $ > iy
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If φ is indexed by some index, say i, then we write φ^ and φ1? .. We set

v* — i/(Θj). When not required for clearness, the upper index relative to
the partition Π& will be omitted.

If v e Γ, then 0 > !eϊi{θ)v{dθ) > Σ j U / / j , * = 1,... ,ro and 1 >

V1 C

Γ

and sup^^p/ -F;(^) < sup^^p F'(v). Analogously

sup / g{θ)lx{θ)v{dθ) <

For simplicity, to avoid handling coefficients with infinite values, we will
assume that all the functions considered in the problem are bounded. Now
we observe that sup^f^ Σj=i (ff(^)^(^)) -vi ι% n o t necessarily smaller than
maXj=iv..?A; <7j But, if g* is an upper bound for 5, then it is possible to find
non positive upper bounds for g(θ) - g* on Θj, so that

g(θ)lx(θ)u(dθ) = ί gΊx(θ)u(dθ) + ί (g(θ) - g*)lx(θ)v(dθ)
JΘ JΘ

/

Thus, the supremum (9) is not larger than

k

(12) sup 2* +
»erk \

and Tk can be easily written as

k

(13) ΣLj"i ^ 0, i = l , . . . , m } .

To conclude, the solution of (12)-(13) provides an upper bound to the optimal

value of G* in (9).
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Coming to the construction of the lower bound of (9), it is natural to
consider the following finite dimensional problem

(14)

i

Tι = {(%,... , 77/) G ffi/ : η3 > 0, j = 1,. . . , / , £ lx(θ3)η3 = 1,

3=1

I

(15) Σft(θJ)ηJ<O,i=l,...,m},
3=1

where θ\,... , 0/ are given points in Θ.

Indeed, (12)-(13) and (14)-(15) are ordinary finite dimensional problems
for which efficient solution techniques exist.

We assume that f / in (15) is not empty for / > /0, which implies that the

feasible regions Γ' in (10) and f *, for any integer fc, in (13) are not empty too.

4. Refining the bounds. In the previous section we showed how to build
an "upper" and a "lower" problem, whose corresponding optimal values
bracket the optimal value (9). We want now to construct two sequences
of such finite dimensional problems so that the corresponding sequences of
upper and lower bounds of G* will converge, under suitable conditions, to
the optimal value G*.

Here we assume for simplicity that Θ is an interval in 1R; extensions to mul-

tidimensional intervals can be easily worked out. A refinement procedure is

here proposed whose general stage is as follows. Let Iίkn be the current parti-

tion of Θ into kn intervals as in Section 3. As (13) defines ra+1 constraints, a

suitable value for k\ is ra+1. Then the linear programming problem (12)-(13)

is solved obtaining an optimum value £?(*») = (#* + Σ j = i [siβ) ~ 9*]jhcjVj),

Q{kn) > Q* L et us consider now the at most ra+1 intervals corresponding

to positive ϊ>j. They are candidates for containing the atoms of a solution

v of the original problem (9)-(10). We remind that if an optimal solution

to such a problem exists, then the measure v achieving the supremum is a

discrete one with finite support (see Betrό et al, 1994). Such intervals are

then split into two parts, obtaining a new partition with a finite number of

intervals greater than kn. Let {#i, . . . ,#/„} (/n > kn) be the points in Θ

defining this new partition. We solve the corresponding problem (14)-(15),

obtaining G(ln) = ΣljLi9(θjMθj)ίίj, £(/„) < ^ * < £ ( M T h e n > according
to the strategy described below, we choose new points in Θ to be added to
{0i,... ,0/n}, getting a new partition of Θ, Π^ n + 1 , &n+i > In- This com-
pletes the current stage and we can proceed to the next one, computing a
new upper bound G^kn^ to the optimal solution.
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The choice of the points in Θ to be added to {0i,... , 0/n} after Gn\ has
been computed is accomplished exploiting the semi-infinite linear program-
ming approach. Indeed, the dual formulation of (9)-(10) (see Kemperman,
1987) is given by

(17) v(y; θ) = yolx(θ) + Σ,? Vifi(θ) - g(θ)lx(θ) > 0, V0 6 θ ,

y\ > o , . . . , Vm > o.

(16)-(17) is referred to as a semi-infinite linear programming problem and
for its solution a vast literature is available (for a recent survey, see Hettich
and Kortanek, 1993). The connection between Bayesian robust analysis
under generalized moments and semi-infinite linear programming has been
first pointed out in Dall'Aglio and Salinetti (1994).

A widely studied class of methods in this contest is the class of exchange
methods based on the idea of considering a finite number of constraints
v{y\ θj) > 0, j = 1,..., / and solving the resulting ordinary linear program-
ming problem, obtaining a solution y. If v(y θ) > 0, for each θ £ Θ, then
y solves (16)-(17), otherwise the list of discretization points 0 1 ? . . . , θ\ is up-
dated by a suitable point θ* which achieves a "small enough" (negative)
value of the function υ(y; θ). A criterion for the choice of 0*, making precise
the above concept of smallness, is given in Hu (1990): for a fixed 0 < a < 1,
θ* is any point such that

either v(y;θ*) < -a

(18) or ϋ(y;0*) < αinfv(y fl).
θ

This criterion ensures convergence of the resulting exchange algorithm under
wide conditions (see Theorem 1 in Hu's paper).

Coming back to our situation, we consider the dual solution y of (14)-(15).
If Θj denotes the general interval in the Θ-partition defined by {0χ,... , 0/n}
and υ_j denotes the lower bound of υ(y; θ) over Θj, then v_j is easily computed
as we assume the availability of the bounds on g, lx, / 's. Then, new points
are added to the previous ln ones, iteratively considering, for r = 1,2,...,
one or more points of the interval, say Θ*, corresponding to υ* = min, Vj and
consequently updating the grid of points in Θ, the corresponding partition,
the bounds υ_^s and r. Let θ* denote the point, among the ones considered
in Θ*, with the smallest values of v{y\ •). Iteration is stopped when

either v(y;θ*) < -a

(19) or υ(y;θ*r)<av;

is met. In this way, the new partition Πfcn+1 is determined by {#i,... ,0/n}

plus the points considered in the above iteration.



10 B. Betrό and A. Guglielmi

Summing up, the algorithm we propose is an iterative one, whose general

stage provides the computation of an upper and a lower bound. We switch

from the current stage to the next one updating adaptively the grid in Θ

that enables to build up alternatively the two finite dimensional problems

(12)-(13) and (14)-(15). In this way, two sequences (G ( / n ) ) n and ( G ^ ) ) n

are obtained such that G(/n) < G* < (?(*n) and, by (11) it is easily seen that

(Gn\)n is non-decreasing while (G^kn^)n is non-increasing. The convergence

of the sequences will be discussed in Section 6. We need before to find a

proper way of computing the sequences (g)n)kn, (/f^)^, (Jχjn)kn, (Ljn)fcn

This can be achieved by techniques derived from Interval Analysis.

5. Interval Analysis. Interval analysis is a generalization of real analysis
in which interval numbers replace real numbers and interval arithmetics
replace real arithmetics. See Hansen (1992) and Ratschek and Rokne (1988,
1995) to have an idea of Interval Analysis applied to global optimization
problems.

An interval number X is a real interval [α, 6]. An interval function Φ is an
interval-valued function, defined on a class of intervals; it is called inclusion
function for a real-valued function φ on IRn if

{φ{x) :xeX}C Φ(X).

Then it is possible to calculate an upper bound of the supremum of 0, and
a lower bound of the infimum of φ over an interval X in the following ways:

a) if φ can be written, using arithmetic operations, in terms of elementary
functions whose range on X is known, the range of φ is obtained, via interval
arithmetics, from the ranges of the elementary functions;

b) if φ is differentiate and Dφ denotes its gradient, as well writable in
terms of elementary functions of known range on X, then the following
inclusion formula can be used to obtain the range of φ on X via interval
arithmetics

(20) φ(x) e φ(mid(X)) +(X- mid(X))DΦ(X)

where mid(X) is the midpoint of the interval X, to be defined in an ap-
propriate way when X is unbounded, and DΦ is an inclusion function for
Dφ.

The outputs of both a) and b) are intervals, whose left endpoints are lower
bounds for φ and whose right endpoints are upper bounds for φ. Comparing
the two procedures, b) is expected to be better than a) when the length of
X is small. It is easily seen that a) and b) give inclusion functions for which
(11) holds. Besides, we assume that the following condition holds

(21) w(Φ(X))-w(Πφ(X))-+0J &s
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where Φ is an inclusion function for φ obtained by a) or b), w denotes the
length of an interval and Ώφ(X) the range of φ over X (see Ratschek and
Rokne, 1988, p.87). As stated in Ratschek and Rokne (1995), p. 783, as-
sumption (21) is not very restrictive and it is satisfied in a wide range of
situations. We remark that it does not imply the continuity of φ.

6. Convergence of the bounds. In this section we sketch a proof of

convergence of the sequences G^kn^ and G(/n) under the following conditions:

C l : Θ is a compact interval in IR.

C2: g is upper semicontinuous, /z , i — 1, . . . ,n, are lower semicontinuous,

lx is continuous (this implies that υ(y; •) is lower semicontinuous for

every y £ I R m + 1 ) and they have only a finite number of points of

discontinuity of the first kind.

C 3 : for every partition Π&n, there exists a couple (ε,δ) of positive numbers
such that an index s = s(kn) £ {1, . . . , m} can be found with / . > δ

for all j for which lXj < ε.

C4: interval splitting in the "upper" substage occurs at the midpoint of the
interval. In the "lower" substage the points considered in Θ* are its
midpoint and the possible points of discontinuity of v(y; •) in Θ*. We
recall that θ* in (19) is such a point with the smallest value of v(y; •).

Let us consider, first, the convergence of G(iny If a point 0* satisfies (19),
then this point satisfies (18) too, so that convergence of Gf(/n) is ensured by
the same conditions giving the convergence of Hu's algorithm, keeping in
mind that such convergence implies the absence of duality gap. We remark
that Hu's results are easily seen to hold under the additional requirement
Vi > 0, . . . ,ym > 0. Let us suppose that, at the n-th stage, (19) is vio-
lated at each iteration (so that an infinite number of points is added). By
Lemma 1 in Ratschek and Rokne (1988), p.85, it follows that w(Θ*) -* 0
as r —> +oo. By the compactness of Θ and the splitting strategy we adopt,
it is possible to choose a subsequence of Θ*, that we still denote by Θ*
for simplicity, such that Θ* -> c* as r —> +oo, and c* £ Θ* for an infi-
nite number of indexes r. By θ * -^ c* we mean that for each sequence 0 r,
r = 1,2,..., θr £ Θ;, it holds θr -* c* as r -» +oo. By Theorem 3 in
Ratschek and Rokne (1988), p. 87, thanks to condition (21), we have that
lim r_>+oo υ* = inf© υ(y; θ). Besides, by the lower semicontinuity of v, we can
see that lim r_,+ o o t£ = υ(y; c*), so that l i m r _ + o o v* = inf© v(y; θ) = υ(y; c*).
We show that liminfr_>+oo v{ψ > K) = v (y; c *) Indeed, this is trivial if c*
is a continuity point for v(y\ •). On the other hand, if c* is a discon-
tinuity point for υ(y; •), since the condition c* £ Θ* implies v(y θ^) =
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t>(y;c*), it follows that c* e Θ* for an infinite number of indexes r implies

]immfr_++ooυ(y;θ*r) = v(y; c*) = infθt;(y;0). If v(y;0;) > α m a x ( - l , ^ )

for every r, then inf©i;(y;0) = liminfΓ υ(y; Θ*) > αmax(-l,lim r υ£) =

αmax(-l,infθt7(y;0)). Then, mfΘυ(y;θ) < 0 (if inf Θ v(y; (9) > 0, y is

the dual solution of (9)-(10)) implies mfeυ(y;θ) > max(-l,infe υ(y-, #)),

that is absurd.

Coming to the convergence of G^kn\ let us first show that, under con-

dition C3, the discrete measure P, solution of the finite dimensional prob-

lem (12)-(13) is finite and its whole mass is bounded, for every kn. In-

deed, Σj=iLj^j = 1 implies Σjjxj>eVj < 7 Besides, 0 >

< C', C independent on kn (of course, min j / . must be negative, if the

vector (UJ) belongs to the feasible region, that we suppose not empty). Thus,

Σj ϊj is bounded by a positive constant independent on n.

Without loss of generality, we can suppose g* = 0, so that G^kn^ — Σj=i Vj

Lxji>jn. For every fcn, denote by i>kn = ( ^ n , . . . , ^ + 1 ) e I R m + 1 a vector

containing the at most m + 1 positive //jn and the remaining components

set to 0. Denote by c n and d n the midpoints and the lengths of the in-

terval Θj n corresponding to ϊλn respectively (ckn and dkn are the corre-

sponding vectors) and, if φ is one of the functions considered, by <£.n, φjn

the bounds of the function φ on the same interval. By condition C3, the

compactness of Θ and the boundedness of the functions considered, there

exists a subsequence of {kn}, that for simplicity we still denote by {kn},

such that 5j n ,Lj n J4 n 'Zii n ' ' Z n j n ' ^ n ' c i n ' 4 n c o n v e r g e a s n -* +°°>
j = i i , . . . , i m + i . Let ί/*,c*,cί* be the corresponding limit for vkn,ckn,dkn

and denote by [y\,... , ̂ / ) , m' < m + 1 the positive components of i/*.

We want to show that the measure Σ'jLi v]^c* ^s a feasible measure for

problem (9) - (10). First, d* = 0, j = 1, . . . ,ra'. Indeed, should an in-

dex j G {1,.. ,m'} exist such that d* > 0, this would mean that the

interval centered at c* with length d* was not definitively split. This hap-

pens only if vX — 0, against the definition of ZΛ*. Thus, Θ^n —> c! , j =

l , . . . , m ' . From condition (21), we have l im n _ f + o o Ίjjn - supΘ*n g(θ) =

\imn^+oog
kn - g(θkn) = 0, θkn G θ j n , j = l , . . . , m ; . By the upper

semicontinuity of g, l i m s u p n _ + o o g{θkn) < flf(cp, j = I,...,™'. Thus,

l ί m n ^ + o o <?<*»> = l i m n _ + o o E f J i ^ i ^ " < Σ f J i g{c))lx(c])p^ and anal-

ogously 0 > l i m n _ + o o E"=i / ? ^ i n > Σf=i Λ(S*K> » = I,--- , ^ More-

over, by continuity of lx, 1 = l i m n _ + o o Ef=i ^ " ^ = Σ,m=i U^>j- τ h i s
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means that the measure ΣjLi v]^c* belongs to Γ', so that limn_+ o o

< G\ As G* < G**n) for each n, it follows G* = limn_++oo G^l

We remark that ΣjLi Vjδc* turns out to be an optimal solution of problem

( ) ( )

7. Implementation of the bounding procedure. The procedure out-
lined in the previous sections was implemented in the Maple V programming
language (see Char et α/., 1991 for reference).

The upper and lower bounds of the functions considered are evaluated by:
a) direct use of the Maple procedure evalr, which handles interval arith-

metics;
b) application of evalr to the Taylor form (20); the capability of perform-

ing symbolic differentiation is exploited here.
Switching from a) to b) occurs when the interval length is less than 0.5.

At each stage, two linear programming problems must be solved (see
Section 4). Since the Maple procedure simplex was found to be unac-
ceptably slow for our purposes, the Maple system command was used to
call the public domain program "loqo" retrievable from ftp://elib.zib-
berlin.de/pub/opt-net/software/loqo which was found to be satisfac-
torily fast and reliable. A drawback is that the method loqo uses is an
interior-point one, so that null variables in the solution are computed as
small positive numbers. To remedy to this in the "upper" substage, where
it is required to deal with intervals corresponding to non-null solution vari-
ables, we considered as positive variables greater than a fraction β of the
largest one.

The procedure is stopped when the difference between the upper and lower
bound of (9) gets smaller than some specified threshold δ.

It is possible to specify the list of intervals of the initial partition when
necessary, for instance when the functions #, lx or fi are not differentiate at
certain points. In this case, taking such points to form the initial partition
ensures that (20) can be applied.

We remark that, if inf© v(y; θ) in (18) is close to 0, then the search of a
point satisfying (19) may require a large number of trial points. Thus, it is
sensible to stop the search after a prefixed number of trials M.

8. Numerical examples. In the following two examples, the procedure
was run with α = 0.1, β = 10"3, δ - 10~3, M = 50; a maximum of 300
stages were performed. In both examples we report the values of the upper
bound for sup π e Γ F(π) and the values of the lower bound for inf^r F(π)
obtained at the stopping of the procedure.

EXAMPLE 1. Assume that the probability distribution for the data is
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N(θ,σ2), σ2 known and that the prior for θ is an 6-contamination of π 0

given by Λ/*(μ, r 2 ) . We consider

Γ = { τ r G Q : π = ( l - e)7Γ0 + eq,q £ Q, and / mπ(u)du = α, , i = 1,2,3}

for ΛΓi = (-oo, 71), αx = 0.25, K2 = (-00,72), α 2 = 0.5, UT3 = (-00,73),
c*3 = 0.75, where 7 t 's are the quartiles of m π o , the marginal density of data
corresponding to 7Γ0. This choice of Γ corresponds to the assumption that
we are confident on the quartiles of mπ o and we wish that such features are
retained in Γ too. We want to investigate the robustness of the probability
of 100(1 - p)% Bayes credible region C(x) = [c1(x),c2(x)], i.e. g(θ) = Ic{x)

at an observation x. It is easy to see that (C2)-(C4) hold.

After transforming the problem into a new one in which, according to (3),
the 6-contamination restriction is removed, we formulate the corresponding
problem (12)-(13). The results reported in Table I were obtained for σ 2 = 1,
μ = 0, r 2 = 2, p = 0.05, e = 0.2, and x = 0.5,1.0,... , 4.0 as in Betrό et αl
(1994). See Berger and Berliner (1986), Moreno and Cano (1991) for further
reference.

TABLE I. Ranges of F(π)

X

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

inf^er F{τ)

.904894

.906332

.891356

.855498

.794774

.734300

.623294

.468170

su
PτreΓ

 F
(
π
)

.961248

.961310

.961987

.961555

.961636

.962881

.966724

.975661

Results in Table I are in good agreement with the ones reported in Table 4
in Betrό et al. (1994). They show a good level in robustness for the smaller
values of x. On the contrary, large values of x point out lack of robustness.
In particular, when x = 4, it is not possible to conclude which event between
{θ G C(x)} and {θ £ C(x)} is a posteriori more likely. In spite of the fact
that Θ is not compact, convergence of the bounds was achieved.

EXAMPLE 2. Reliability analysis is a major field of application of Bayesian
procedures. It is therefore attractive to apply robust Bayesian ideas to this
field. The situation considered here is the one describing the occurrence of
failures resulting from repeated application of correcting actions (like in the
process of prototype development). A suitable mathematical model is the
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so called Power Law Process, i.e. a non-homogeneous Poisson process with
intensity

(22) λ(t) = (β/α)(t/α)β~\t > 0, α > 0,0 < β < 1.

Let (0,r] be the time interval in which (instantaneous) modifications are
introduced into the prototype. After τ let no further improvement be incor-
porated into the system. Then the system reliability in (r, r -f Δr] is

iϋ(Δr) = exp(-λ(r)Δr).

Assume that we are interested into the robustness of the posterior mean
of JR(ΔT). Let ί i , . . . ,ίn be the times at which intervention on the system
occurs. We take r = tn. As in Calabria et αl. (1990), we reparametrize (22)
in terms of

where T is a fixed time and N(T) is the number of failures in (0, T], so that
the likelihood can be written as

l(Mτ,β; tu ...,<„) = Γ - ^ t t ^ / Γ

where u = Πi *i Let us assume that MT and /3 are independent and that for
MT a Gamma distribution with parameters (α, b) is appropriate. In order
to establish a class for the prior distribution of /?, it is reasonable to think
that the elicitation of the prior leads to consider the distribution of the first
failure time, conditionally to MT and /?,

P(Γχ >t\MTtβ) = exp {-

and to assess that upper and lower bounds of the marginal distribution
1 — P{T\ > t) are given at some time instants, say «i, 52,53. Then, after
integration with respect to the distribution of My, we obtain

, . = 1,2,3.

Let us assume α = 6 = 2; as in Finkelstein (1976) (see also Calabria et
αl, 1992), let the data be given by n = 10, tτ = 13, ί2 = 48,ί3 = 89,<4 =
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121,h = 189,ί6 = 262,ί7 = 323, ί8 = 395,ί9 = 499,ίio = 626. We set
T = 10; Δr = 20; sx = 25, s2 = 5, θ3 = 3, Γ = {0.2 < β JΓ^TΓ < 0.3,0.55 <
fo H2dπ < 0.6,0.65 < f* H3dπ < 0.75}. Besides, it is easy to check that
conditions (Cl)-(C4) hold.

The range of the posterior mean of R(Aτ) has been computed as:

[.693284, .853333],

showing a certain degree of robustness in the Bayes estimate of R(Aτ), in
spite of the restricted number of constraints.

9. Conclusions. We have shown how it is possible to build up an algo-
rithm which represents a general tool for robust Bayesian analysis when the
class of priors is specified in terms of generalized moment conditions. It has
been pointed out that such a class covers a great variety of situations, includ-
ing 6-contaminations and unimodal priors. There is obviously no claim that
the limited numerical experience here reported is a proof of the effectiveness
of the algorithm; however this latter appears useful in practical situations.
We remark that tools of general availability like Maple and loqo have been
exploited in the implementation of the algorithm.

Acknowledgements. The authors wish to thank referees for their insight-
ful comments on the first draft of the paper.
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discussion by
ELI'AS MORENO.

University of Granada. Spain

Let me first congratulate the authors for the paper in which a very im-
portant problem in the field of Robust Bayesian Analysis is considered. In
fact, most of the classes of prior distributions we have studied up to now can
be formulated as "generalizated moment problem". The resulting numerical
problems in the solution of the generalized moment problems are really very
hard and therefore any effort in this direction is very welcome. In particular
this proposed by Betrό and Guglielmi.

To begin, let me briefly review the problem. Let f(x\θ) be the likelihood
of the statistical problem, g(θ) the quantity of interest and Γ the class of
prior distributions

Γ = {π(θ):f&π(dθ) = l,fQHi(θ)x(dθ)<ai,i=l,2,...,n}
= {π(θ): Jθ(Hi(θ) - ai)π(dθ) < 0, i = 1,2,..., n}

where the functions Hi(θ), i > 1, and the real numbers α? , i > 1, are specified.
Given the observations x = a?1? # 2 , . , #n), the goal is to find

The first nice idea in the paprer is to set that

inf E*(g(θ) I x) = inf E"{g{β)f{x \ θ)},

where

Γα = {ι/(0) : / v{dθ) = Jfe, fe > 0, / (Jϊ^β) - ai)u(dθ) < 0, i = 1,2,..., n,

/ /(x i «M(») = i}.

Note that Eπ(g(θ) | x) is a ratio of linear function in π but E"{g(θ)f(x \
θ)} is a linear functional in ZΛ The price to pay is that Γ involves n liinear
constraints on π and I\ involves n + 2 constraints on z/.

On the other hand, since the extreme priors in Γi are discrete measures
a natural thing to do is to discretize the space Θ. This is the idea tried in
the paper.

18
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This discretization of the problem, however, may be done in many dif-
ferent ways. My first question to the authhors is: why the discretization
followed in the paper is particularly attractive?

Furthermore, as the authors pointed out in the section 4 of the paper,
there exists a dual formulation of the problem which contains a finite nujmber
of parameter (see Kemperman (1987), Perone, Salinetti, Tardella (1994),
DalΓAglio and Salinetti (1994), Liseo, Moreno and Salinetti (1995)), and
allows to formulate the problem as

i n W , E"{g(θ)f(x I θ)} =

s u p ^ o {dn+1 + inf^r, fe\g(θ)f(x \ θ) - Σΐ d, ( W ) - α, ) - dn+1f(x | θ)]u(dθ)}

= sup d,>o {dn+ι + mfk>oinfθ€e[g(θ)f(x \ θ) - Σ\di{Hi(θ) - an) - rfn+1/(x | θ)]k}.

In this setting my second question is: why not to concentrate numerical
efforts in solving this dual problem that is a finite dimensional problem from
the beginning? I feel that the authors could be more efficient if this problem
is focused instead of the former one.

ADDITIONAL R E F E R E N C E S

LISEO B., MORENO, E. AND SALINETTI G. (1995). Bayesian Robustness for the
class of bidimensional prirs with given marginals (with discussion). In This
Volume.

KEMPERMAN, J.H.K. (1987). Geometry of the moment problem. In Semi-infinite
Programming and Applications, A.V. Fiacco and K.O. Kortanek, Eds., Lectures
Notes in Econometrics and Mathematical Systems, vol. 215, 63-92.
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We thank the discussant for his appreciation of our effort to contribute to
the numerical solution of a "really very hard" problem. Indeed, we are
convinced that, in view of the wideness of the Generalized Moment class,
its effective numerical treatment represents a major step towards making
robust Bayesian analysis more appealing to the statistical practitioner.

Concerning his observation that the price to pay for linearization via (6)
is an increase of the number of constraints, this does not appear as a serious
drawback, since (7) does not alter the linear structure of the constraint set.
So the price is worthy to be paid.

About his first question, we do not obviously claim that our discretization
is the "best" one. We propose an adaptive discretization scheme which even-
tually leads to isolate the atoms of the extreme measure. Computing upper
and lower bounds over the intervals of the discretization enables to con-
trol the accuracy so far reached. Any improvement over the simple scheme
adopted, which however is borrowed from standard techniques in the interval
analysis approach to global optimization, is welcome.

Coming to the second question, we observe that the problem

sup {dn+1 + inf mί{g(θ)f(x\θ) + £ di(Ht(θ) - at) - dn+1f(x\θ)}k}
di>0 k>oβee . = 1

dn+1 e IR

(notice that a positive sign is needed before the sum - see Kemperman,
1987, p. 26) is easily seen to reduce to the problem supdn_|_i under the
constraints g(θ)f(x\θ) + ΣΓ=i di(Hi(θ) - αt ) - dn+1f(x\θ) > 0, for aU θ G Θ,
d2 > 0, i = 1,... , n, dn+i £ IR? that is the analogue to the dual formulation
(16)-(17), when we look for the inf instead of the sup. Thus, it is natural
to approach the problem by algorithms developed in the frame of semi-
infinite linear programming, as we did using Hu's procedure. This latter
was modified in a more operative way, adopting interval analysis techniques,
in order to solve the global optimization problem it involves.
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